Breaking the Efficiency–Quality Tradeoff via Temperature–Velocity Co-Optimization: Multiscale Calculations and Experimental Study of Epitaxial Growth of Iridium on MgO(100)
Abstract
:1. Introduction
2. Materials and Methods
2.1. First-Principles Calculations
2.2. Molecular Dynamics Calculations
2.3. Experimental Procedure
3. Results and Discussion
3.1. Atomic Structure and Interaction of MgO/Ir Interface
3.2. The Formation of Ir(100) Film on the MgO Substrate
3.3. Effect of Substrate Temperature and Deposition Rate
3.4. Surface Morphology and Growth Quality of Ir(100) Films
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
VW | Volmer–Weber (island) growth mode |
SK | Stranski–Krastanov (layer-plus-island) growth mode |
FvdM | Frank–van der Merwe (layer-by-layer) growth mode |
ML | monolayer |
References
- Chaslin, E.; Simon, Q.; Borroto, A.; Bruyère, S.; Migot, S.; Himdi, M.; Castel, X. Epitaxial cerium oxide films deposited on r-plane sapphire substrates: A comprehensive study of growth mechanisms. Appl. Surf. Sci. 2025, 696, 162917. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, B.; Huang, C.; Li, K.; Wang, S.; Ma, C.; Wang, C.; Zhang, L.; Yang, H.; Qian, F.; et al. Strain and orientation modulated optoelectronic properties of La-doped SrSnO3 epitaxial films. Appl. Surf. Sci. 2024, 672, 160752. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Tu, C.; Zhai, D.; He, M.; Lu, J. High-performance β-Ga2O3 Schottky barrier diodes and metal-semiconductor field-effect transistors on a high-doping-level epitaxial layer. J. Alloys Compd. 2023, 939, 168732. [Google Scholar] [CrossRef]
- Pingen, K.; Wolff, N.; Hinz, A.M.; Sandström, P.; Beuer, S.; Kienle, L.; Darakchieva, V.; Hultman, L.; Birch, J.; Hsiao, C.-L. Growth of non-polar and semi-polar GaN on sapphire substrates by magnetron sputter epitaxy. Appl. Surf. Sci. Adv. 2025, 26, 100722. [Google Scholar] [CrossRef]
- Dorri, S.; Nyqvist, O.; Palisaitis, J.; Vorobiev, A.; Devishvili, A.; Sandström, P.; Persson, P.O.Å.; Ghafoor, N.; Eriksson, F.; Birch, J. Artificial superlattices with abrupt interfaces by monolayer-controlled growth kinetics during magnetron sputter epitaxy, case of hexagonal CrB2/TiB2 heterostructures. Mater. Des. 2025, 251, 113661. [Google Scholar] [CrossRef]
- Sanna, S.; Orgiani, P.; Krymskaya, O.; Di Castro, D.; Galdi, A.; Tkalčević, M.; Aruta, C.; Tebano, A. Epitaxial growth mechanism and structural characterization of spinel-type LixMn2O4 electrodes realized via pulsed laser deposition. Materialia 2025, 39, 102382. [Google Scholar] [CrossRef]
- Al Khalfioui, M.; Dau, M.T.; Bouyid, Z.; Florea, I.; Vennéguès, P.; Brault, J.; Vézian, S.; Michon, A.; Cordier, Y.; Boucaud, P. Investigation of MoS2 growth on GaN/sapphire substrate using molecular beam epitaxy. J. Cryst. Growth 2025, 652, 128047. [Google Scholar] [CrossRef]
- Khaing Oo, K.; Vorathamrong, S.; Panyakeow, S.; Praserthdam, P.; Ratanathammaphan, S. Effect of substrate temperature on GaAs nanowires growth directly on Si (111) substrates by molecular beam epitaxy. Mater. Today Proc. 2020, 23, 685–689. [Google Scholar] [CrossRef]
- Wang, D.; Ma, X.; Xiao, H.; Chen, R.; Le, Y.; Luan, C.; Zhang, B.; Ma, J. Effect of epitaxial growth rate on morphological, structural and optical properties of β-Ga2O3 films prepared by MOCVD. Mater. Res. Bull. 2022, 149, 111718. [Google Scholar] [CrossRef]
- Hamouda, A.B.H.; Mahjoub, B.; Blel, S. Effect of deposition rate and NNN interactions on adatoms mobility in epitaxial growth. Surf. Sci. 2017, 661, 42–48. [Google Scholar] [CrossRef]
- Nozawa, J.; Sato, M.; Uda, S.; Fujiwara, K. Multi-layer Kagome lattices assembled with isotropic spherical colloids via heteroepitaxial growth. Colloid Interface Sci. Commun. 2025, 64, 100815. [Google Scholar] [CrossRef]
- Aso, T.; Kuwazuru, H.; Wang, D.; Yamamoto, K. Al2O3 growth on Ge by low-temperature (∼90 °C) atomic layer deposition and its application for MOS devices. Mater. Sci. Semicond. Process 2025, 190, 109372. [Google Scholar] [CrossRef]
- Golbasi, F.; Liu, B.; Hwang, J.; Akyol, F. Characteristics of single crystalline rutile GeO2 film grown on sapphire by chemical vapor deposition with a high growth rate ∼2.2 µm/hr. J. Alloys Compd. 2025, 1014, 178591. [Google Scholar] [CrossRef]
- Wei, X.; Mu, Y.; Chen, J.; Zhou, Y.; Chu, Y.; Yang, L.; Huang, C.; Xue, T.; Zang, L.; Yang, C.; et al. Optimizing Zn (100) deposition via crystal plane shielding effect towards ultra-high rate and stable zinc anode. Energy Storage Mater. 2025, 75, 104026. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, Z.; Liu, D.; Zeng, L.; Chen, H.; Chen, D.; Zhu, W.; Feng, Q.; Zhang, Y.; Mao, W.; et al. High-quality heteroepitaxial growth of β-Ga2O3 with NiO buffer layer based on Mist-CVD. Vacuum 2025, 231, 113777. [Google Scholar] [CrossRef]
- Taguett, A.; Aubert, T.; Elmazria, O.; Bartoli, F.; Lomello, M.; Hehn, M.; Ghanbaja, J.; Boulet, P.; Mangin, S.; Xu, Y. Comparison between Ir, Ir0.85Rh0.15 and Ir0.7Rh0.3 thin films as electrodes for surface acoustic waves applications above 800 °C in air atmosphere. Sensor Actuat. A Phys. 2017, 266, 211–218. [Google Scholar] [CrossRef]
- Kasu, M.; Takaya, R.; Masaki, R.; Kim, S.-W. Initial growth mechanism of high-quality CVD diamond on Ir/sapphire substrate compared with Ir/MgO substrate. Diam. Relat. Mater. 2022, 128, 109287. [Google Scholar] [CrossRef]
- Kimura, Y.; Oshima, R.; Sawabe, A.; Aida, H. Analysis of the correlation between in-situ and ex-situ observations of the initial stages of growth of heteroepitaxial diamond on Ir(001)/MgO(001). J. Cryst. Growth 2022, 595, 126807. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Shu, G.; Fang, S.; Dai, B.; Zhu, J. Virtues of Ir(100) substrate on diamond epitaxial growth: First-principle calculation and XPS study. J. Cryst. Growth 2021, 560, 126047. [Google Scholar] [CrossRef]
- Huo, X.; Zhou, G.; Feng, M.; Jin, P.; Wu, J.; Wang, Z. Effects of deposition time on growth of Ir buffer layer on MgO(100) support layer by magnetron sputtering. Results Phys. 2021, 30, 104878. [Google Scholar] [CrossRef]
- Choi, U.; Shin, H.; Kwak, T.; Kim, S.-W.; Nam, O. Growth and characterization of heteroepitaxial (001) and (111) diamond on Ir/sapphire structures. Diam. Relat. Mater. 2022, 121, 108770. [Google Scholar] [CrossRef]
- Kimura, Y.; Ihara, T.; Ojima, T.; Oshima, R.; Sawabe, A.; Aida, H. Physical bending of heteroepitaxial diamond grown on an Ir/MgO substrate. Diam. Relat. Mater. 2023, 137, 110055. [Google Scholar] [CrossRef]
- Tyagi, S.; Raman, R.; Pandey, R.K.; Meena, U.R.; Mishra, P.; Pandey, A.; Kumar, S.; Garg, P.; Kumar, S.; Singh, R. Investigation of structural and optical characteristics of low temperature nucleated thick ZnTe epitaxy on GaAs (211) substrates by MBE. Opt. Mater. 2024, 156, 116012. [Google Scholar] [CrossRef]
- Shibayama, S.; Takagi, K.; Sakashita, M.; Kurosawa, M.; Nakatsuka, O. Ge1−xSnx layers with x∼0.25 on InP(001) substrate grown by low-temperature molecular beam epitaxy reaching 70 °C and in-situ Sb doping. Mater. Sci. Semicond. Process. 2024, 176, 108302. [Google Scholar] [CrossRef]
- Zhao, H.; Lin, G.; Zhang, Y.; Park, S.; Hickey, R.; Zhama, T.; Cui, P.; Sourav, S.; Kolodzey, J.; Zeng, Y. Composition and strain effects on Raman vibrational modes of GeSn alloys with Sn contents up to 31% grown by low-temperature molecular beam epitaxy. Opt. Mater. 2024, 149, 114987. [Google Scholar] [CrossRef]
- Park, K.; Min, J.-W.; Park, G.C.; Lopatin, S.; Ooi, B.S.; Alberi, K. The criteria in above-bandgap photo-irradiation in molecular beam epitaxy growth of heterostructure of dissimilar growth temperature. Appl. Surf. Sci. 2021, 569, 151067. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Q.; Gao, J.; Xu, C.; Ye, F.; Gao, G.; Chen, L.; Ye, J.; Guo, W. Influence of growth rate on epitaxy of high-Al-content AlGaN via metal−organic chemical vapor deposition. J. Alloys Compd. 2025, 1013, 178597. [Google Scholar] [CrossRef]
- Shang, L.; Liu, S.; Ma, S.; Qiu, B.; Yang, Z.; Feng, H.; Zhang, J.; Dong, H.; Xu, B. Investigation of the growth rate on optical and crystal quality of InGaAs/AlGaAs multi-quantum wells and InGaAs single layer grown by molecular beam epitaxy (MBE). Mater. Sci. Semicond. Process. 2025, 185, 108860. [Google Scholar] [CrossRef]
- Pingen, K.; Hinz, A.M.; Sandström, P.; Wolff, N.; Kienle, L.; Scipioni, L.; Greer, J.; von Hauff, E.; Hultman, L.; Birch, J.; et al. High growth rate magnetron sputter epitaxy of GaN using a solid Ga target. Vacuum 2024, 220, 112852. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, J.; Fu, Y.; Yang, M.; Zhang, Y.; Duan, X.; Qiang, W.; Li, L.; Sun, Z.; Ma, X.; et al. Study on the effects of growth rate on GaN films properties grown by plasma-assisted molecular beam epitaxy. J. Cryst. Growth 2020, 535, 125539. [Google Scholar] [CrossRef]
- Zatsepin, D.A.; Boukhvalov, D.W.; Zatsepin, A.F. Quality assessment of GaN epitaxial films: Acidification scenarios based on XPS-and-DFT combined study. Appl. Surf. Sci. 2021, 563, 150308. [Google Scholar] [CrossRef]
- Cheng, R.; Zha, G.; Cao, K.; Zhang, H.; Wan, X.; Wei, H.; Jiang, R.; Liu, J.; Liu, Y.; Tian, X.; et al. The growth pits filling mechanism of CdZnTe epitaxial film prepared by close-spaced sublimation based on the first-principles calculation. J. Cryst. Growth 2023, 618, 127303. [Google Scholar] [CrossRef]
- Monma, R.; Roy, T.; Suzuki, K.; Tsuchiya, T.; Tsujikawa, M.; Mizukami, S.; Shirai, M. Structural and magnetic properties of CoIrMnAl equiatomic quaternary Heusler alloy epitaxial films designed using first-principles calculations. J. Alloys Compd. 2021, 868, 159175. [Google Scholar] [CrossRef]
Position | Charge(e) | Bond and Population | Length (Å) | |
---|---|---|---|---|
Bulk Crystal | MgO | Mg: 0.34, O: −0.34 | Mg-O: 1.22 | 2.13755 |
Ir | Ir: 0.00 | Ir-Ir: 0.00 | 2.73800 | |
Mg-O/Ir | MgO ST | Mg: 0.32, O: −0.33 | Mg-O: 1.26 | 2.01457 |
interface | Mg: 0.28 ↓, O: −0.30 ↓; Ir: 0.01 ↑ | O-Ir: −0.04 | 2.28951 | |
Ir ST | Ir: 0.00 | Ir-Ir: 0.00 | 2.72276 |
Coverage (ML) | Interface Spacing (Å) | In-Layer Bond Length (Å) | Interlamellar Spacing (Å) | ||||
---|---|---|---|---|---|---|---|
Ir-O | Ir-Mg | Top-Layered Ir-Ir | O-Mg | Mg-O | O-Mg | Ir-Ir | |
0.25 | 2.027 | 1.977 | 2.932 | 2.155 | 2.280 | 2.271 | - |
0.50 | 2.164 | 1.993 | 2.938 | 2.085 | 2.343 | 2.205 | - |
0.75 | 2.405 | 2.392 | 2.912 | 2.068 | 2.214 | 2.212 | 1.204 |
1.00 | 2.438 | 2.438 | 2.915 | 2.061 | 2.230 | 2.230 | 1.605 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, J.; Yang, S.; Zhu, J. Breaking the Efficiency–Quality Tradeoff via Temperature–Velocity Co-Optimization: Multiscale Calculations and Experimental Study of Epitaxial Growth of Iridium on MgO(100). Crystals 2025, 15, 580. https://doi.org/10.3390/cryst15060580
Wang Y, Chen J, Yang S, Zhu J. Breaking the Efficiency–Quality Tradeoff via Temperature–Velocity Co-Optimization: Multiscale Calculations and Experimental Study of Epitaxial Growth of Iridium on MgO(100). Crystals. 2025; 15(6):580. https://doi.org/10.3390/cryst15060580
Chicago/Turabian StyleWang, Yang, Junhao Chen, Shilin Yang, and Jiaqi Zhu. 2025. "Breaking the Efficiency–Quality Tradeoff via Temperature–Velocity Co-Optimization: Multiscale Calculations and Experimental Study of Epitaxial Growth of Iridium on MgO(100)" Crystals 15, no. 6: 580. https://doi.org/10.3390/cryst15060580
APA StyleWang, Y., Chen, J., Yang, S., & Zhu, J. (2025). Breaking the Efficiency–Quality Tradeoff via Temperature–Velocity Co-Optimization: Multiscale Calculations and Experimental Study of Epitaxial Growth of Iridium on MgO(100). Crystals, 15(6), 580. https://doi.org/10.3390/cryst15060580