Electrochemical Hydrogenation of Furfural Enhancing Furfuryl Alcohol Selectivity over Flower-like Zn-Based MBON-2 in Alkaline Medium
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of MBON-2
2.2. Structural Characterization
2.3. Electrochemical Analysis
2.4. Quantitative Analysis of Products
3. Results and Discussion
3.1. Catalyst Characterization
3.2. Electrocatalytic Furfural Hydrogenation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, K.; Liu, Y.; Wang, Y.; Kong, K.; Li, J.; Liu, X.; Duan, H. Steerings selectivity in electrocatalytic furfural reduction via electrode-electrolyte interface modification. J. Am. Chem. Soc. 2024, 146, 11876–11886. [Google Scholar] [CrossRef]
- Liu, L.; He, Y.; Li, Q.; Cao, C.; Huang, M.; Ma, D.D.; Wu, X.T.; Zhu, Q.L. Self-supported bimetallic array superstructures for high-performance coupling electrosynthesis of formate and adipate. Exploration 2024, 4, 20230043. [Google Scholar] [CrossRef]
- Zeng, L.; Chen, Y.; Sun, M.; Huang, Q.; Sun, K.; Ma, J.; Li, J.; Tan, H.; Li, M.; Pan, Y.; et al. Cooperative Rh-O5/Ni(Fe) site for efficient biomass upgrading coupled with H2 production. J. Am. Chem. Soc. 2023, 145, 17577–17587. [Google Scholar] [CrossRef]
- Oh, Y.; Theerthagiri, J.; Kumari, M.L.A.; Min, A.; Moon, C.J.; Choi, M.Y. Electrokinetic-mechanism of water and furfural oxidation on pulsed laser-interlaced Cu2O and CoO on nickel foam. J. Energy Chem. 2024, 91, 145–154. [Google Scholar] [CrossRef]
- Bao, Y.; Du, Z.; Liu, X.; Liu, H.; Tang, J.; Qin, C.; Liang, C.; Huang, C.; Yao, S. Furfural production from lignocellulosic biomass: One-step and two-step strategies and techno-economic evaluation. Green Chem. 2024, 26, 6318–6338. [Google Scholar] [CrossRef]
- Han, S.; Kim, J.; Shim, J.; Lee, W.B.; Ryu, J.; Yoon, J. Optimizing electrochemical furfural hydrogenation on Pt via bimetallic colocalization of Cu. ACS Catal. 2024, 14, 17525–17534. [Google Scholar] [CrossRef]
- Akhade, S.A.; Singh, N.; Gutierrez, O.Y.; Lopez-Ruiz, J.; Wang, H.; Holladay, J.D.; Liu, Y.; Karkamkar, A.; Weber, R.S.; Padmaperuma, A.B.; et al. Electrocatalytic hydrogenation of biomass-derived organics: A Review. Chem. Rev. 2020, 120, 11370–11419. [Google Scholar] [CrossRef]
- Xia, Z.; Li, Y.; Wu, J.; Huang, Y.-C.; Zhao, W.; Lu, Y.; Pan, Y.; Yue, X.; Wang, Y.; Dong, C.-L.; et al. Promoting the electrochemical hydrogenation of furfural by synergistic Cu0-Cu+ active sites. Sci. China-Chem. 2022, 65, 2588–2595. [Google Scholar] [CrossRef]
- May, A.S.; Biddinger, E.J. Speciation of potential-dependent fouling on copper foil electrodes during electrochemical hydrogenation and hydrogenolysis of furfural in strong acid. Green Chem. 2023, 25, 8687–8697. [Google Scholar] [CrossRef]
- Yao, Z.C.; Chai, J.; Tang, T.; Ding, L.; Jiang, Z.; Fu, J.; Chang, X.; Xu, B.; Zhang, L.; Hu, J.S.; et al. Manipulating hydrogenation pathways enables economically viable electrocatalytic aldehyde-to-alcohol valorization. Proc. Natl. Acad. Sci. USA 2025, 122, e2423542122. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Fan, Z.; Dou, S.; Lam, J.C.-H.; Zhang, W.; Chen, Z. Electrochemical hydrogenation of furfural under alkaline conditions with enhanced furfuryl alcohol selectivity by self-grown Cu on a Ag electrode. Inorg. Chem. Front. 2024, 11, 4449–4458. [Google Scholar] [CrossRef]
- Chen, X.; Li, R.; Zhong, Y.; Liu, H.; Hu, D.; Liang, C. Insights on the hydrogenation of furfural and its derivatives to 1,5-Pentanediol over Ni/La-substituted CeO2 catalysts. Chem. Eng. J. 2024, 499, 155854. [Google Scholar] [CrossRef]
- Qin, M.; Fan, S.; Li, X.; Duan, J.; Chen, G. Electrocatalytic reduction of furfural to furfuryl alcohol using carbon nanofibers supported zinc cobalt bimetallic oxide with surface-derived zinc vacancies in alkaline medium. J. Colloid Interface Sci. 2024, 660, 800–809. [Google Scholar] [CrossRef]
- Dixit, R.J.; Gayen, P.; Saha, S.; De, B.S.; Anand, A.; Basu, S.; Ramani, V.K. Tuning product selectivity during electrocatalytic hydrogenation of biomass-derived furfural through oxygen vacancy control in metal oxides. Ind. Eng. Chem. Res. 2024, 63, 5039–5052. [Google Scholar] [CrossRef]
- Dixit, R.J.; Bhattacharyya, K.; Ramani, V.K.; Basu, S. Electrocatalytic hydrogenation of furfural using non-noble-metal electrocatalysts in alkaline medium. Green Chem. 2021, 23, 4201–4212. [Google Scholar] [CrossRef]
- Zhang, X.; Han, M.; Liu, G.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H. Simultaneously high-rate furfural hydrogenation and oxidation upgrading on nanostructured transition metal phosphides through electrocatalytic conversion at ambient conditions. Appl. Catal. B Environ. 2019, 244, 899–908. [Google Scholar] [CrossRef]
- Zhan, P.; Liu, X.; Zhu, Q.; Zhao, H.; Zhang, S.; Zhang, C.; Ren, C.; Zhang, J.; Zhang, C.; Cai, D. Selective furfuryl alcohol production from furfural via bio-electrocatalysis. Catalysts 2023, 13, 101. [Google Scholar] [CrossRef]
- Fang, G.; Bao, S.-X.; Zhou, G.-X.; Ge, C.-C. Activity regulation and applications of metal-organic framework-based nanozymes. Rare Met. 2023, 43, 900–914. [Google Scholar] [CrossRef]
- Lee, Y.S.; Huang, C.W.; Yueh, C.T.; Kung, C.W.; Yu, W.Y. Electrochemical hydrogenation and hydrogenolysis of furfural on copper electrode enhanced by surface environment modulation with metal-organic framework. Chem. Eng. J. 2025, 506. [Google Scholar] [CrossRef]
- Yang, Z.H.; Chou, X.Y.; Kan, H.Y.; Xiao, Z.H.; Ding, Y. Nanoporous copper catalysts for the fluidized electrocatalytic hydrogenation of furfural to furfuryl alcohol. ACS Sustain. Chem. Eng. 2022, 10, 7418–7425. [Google Scholar] [CrossRef]
- Jiao, L.; Jiang, H.-L. Metal-organic frameworks for catalysis: Fundamentals and future prospects. Chin. J. Catal. 2023, 45, 1–5. [Google Scholar] [CrossRef]
- Feng, Y.; Smith, R.L.; Fu, J.; Qi, X. In situ transformation of Co-MOF nanorods into Co3S4/Ni3S2 nanotube arrays for electrochemical biomass upgrading. Green Chem. 2023, 25, 8698–8705. [Google Scholar] [CrossRef]
- Spadetto, C.; Hachemi, C.; Nouaille-Degorce, M.; Pendu, L.; Bossert, L.; Temperton, R.; Shavorskiy, A.; Cardenas, L.; Prévot, M.S. Electrocatalytic hydrogenation of furfural with improved activity and selectivity at the surface of structured copper electrodes. ACS Catal. 2024, 14, 4489–4500. [Google Scholar] [CrossRef]
- Dhawan, M.S.; Yadav, G.D.; Barton, S.C. Zinc-electrocatalyzed hydrogenation of furfural in near-neutral electrolytes. Sustain. Energy Fuels 2021, 5, 2972–2984. [Google Scholar] [CrossRef]
- Afshariazar, F.; Morsali, A. Mixed-valence metal-organic frameworks: Concepts, opportunities, and prospects. Chem. Soc. Rev. 2025, 54, 1318–1383. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Zhang, S.; Wu, H.; Zhou, S.; Cui, C.; Pang, H. Mechanism insights and design strategies for metal-organic framework-based alkaline hydrogen evolution reaction electrocatalysts. Mol. Catal. 2024, 130, 110177. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Li, Y.; Xu, T.; Sun, Y.; Bai, J. Palladium-modified zirconium dioxide as a selective catalyst for hydrogenation of furfural to furfuryl alcohol. Mater. Res. Bull 2024, 179, 112946. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, Y.; Wang, J.; Zhang, X.; Sun, C.; Yang, Y.; Wang, X. B-O oligomers or ring species in AlB2: Which is more selective for propane oxidative dehydrogenation? ACS Catal. 2023, 13, 1630–1637. [Google Scholar] [CrossRef]
- Zhao, P.; Lin, Z.-E.; Wei, Q.; Cheng, L.; Yang, G.-Y. A pillared-layered zincoborate with an anionic network containing unprecedented zinc oxide chains. Chem. Commun. 2014, 50, 3592–3594. [Google Scholar] [CrossRef]
- He, M.; Yao, J.; Liu, Q.; Wang, K.; Chen, F.; Wang, H. Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous Mesoporous Mater. 2014, 184, 55–60. [Google Scholar] [CrossRef]
- Cao, L.; Dai, P.; Wen, S.; Jiang, Y.; Liu, D.; Gu, X.; Zhang, Q.; Xia, Y.; Zhong, G.; Zhao, X.; et al. A thermostable pillared layered metal-borate- organic network featuring neighboring boron sites for oxidative dehydrogenation of propane. Matter 2023, 6, 4376–4387. [Google Scholar] [CrossRef]
- Naik, S.S.; Theerthagiri, J.; Min, A.; Moon, C.J.; Lee, S.J.; Choi, M.Y. Selective furfural conversion via parallel hydrogenation-oxidation on MOF-derived CuO/RuO2/C electrocatalysts via pulsed laser. Appl. Catal. B Environ. 2023, 339, 123164. [Google Scholar] [CrossRef]
- Parpot, P.; Bettencourt, A.P.; Chamoulaud, G.; Kokoh, K.B.; Belgsir, E.M. Electrochemical investigations of the oxidation–reduction of furfural in aqueous medium: Application to electrosynthesis. Electrochim. Acta 2004, 49, 397–403. [Google Scholar] [CrossRef]
- Ketkaew, M.; Assavapanumat, S.; Klinyod, S.; Kuhn, A.; Wattanakit, C. Bifunctional Pt/Au Janus electrocatalysts for simultaneous oxidation/reduction of furfural with bipolar electrochemistry. Chem. Commun. 2022, 58, 4312–4315. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, W.; Tan, J.; Yang, Y.; Jia, Y.; Tang, Y.; Gao, Q. In situ reconfiguration of plasma-engineered copper electrodes towards efficient electrocatalytic hydrogenation. Catal. Sci. Technol. 2022, 12, 4032–4039. [Google Scholar] [CrossRef]
- Huang, S.; Jin, Y.; Zhang, M.; Yan, K.; Feng, S.-P.; Lam, J.C.-H. MoS2-catalyzed selective electrocatalytic hydrogenation of aromatic aldehydes in an aqueous environment. Green Chem. 2022, 24, 7974–7987. [Google Scholar] [CrossRef]
- Zhao, B.; Chen, M.; Guo, Q.; Fu, Y. Electrocatalytic hydrogenation of furfural to furfuryl alcohol using platinum supported on activated carbon fibers. Electrochim. Acta 2014, 135, 139–146. [Google Scholar] [CrossRef]
- Sabri, M.A.; Bharath, G.; Hai, A.B.; Haija, M.A.; Nogueira, R.P.; Banat, F. Synthesis of molybdenum-cobalt nanoparticles decorated on date seed-derived activated carbon for the simultaneous electrochemical hydrogenation and oxidation of furfural into fuels. Fuel Process. Technol. 2022, 238, 14. [Google Scholar] [CrossRef]
- Lv, Q.; Yi, J.J.; Lam, J.C.H.; Wang, H.; Zhang, H.; Huang, S.Q.; Luo, Y.M. Engineering a Cu cluster supported on 1T-rich MoS2 for the efficient electrocatalytic hydrogenation of Furfural to Furfuryl Alcohol in a Neutral Aqueous Solution. ACS Sustain. Chem. Eng. 2025, 13, 1677–1688. [Google Scholar] [CrossRef]
- Wen, H.; Li, T.; Fan, Z.; Jing, Y.; Zhang, W.; Chen, Z. Electrocatalytic hydrogenation of furfural over copper nitride with enhanced hydrogen spillover performance. Green Chem. 2024, 26, 8861–8871. [Google Scholar] [CrossRef]
- Xia, Z.; Xu, L.; Ma, C.; An, Q.; Bu, C.; Fan, Y.; Lu, Y.; Pan, Y.; Xie, D.; Liu, Q.; et al. Enhancing the electrocatalytic hydrogenation of furfural via anion-induced molecular activation and adsorption. J. Am. Chem. Soc. 2024, 146, 24570–24579. [Google Scholar] [CrossRef]
- Xu, H.; Xu, G.; Huang, B.; Yan, J.; Wang, M.; Chen, L.; Shi, J. Zn-organic batteries for the semi-hydrogenation of biomass aldehyde derivatives and concurrently enhanced power output. Angew. Chem. Int. Ed. 2023, 11, 8642–8650. [Google Scholar]
- Jung, O.; Jackson, M.N.; Bisbey, R.P.; Kogan, N.E.; Surendranath, Y.J.J. Innocent buffers reveal the intrinsic pH-and coverage-dependent kinetics of the hydrogen evolution reaction on noble metals. Joule 2022, 6, 476–493. [Google Scholar] [CrossRef]
- Wu, J.; Xu, L.; Li, Y.; Dong, C.-L.; Lu, Y.; Nga, T.T.T.; Kong, Z.; Li, S.; Zou, Y.; Wang, S. Anodic cross-coupling of biomass platform chemicals to sustainable biojet fuel precursors. J. Am. Chem. Soc. 2022, 144, 23649–23656. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Qiu, H.; Shen, C.; Hou, S.; Fu, Q.; Zhao, X. Electrochemical Hydrogenation of Furfural Enhancing Furfuryl Alcohol Selectivity over Flower-like Zn-Based MBON-2 in Alkaline Medium. Chemistry 2025, 7, 124. https://doi.org/10.3390/chemistry7040124
Zhang Y, Qiu H, Shen C, Hou S, Fu Q, Zhao X. Electrochemical Hydrogenation of Furfural Enhancing Furfuryl Alcohol Selectivity over Flower-like Zn-Based MBON-2 in Alkaline Medium. Chemistry. 2025; 7(4):124. https://doi.org/10.3390/chemistry7040124
Chicago/Turabian StyleZhang, Yingxin, Hengxing Qiu, Chunyu Shen, Shuwen Hou, Qiuju Fu, and Xuebo Zhao. 2025. "Electrochemical Hydrogenation of Furfural Enhancing Furfuryl Alcohol Selectivity over Flower-like Zn-Based MBON-2 in Alkaline Medium" Chemistry 7, no. 4: 124. https://doi.org/10.3390/chemistry7040124
APA StyleZhang, Y., Qiu, H., Shen, C., Hou, S., Fu, Q., & Zhao, X. (2025). Electrochemical Hydrogenation of Furfural Enhancing Furfuryl Alcohol Selectivity over Flower-like Zn-Based MBON-2 in Alkaline Medium. Chemistry, 7(4), 124. https://doi.org/10.3390/chemistry7040124