Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (121)

Search Parameters:
Keywords = heterointerface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4939 KB  
Article
Creation of High-Density Néel Skyrmions by Interfacial-Proximity Engineering
by Tingjia Zhang, Chendi Yang, Xiaowei Lv, Ke Pei, Xiao Yang, Wuyang Tan, Junye Pan, Jiazhuan Qin, Meichen Wen, Wei Li, Jia Liang and Renchao Che
Materials 2026, 19(2), 340; https://doi.org/10.3390/ma19020340 - 14 Jan 2026
Viewed by 277
Abstract
Two-dimensional ferromagnets are promising for compact spintronic devices. However, their centrosymmetric structure inherently suppresses the Dzyaloshinskii–Moriya interaction (DMI), hindering the stabilization of chiral spin texture. Here, a tunable DMI induced by interface symmetry breaking in Fe3GeTe2/MoS2 vdW heterostructures [...] Read more.
Two-dimensional ferromagnets are promising for compact spintronic devices. However, their centrosymmetric structure inherently suppresses the Dzyaloshinskii–Moriya interaction (DMI), hindering the stabilization of chiral spin texture. Here, a tunable DMI induced by interface symmetry breaking in Fe3GeTe2/MoS2 vdW heterostructures is reported. We find that the interfacial DMI stabilizes Néel-type skyrmions in Fe3GeTe2/MoS2 heterostructures under zero magnetic field, with nucleation observed at 64 Oe and annihilation at 800 Oe via Lorentz transmission electron microscopy (LTEM). Skyrmion density peaks (~0.57 skyrmions/μm2) at a Fe3GeTe2 thickness of ~30 nm and decays beyond ~60 nm, indicating a finite penetration depth of the proximity effect. Such modulated DMI enables a stabilized nucleation of Néel type skyrmions, allowing for precise control over their density, revealed by Lorentz transmission electron microscopy. Thickness-dependent measurements confirm the interfacial origin of this stabilization. Skyrmion density reaches peak in thin Fe3GeTe2 layers and decays beyond ~60 nm, defining the finite penetration depth of the proximity effect. Micromagnetic simulations reproduce the field-dependent evolution of skyrmions, showing a strong correlation to interfacial DMI. First-principles calculations attribute this DMI to asymmetric charge redistribution and spin–orbit coupling at the heterointerface. This work establishes interface engineering as a universal strategy for stabilizing skyrmions in centrosymmetric vdW ferromagnets, offering a thickness-tunable platform for next-generation two-dimensional spintronic devices. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

20 pages, 5227 KB  
Article
Hydrazine-Induced Sulfur Vacancies Promote Interfacial Charge Redistribution in ZnS/Gel-Derived TiO2 for Enhanced CO2 Activation and Methanation
by Zhongwei Zhang, Shuai Liu, Jiefeng Yan, Yang Meng, Dongming Hu and Fuyan Gao
Gels 2026, 12(1), 39; https://doi.org/10.3390/gels12010039 - 31 Dec 2025
Viewed by 252
Abstract
Defect engineering in semiconductor heterojunctions offers a promising route for enhancing the selectivity of photocatalytic CO2 conversion. In this work, a ZnS/gel-derived TiO2 photocatalyst featuring sulfur vacancies introduced via hydrazine hydrate (N2H4) treatment is developed. XRD, HRTEM, [...] Read more.
Defect engineering in semiconductor heterojunctions offers a promising route for enhancing the selectivity of photocatalytic CO2 conversion. In this work, a ZnS/gel-derived TiO2 photocatalyst featuring sulfur vacancies introduced via hydrazine hydrate (N2H4) treatment is developed. XRD, HRTEM, and XPS analyses confirm the formation of a crystalline heterointerface and a defect-rich ZnS surface, enabling effective interfacial electronic modulation. The optimized ZnS/gel-derived TiO2-0.48 composite achieves CH4 and CO yields of 6.76 and 14.47 μmol·g−1·h−1, respectively, with a CH4 selectivity of 31.8% and an electron selectivity of 65.1%, clearly outperforming pristine TiO2 and the corresponding single-component catalysts under identical conditions. Photoluminescence quenching, enhanced photocurrent response, and reduced charge-transfer resistance indicate significantly improved interfacial charge separation. Mott–Schottky analysis combined with optical bandgap measurements reveals pronounced interfacial charge redistribution in the composite system. Considering the intrinsic band structure of ZnS and gel-derived TiO2, a Z-scheme-compatible interfacial charge migration model is proposed, in which photogenerated electrons with strong reductive power are preferentially retained on ZnS, while holes with strong oxidative capability remain on gel-derived TiO2. This charge migration pathway preserves high redox potentials, facilitating multi-electron CO2 methanation and water oxidation. Density functional theory calculations further demonstrate that sulfur vacancies stabilize *COOH and *CO intermediates and reduce the energy barrier for *COOH formation from +0.51 eV to +0.21 eV, thereby promoting CO2 activation and CH4 formation. These results reveal that sulfur vacancies not only activate CO2 molecules but also regulate interfacial charge migration behavior. This work provides a synergistic strategy combining defect engineering and interfacial electronic modulation to enhance selectivity and mechanistic understanding in CO2-to-CH4 photoconversion. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (3rd Edition))
Show Figures

Figure 1

9 pages, 4681 KB  
Article
Facile Galvanic Replacement Toward One-Dimensional Cu-Based Bimetallic Nanobelts
by Ying Xie, Qitong Sun, Yuanyuan Li, Wanwan Li, Zhiwei Hou, Lihui Wei and Sujun Guan
Nanomaterials 2026, 16(1), 38; https://doi.org/10.3390/nano16010038 - 26 Dec 2025
Viewed by 397
Abstract
We report a galvanic replacement-driven strategy for the in situ growth of highly uniform one-dimensional (1D) Cu@CuO-X (X = Ag, Bi) nanobelts directly on aluminum foils. Unlike conventional multi-step coating or hard-template replication strategies, the formation of these heterostructured nanobelts is governed by [...] Read more.
We report a galvanic replacement-driven strategy for the in situ growth of highly uniform one-dimensional (1D) Cu@CuO-X (X = Ag, Bi) nanobelts directly on aluminum foils. Unlike conventional multi-step coating or hard-template replication strategies, the formation of these heterostructured nanobelts is governed by a spontaneous interfacial galvanic replacement process between Cu and the introduced metal species, ensuring in situ growth and intimate interfacial integration. Comprehensive SEM, TEM, XRD, and XPS characterizations confirm the successful formation of Cu@CuO-Ag and Cu@CuO-Bi architectures, where Bi predominantly exists in the oxidized Bi3+ state, forming Bi2O3-like surface species. Benefiting from their 1D anisotropic framework and controllable heterointerfaces, this work underscores the distinctiveness and versatility of the self-templated galvanic replacement strategy for the design of multifunctional nanomaterials. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

15 pages, 1641 KB  
Article
Heterointerface Engineering of Pt Nanoparticles Confined on i-MXene for Efficient ORR and HER Catalysis
by Haizheng Zhuang and Yufeng Song
Catalysts 2026, 16(1), 1; https://doi.org/10.3390/catal16010001 - 19 Dec 2025
Viewed by 388
Abstract
Platinum is known as the most efficient catalyst for oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). However, Pt catalysts still encounter high loading demands, poor atom utilization, and uncontrolled nanoparticle aggregation, which severely restrict their practical use. To address these issues, [...] Read more.
Platinum is known as the most efficient catalyst for oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). However, Pt catalysts still encounter high loading demands, poor atom utilization, and uncontrolled nanoparticle aggregation, which severely restrict their practical use. To address these issues, we designed a Pt-W1.33C hybrid catalyst with strong interfacial coupling between Pt nanoparticles and the vacancy-rich i-MXene, W1.33C matrix. This robust Pt-W1.33C interaction effectively restricts Pt overgrowth, producing uniformly dispersed nanoparticles with an average physical size of 3.1 nm. The results show that the modulated electronic structure facilitates electron transfer from W1.33C to neighboring Pt sites, which reduces the energy barriers of chemical reactions and enhances the intrinsic electrochemical catalytic activity of the hybridized catalysts. As a result, the Pt-W1.33C catalyst with low Pt loading achieves an ORR overpotential of 320 mV at 0.1 mA cm−2, an HER overpotential of 36 mV at 10 mA cm−2, and Tafel slopes of 66 and 27.8 mV dec−1 for ORR and HER, respectively. The enhanced ORR and HER performance of Pt-W1.33C can be attributed to the synergistic interplay between Pt and W1.33C, including the disordered stacking of W1.33C, high conductivity of W1.33C, high catalytic activity of Pt, and strong Pt-W1.33C interfacial coupling, which, together, optimize electronic interaction and active-site accessibility in the hybrid catalyst. Full article
(This article belongs to the Special Issue Catalytic Materials in Electrochemical and Fuel Cells)
Show Figures

Graphical abstract

45 pages, 4439 KB  
Review
Gallium Nitride for Space Photovoltaics: Properties, Synthesis Methods, Device Architectures and Emerging Market Perspectives
by Anna Drabczyk, Paweł Uss, Katarzyna Bucka, Wojciech Bulowski, Patryk Kasza, Paula Mazur, Edyta Boguta, Marta Mazur, Grzegorz Putynkowski and Robert P. Socha
Micromachines 2025, 16(12), 1421; https://doi.org/10.3390/mi16121421 - 18 Dec 2025
Viewed by 1041
Abstract
Gallium nitride (GaN) has emerged as one of the most promising wide-bandgap semiconductors for next-generation space photovoltaics. In contrast to conventional III–V compounds such as GaAs and InP, which are highly efficient under terrestrial conditions but suffer from radiation-induced degradation and thermal instability, [...] Read more.
Gallium nitride (GaN) has emerged as one of the most promising wide-bandgap semiconductors for next-generation space photovoltaics. In contrast to conventional III–V compounds such as GaAs and InP, which are highly efficient under terrestrial conditions but suffer from radiation-induced degradation and thermal instability, GaN offers an exceptional combination of intrinsic material properties ideally suited for harsh orbital environments. Its wide bandgap, high thermal conductivity, and strong chemical stability contribute to superior resistance against high-energy protons, electrons, and atomic oxygen, while minimizing thermal fatigue under repeated cycling between extreme temperatures. Recent progress in epitaxial growth—spanning metal–organic chemical vapor deposition, molecular beam epitaxy, hydride vapor phase epitaxy, and atomic layer deposition—has enabled unprecedented control over film quality, defect densities, and heterointerface sharpness. At the device level, InGaN/GaN heterostructures, multiple quantum wells, and tandem architectures demonstrate outstanding potential for spectrum-tailored solar energy conversion, with modeling studies predicting efficiencies exceeding 40% under AM0 illumination. In this review article, the current state of knowledge on GaN materials and device architectures for space photovoltaics has been summarized, with emphasis placed on recent progress and persisting challenges. Particular focus has been given to defect management, doping strategies, and bandgap engineering approaches, which define the roadmap toward scalable and radiation-hardened GaN-based solar cells. With sustained interdisciplinary advances, GaN is anticipated to complement or even supersede traditional III–V photovoltaics in space, enabling lighter, more durable, and radiation-hard power systems for long-duration missions beyond Earth’s magnetosphere. Full article
(This article belongs to the Special Issue Thin Film Microelectronic Devices and Circuits, 2nd Edition)
Show Figures

Figure 1

13 pages, 2049 KB  
Article
A Si/SiC Heterojunction Double-Trench MOSFET with Improved Conduction Characteristics
by Yi Kang, Dong Liu, Tianci Li, Zhaofeng Qiu, Shan Lu and Xiarong Hu
Micromachines 2025, 16(12), 1335; https://doi.org/10.3390/mi16121335 - 27 Nov 2025
Viewed by 534
Abstract
A Si/SiC heterojunction double-trench MOSFET with improved conduction characteristics is proposed. By replacing the N+ source and P-ch regions with silicon, the device forms a Si/SiC heterojunction that exhibits Schottky-like characteristics, effectively deactivating the parasitic PiN body diode and improving third-quadrant performance. A [...] Read more.
A Si/SiC heterojunction double-trench MOSFET with improved conduction characteristics is proposed. By replacing the N+ source and P-ch regions with silicon, the device forms a Si/SiC heterojunction that exhibits Schottky-like characteristics, effectively deactivating the parasitic PiN body diode and improving third-quadrant performance. A high-k gate dielectric is incorporated to induce a strong electron accumulation layer at the heterointerface, thinning the energy barrier and enabling tunneling-dominated current transport, thereby significantly enhancing the first-quadrant performance. TCAD simulation results demonstrate that the proposed device achieves a specific on-resistance (Ron,sp) of 1.78 mΩ·cm2, representing a 20.5% reduction compared to the conventional SiC DTMOS, while maintaining a comparable breakdown voltage (BV) of approximately 1380 V. A significant reduction in the third-quadrant turn-on voltage (Von) is achieved with the proposed structure, from 2.74 V to 1.53 V. Meanwhile, the unipolar conduction mechanism similar to that of Schottky effectively suppresses bipolar degradation. To enhance device reliability, the design incorporates a trenched source and heavily doped P-well, which collectively mitigate high electric field concentrations at the trench corners. The proposed device offers an integration strategy enhancing both forward conduction and reverse conduction in high-voltage power electronics. Full article
Show Figures

Figure 1

26 pages, 7300 KB  
Review
Recent Advances in the Design and Structure–Activity Relationships of Oxygen Evolution Catalysts for Alkaline Water Electrolysis
by Limin Wang, Xinyue Liu, Cunxiao Lai, Jiabao Liu, Wenqi Wang, Xiaomei Wang, Xin Bo, Tao Cheng, Jianfeng Li, Zenglin Wang and Xubin Lu
Molecules 2025, 30(22), 4350; https://doi.org/10.3390/molecules30224350 - 10 Nov 2025
Viewed by 1771
Abstract
Electrocatalytic water splitting offers a promising route to sustainable H2, but the oxygen evolution reaction (OER) in alkaline media remains the principal bottleneck for activity and durability. This review focuses on alkaline OER and integrates mechanism, kinetics, materials design, and cell-level [...] Read more.
Electrocatalytic water splitting offers a promising route to sustainable H2, but the oxygen evolution reaction (OER) in alkaline media remains the principal bottleneck for activity and durability. This review focuses on alkaline OER and integrates mechanism, kinetics, materials design, and cell-level considerations. Reaction mechanisms are outlined, including the adsorbate evolution mechanism (AEM) and the lattice oxygen mediated mechanism (LOM), together with universal scaling constraints and operando reconstruction of precatalysts into active oxyhydroxides. Strategies for electronic tuning, defect creation, and heterointerface design are linked to measurable kinetics, including iR-corrected overpotential, Tafel slope, charge transfer resistance, and electrochemically active surface area (ECSA). Representative catalyst families are critically evaluated, covering Ir and Ru oxides, Ni-, Fe-, and Co-based compounds, carbon-based materials, and heterostructure systems. Electrolyte engineering is discussed, including control of Fe impurities and cation and anion effects, and gas management at current densities of 100–500 mA·cm−2 and higher. Finally, we outline challenges and directions that include operando discrimination between mechanisms and possible crossover between AEM and LOM, strategies to relax scaling relations using dual sites and interfacial water control, and constant potential modeling with explicit solvation and electric fields to enable efficient, scalable alkaline electrolyzers. Full article
(This article belongs to the Topic Electrocatalytic Advances for Sustainable Energy)
Show Figures

Figure 1

11 pages, 1788 KB  
Article
Multi-Step Spin-Coating with In Situ Crystallization for Growing 2D/3D Perovskite Films
by Meihong Liu, Yafeng Hao, Fupeng Ma, Pu Zhu, Huijia Wu, Ziwei Li, Wenyu Niu, Yujie Huang, Guitian Huangfu, Junye Li, Fengchao Li, Jiangang Yu, Longlong Zhang, Tengteng Li, Cheng Lei and Ting Liang
Crystals 2025, 15(9), 774; https://doi.org/10.3390/cryst15090774 - 29 Aug 2025
Viewed by 1030
Abstract
Developing perovskite solar cells (PSCs) with both high performance and long-term stability remains a critical challenge and research focus in the field of photovoltaic devices. Herein, we report a multi-step spin-coating strategy for high-efficiency 2D/3D perovskite heterojunction solar cells by sequentially depositing low-concentration [...] Read more.
Developing perovskite solar cells (PSCs) with both high performance and long-term stability remains a critical challenge and research focus in the field of photovoltaic devices. Herein, we report a multi-step spin-coating strategy for high-efficiency 2D/3D perovskite heterojunction solar cells by sequentially depositing low-concentration 3-pyridine methylamine iodine solutions onto 3D perovskite films. This approach enables controlled Ostwald ripening and forms graded 2D/3D heterointerfaces rather than insulating capping layers, yielding a champion device with a PCE of 22.7%, significantly outperforming conventional 2D/3D planar counterparts. The optimized structure exhibits enhanced carrier extraction, suppressed recombination, and exceptional humidity stability; the hydrophobic structure further enabled >85% initial efficiency retention after 800 h at 45% relative humidity (RH) for target devices. This study establishes a novel research paradigm for developing high-performance and stable 2D/3D perovskite solar cells through gradient dimensionality engineering. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

29 pages, 14379 KB  
Review
Interface Thermal Resistance in Heterostructures of Micro–Nano Power Devices: Current Status and Future Challenges
by Yinjie Shen, Jia Fu, Fengguo Han, Dongbo Li, Bing Yang and Yunqing Tang
Nanomaterials 2025, 15(16), 1236; https://doi.org/10.3390/nano15161236 - 13 Aug 2025
Viewed by 2262
Abstract
As micro–nano power devices have evolved towards high frequency, high voltage, and a high level of integration, the issue of thermal resistance at heterointerfaces has become increasingly prominent, posing a key bottleneck that limits device performance and reliability. This paper presents a systematic [...] Read more.
As micro–nano power devices have evolved towards high frequency, high voltage, and a high level of integration, the issue of thermal resistance at heterointerfaces has become increasingly prominent, posing a key bottleneck that limits device performance and reliability. This paper presents a systematic review of the current state of research and future challenges related to interface thermal resistance in heterostructures within micro and nano power devices. First, based on phonon transport theory, we conducted an in-depth analysis of the heat transfer mechanisms at typical heterointerfaces, such as metal–semiconductor and semiconductor–semiconductor, and novel low-dimensional materials. Secondly, a comprehensive review of current interface thermal resistance characterization techniques is provided, including the application and limitations of advanced methods such as time domain thermal reflection and Raman thermal measurement in micro- and nano-scale thermal characterization. Finally, in response to the application requirements of semiconductor power devices, future research directions such as atomic-level interface engineering, machine learning-assisted material design, and multi-physics field collaborative optimization are proposed to provide new insights for overcoming the thermal management bottlenecks of micro–nano power devices. Full article
Show Figures

Figure 1

12 pages, 10100 KB  
Article
Surface Microstructure Engineering for Enhancing Li-Ion Diffusion and Structure Stability of Ni-Rich Cathode Materials
by Huanming Zhuo, Shuangshuang Zhao, Ruijie Xu, Lu Zhou, Ye Li, Yuehuan Peng, Xuelong Rao, Yuqiang Tao and Xing Ou
Nanomaterials 2025, 15(15), 1144; https://doi.org/10.3390/nano15151144 - 24 Jul 2025
Cited by 1 | Viewed by 1061
Abstract
Surface microstructure of grains vastly decides the electrochemical performance of nickel-rich oxide cathodes, which can improve their interfacial kinetics and structural stability to realize their further popularization. Herein, taking the representative LiNi0.8Co0.15Al0.05O2 (NCA) materials as an [...] Read more.
Surface microstructure of grains vastly decides the electrochemical performance of nickel-rich oxide cathodes, which can improve their interfacial kinetics and structural stability to realize their further popularization. Herein, taking the representative LiNi0.8Co0.15Al0.05O2 (NCA) materials as an example, a surface heterojunction structure construction strategy to enhance the interface characteristics of high-nickel materials by introducing interfacial ZnO sites has been designed (NCA@ZnO). Impressively, this heterointerface creates a strong built-in electric field, which significantly improves electron/Li-ion diffusion kinetics. Concurrently, the ZnO layer acts as an effective physical barrier against electrolyte corrosion, notably suppressing interfacial parasitic reactions and ultimately optimizing the structure stability of NCA@ZnO. Benefiting from synchronous optimization of interface stability and kinetics, NCA@ZnO exhibits advanced cycling performance with the capacity retention of 83.7% after 160 cycles at a superhigh rate of 3 C during 3.0–4.5 V. The prominent electrochemical performance effectively confirms that the surface structure design provides a critical approach toward obtaining high-performance cathode materials with enhanced long-cycling stability. Full article
Show Figures

Graphical abstract

15 pages, 2499 KB  
Article
Constructing Sulfur Vacancy-Rich NiCo2S4@MoS2 Core@shell Heterostructure via Interface Engineering for Enhanced HER Electrocatalysis
by Ziteng Song, Yuan Liu, Peng Yin, Jie Dai, Yingying Xu, Rongming Wang and Sibin Duan
Nanomaterials 2025, 15(14), 1061; https://doi.org/10.3390/nano15141061 - 9 Jul 2025
Cited by 1 | Viewed by 1272
Abstract
The rational design of heterointerfaces with optimized charge dynamics and defect engineering remains pivotal for developing advanced non-noble metal-based electrocatalysts for water splitting. A comparative study of NiCo2S4–MoS2 heterostructures was conducted to elucidate the impact of interfacial architecture [...] Read more.
The rational design of heterointerfaces with optimized charge dynamics and defect engineering remains pivotal for developing advanced non-noble metal-based electrocatalysts for water splitting. A comparative study of NiCo2S4–MoS2 heterostructures was conducted to elucidate the impact of interfacial architecture and defect engineering on hydrogen evolution reaction (HER) performance. A core@shell NiCo2S4@MoS2 heterostructure was synthesized via a facile hydrothermal growth method, inducing lattice distortion and strong interfacial coupling, while supported NiCo2S4/MoS2 heterostructures were prepared by ultrasonic-assisted deposition. A detailed structural and spectroscopic characterization and theoretical calculation demonstrated that the core@shell configuration promotes charge redistribution across the NiCo2S4–MoS2 interface and generates abundant sulfur vacancies, thereby increasing the density of electroactive sites. Electrochemical measurements reveal that NiCo2S4@MoS2 markedly outperforms the supported heterostructure, single-component NiCo2S4, and MoS2 when serving as the HER catalyst in acid solution. These findings establish a dual-optimization strategy—combining interfacial design with vacancy modulation—that provides a generalizable paradigm for the deliberate design of high-efficiency non-noble metal-based electrocatalysts for water splitting reactions. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electrocatalysis)
Show Figures

Figure 1

32 pages, 4753 KB  
Review
Prospective Obstacles and Improvement Strategies of Manganese-Based Materials in Achieving High-Performance Rechargeable Zinc–Air Batteries
by Zhangli Ye, Tianjing Wu, Lanhua Yi and Mingjun Jing
Batteries 2025, 11(7), 255; https://doi.org/10.3390/batteries11070255 - 8 Jul 2025
Cited by 1 | Viewed by 2124
Abstract
Zinc–air batteries (ZABs) are crucial for renewable energy conversion and storage due to their cost-effectiveness, excellent safety, and superior cycling stability. However, developing efficient and affordable bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at the air [...] Read more.
Zinc–air batteries (ZABs) are crucial for renewable energy conversion and storage due to their cost-effectiveness, excellent safety, and superior cycling stability. However, developing efficient and affordable bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at the air cathode remains a significant challenge. Manganese (Mn)-based materials, known for their tunable oxidation states, adaptable crystal structures, and environmental friendliness, are regarded as the most promising candidates. This review systematically summarizes recent advances in Mn-based bifunctional catalysts, concentrating on four primary categories: Mn–N–C electrocatalysts, manganese oxides, manganates, and other Mn-based compounds. By examining the intrinsic merits and limitations of each category, we provide a comprehensive discussion of optimization strategies, which include morphological modulation, structural engineering, carbon hybridization, heterointerface construction, heteroatom doping, and defect engineering, aimed at enhancing catalytic performance. Additionally, we critically address existing challenges and propose future research directions for Mn-based materials in rechargeable ZABs, offering theoretical insights and design principles to advance the development of next-generation energy storage systems. Full article
Show Figures

Graphical abstract

14 pages, 2965 KB  
Article
Interface-Engineered RuP2/Mn2P2O7 Heterojunction on N/P Co-Doped Carbon for High-Performance Alkaline Hydrogen Evolution
by Wenjie Wu, Wenxuan Guo, Zeyang Liu, Chenxi Zhang, Aobing Li, Caihua Su and Chunxia Wang
Materials 2025, 18(13), 3065; https://doi.org/10.3390/ma18133065 - 27 Jun 2025
Cited by 2 | Viewed by 784
Abstract
Developing efficient and durable electrocatalysts for the alkaline hydrogen evolution reaction (HER) is crucial for sustainable hydrogen production. Herein, we report a novel RuP2/Mn2P2O7 heterojunction anchored on a three-dimensional nitrogen and phosphorus co-doped porous carbon (RuP [...] Read more.
Developing efficient and durable electrocatalysts for the alkaline hydrogen evolution reaction (HER) is crucial for sustainable hydrogen production. Herein, we report a novel RuP2/Mn2P2O7 heterojunction anchored on a three-dimensional nitrogen and phosphorus co-doped porous carbon (RuP2/Mn2P2O7/NPC) framework as a high-performance HER catalyst, synthesized via a controlled pyrolysis–phosphidation strategy. The heterostructure achieves uniform dispersion of ultrafine RuP2/Mn2P2O7 heterojunctions with well-defined interfaces. Furthermore, phosphorus doping restructures the electronic configuration of Mn and Ru species at the RuP2/Mn2P2O7 heterointerface, enabling enhanced catalytic activity through the accelerated electron transfer and kinetics of the HER. This RuP2/Mn2P2O7/NPC catalyst exhibits exceptional HER activity with 1 M KOH, requiring only 69 mV of overpotential to deliver 10 mA·cm−2 and displaying a small Tafel slope of 69 mV·dec−1, rivaling commercial 20% Pt/C. Stability tests reveal negligible activity loss over 48 h, underscoring the robustness of the heterostructure. The RuP2/Mn2P2O7 heterojunction demonstrates markedly reduced overpotentials for the electrochemical HER process, highlighting its enhanced catalytic efficiency and improved cost-effectiveness compared to the conventional catalytic systems. This work establishes a strategy for designing a transition metal phosphide heterostructure through interfacial electronic modulation, offering broad implications for energy conversion technologies. Full article
Show Figures

Figure 1

16 pages, 3258 KB  
Article
Breaking the Efficiency–Quality Tradeoff via Temperature–Velocity Co-Optimization: Multiscale Calculations and Experimental Study of Epitaxial Growth of Iridium on MgO(100)
by Yang Wang, Junhao Chen, Shilin Yang and Jiaqi Zhu
Crystals 2025, 15(6), 580; https://doi.org/10.3390/cryst15060580 - 19 Jun 2025
Viewed by 816
Abstract
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the [...] Read more.
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the mechanisms of Volmer–Weber (VW, island growth mode) nucleation at low coverage and Stranski–Krastanov (SK, layer-plus-island growth) transitions driven by interface metallization, stress release, and energy reduction, which facilitates coherent monolayer formation by lowering the energy barrier by ~34%. Molecular dynamics simulations demonstrate that the strategic co-optimization of substrate temperature (Tsub) and deposition rate (Vdep) induces an abrupt cliff-like drop in mosaic spread. Experimental validations confirm that this T-V synergy achieves unprecedented interfacial coherence, whereby AFM roughness reaches 0.34 nm (RMS) and the XRC-FWHM of 0.13° approaches single-crystal benchmarks. Notably, our novel “accelerated heteroepitaxy” protocol reduces growth time without compromising quality, addressing the efficiency–quality paradox in industrial-scale diamond substrate fabrication. These findings establish universal thermal–kinetic design principles applicable to refractory metal/oxide heterostructures for next-generation quantum sensors and high-power electronic devices. Full article
(This article belongs to the Special Issue Crystallization Process and Simulation Calculation, Third Edition)
Show Figures

Figure 1

13 pages, 3578 KB  
Article
Prussian Blue Analogue-Derived p-n Junction Heterostructure for Photothermal Reverse Water–Gas Shift: Enhanced Activity and Selectivity via Synergistic Effects
by Shaorui Jia, Xinbo Zhang, Junhong Ma, Chaoyun Ma, Xue Yu and Yuanhao Wang
Nanomaterials 2025, 15(12), 904; https://doi.org/10.3390/nano15120904 - 11 Jun 2025
Viewed by 765
Abstract
Photothermal catalytic CO2 conversion into chemicals that provide added value represents a promising strategy for sustainable energy utilization, yet the development of highly efficient, stable, and selective catalysts remains a significant challenge. Herein, we report a rationally designed p-n junction heterostructure, T-CZ-PBA [...] Read more.
Photothermal catalytic CO2 conversion into chemicals that provide added value represents a promising strategy for sustainable energy utilization, yet the development of highly efficient, stable, and selective catalysts remains a significant challenge. Herein, we report a rationally designed p-n junction heterostructure, T-CZ-PBA (SC), synthesized via controlled pyrolysis of high crystalline Prussian blue analogues (PBA) precursor, which integrates CuCo alloy, ZnO, N-doped carbon (NC), and ZnII-CoIIIPBA into a synergistic architecture. This unique configuration offers dual functional advantages: (1) the abundant heterointerfaces provide highly active sites for enhanced CO2 and H2 adsorption/activation, and (2) the engineered energy band structure optimizes charge separation and transport efficiency. The optimized T-C3Z1-PBA (SC) achieves exceptional photothermal catalytic performance, demonstrating a CO2 conversion rate of 126.0 mmol gcat⁻1 h⁻1 with 98.8% CO selectivity under 350 °C light irradiation, while maintaining robust stability over 50 h of continuous operation. In situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) investigations have identified COOH* as a critical reaction intermediate and elucidated that photoexcitation accelerates charge carrier dynamics, thereby substantially promoting the conversion of key intermediates (CO2* and CO*) and overall reaction kinetics. This research provides insights for engineering high-performance heterostructured catalysts by controlling interfacial and electronic structures. Full article
Show Figures

Graphical abstract

Back to TopTop