Interface Thermal Resistance in Heterostructures of Micro–Nano Power Devices: Current Status and Future Challenges
Abstract
1. Introduction
2. Physical Mechanisms of Interface Thermal Transfer in Heterostructures
2.1. Definition of Interface Thermal Resistance at Micro- and Nanoscales
2.2. Phonon Transport Theory and Interface Heat Conduction Model
2.3. Thermal Transport Properties of Typical Metal–Semiconductor Interfaces
2.4. Thermal Transport Properties of Typical Semiconductor–Semiconductor Interfaces
Typical Heterostructures | Computational Method | Simulated Values of ITC |
---|---|---|
Si/diamond | MLMD | 110–140 MW/m2K [91] |
Si/diamond | NEMD | 260 MW/m2K [93] |
crystal-SiC/amorphous-SiC | NEMD | 1820 MW/m2K [1] |
Ga2O3/diamond | NEMD | 46.1 ± 2.3 MW/m2K [87] |
w-AlN/3C-SiC | TTP | 43.36 MW/m2K [94] |
GaN/multilayer graphene | NEMD | 88.1 ± 5.9 MW/m2K [85] |
GaN/AlN | NEMD | 625 MW/m2K [83] |
2.5. Thermal Transport Properties of Novel Low-Dimensional Heterointerfaces
3. Characterization Techniques of Interface Thermal Resistance
3.1. Time Domain Thermal Reflection Method (TDTR)
3.2. Raman Interface Thermal Measurement Technology
3.3. Femtosecond Laser Pump-Probe Technique
3.4. Challenges and Development Trends in ITC Measurement Technology
4. Conclusions and Perspectives
4.1. Summary of Current Research Status
4.2. Future Challenges and Prospects
4.2.1. Atomic-Level Interface Engineering
4.2.2. Machine Learning-Assisted Material Design and Optimization
4.2.3. Electrical–Thermal–Mechanical Multi-Physics Coupling Design
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Q.; Yu, W.; Luo, H.; Ren, X.; Shen, S. Tuning thermal resistance of SiC crystal/amorphous layered nanostructures via changing layer thickness. Comput. Mater. Sci. 2020, 184, 109868. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, X.; Wang, C.; Lu, R.; Zhang, T.; Chen, H.; Zheng, X. Progress in thermal rectification due to heat conduction in micro/nano solids. Mater. Today Phys. 2023, 30, 100941. [Google Scholar] [CrossRef]
- Awais, M.; Chen, X.; Hong, Z.; Wang, Q.; Shi, Y.; Meng, F.-B.; Dai, C.; Paramane, A. Synergistic effects of Micro-hBN and core-shell Nano-TiO2@SiO2 on thermal and electrical properties of epoxy at high frequencies and temperatures. Compos. Sci. Technol. 2022, 227, 109576. [Google Scholar] [CrossRef]
- Weituschat, L.M.; Dickmann, W.; Guimbao, J.; Ramos, D.; Kroker, S.; Postigo, P.A. Photonic and Thermal Modelling of Microrings in Silicon, Diamond and GaN for Temperature Sensing. Nanomaterials 2020, 10, 934. [Google Scholar] [CrossRef]
- Ramos, C.; Maelo Ferrer, A.; Santana, G.; Calvo Mola, C.; Chaviano, M.; Fonseca, D.; González, Y.; Ruediger, A.; de Melo, O.; Sánchez, M. Surface photovoltage spectroscopy for texture and passivation processes monitoring in black silicon solar cells. Sol. Energy Mater. Sol. Cells 2025, 282, 113324. [Google Scholar] [CrossRef]
- Lee, P.-Y.; Chen, T.-C.; Huang, J.-Y.; Hsieh, H.-L.; Jang, J.S.-C. Enhancement of the thermoelectric performance in nano-/micro-structured p-type Bi0.4Sb1.6Te3 fabricated by mechanical alloying and vacuum hot pressing. J. Alloys Compd. 2014, 615, S476–S481. [Google Scholar] [CrossRef]
- Pathumudy, R.D.; Prabhu, K.N. Thermal interface materials for cooling microelectronic systems: Present status and future challenges. J. Mater. Sci. Mater. Electron. 2021, 32, 11339–11366. [Google Scholar] [CrossRef]
- Kapitza, P.L. Heat Transfer and Superfluidity of Helium II. Phys. Rev. 1941, 60, 354–355. [Google Scholar] [CrossRef]
- Singh, P.; Seong, M.; Sinha, S. Detailed consideration of the electron-phonon thermal conductance at metal-dielectric interfaces. Appl. Phys. Lett. 2013, 102, 181906. [Google Scholar] [CrossRef]
- Tian, S.; Xu, Z.; Wu, S.; Luo, T.; Xiong, G. Anisotropically tuning interfacial thermal conductance between graphite and poly(ethylene oxide) by lithium-ion intercalation: A molecular dynamics study. Int. J. Heat Mass Transf. 2022, 195, 123134. [Google Scholar] [CrossRef]
- Chen, X.-K.; Zeng, Y.-J.; Chen, K.-Q. Thermal Transport in Two-Dimensional Heterostructures. Front. Mater. 2020, 7, 578791. [Google Scholar] [CrossRef]
- Wang, J.P.; Shen, Y.J.; Yang, P. Multilayered Graphene/ZnO heterostructure interfaces to improve thermal transfer. Compos. Commun. 2023, 40, 101616. [Google Scholar] [CrossRef]
- Goni, M.; Patelka, M.; Ikeda, S.; Hartman, T.; Sato, T.; Schmidt, A.J. A technique to measure the thermal resistance at the interface between a micron size particle and its matrix in composite materials. J. Appl. Phys. 2018, 124, 105303. [Google Scholar] [CrossRef]
- De Mey, G.; Pilarski, J.; Wójcik, M.; Lasota, M.; Banaszczyk, J.; Vermeersch, B.; Napieralski, A. Influence of interface materials on the thermal impedance of electronic packages. Int. Commun. Heat Mass Transf. 2009, 36, 210–212. [Google Scholar] [CrossRef]
- Gardea, F.; Naraghi, M.; Lagoudas, D. Effect of Thermal Interface on Heat Flow in Carbon Nanofiber Composites. ACS Appl. Mater. Interfaces 2013, 6, 1061–1072. [Google Scholar] [CrossRef]
- Hahn, K.R.; Puligheddu, M.; Colombo, L. Thermal boundary resistance at Si/Ge interfaces determined by approach-to-equilibrium molecular dynamics simulations. Phys. Rev. B 2015, 91, 195313. [Google Scholar] [CrossRef]
- Stevens, R.J.; Zhigilei, L.V.; Norris, P.M. Effects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: Nonequilibrium molecular dynamics simulations. Int. J. Heat Mass Transf. 2007, 50, 3977–3989. [Google Scholar] [CrossRef]
- Huang, M.-J.; Tsai, P.-K. The size effect on the interfacial thermal resistances of sandwich structures. Int. J. Heat Mass Transf. 2022, 183, 122217. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, H.; Wu, Y.; Wang, D.; Pan, L. Effect of functionalization on thermal conductivity of hexagonal boron nitride/epoxy composites. Int. J. Heat Mass Transf. 2024, 219, 124844. [Google Scholar] [CrossRef]
- Yang, H.Y.; Tang, Y.Q.; Yang, P. Building efficient interfacial property with graphene heterogeneous interface. Int. J. Mech. Sci. 2023, 237, 107782. [Google Scholar] [CrossRef]
- Serebryakova, M.A.; Zaikovskii, A.V.; Sakhapov, S.Z.; Smovzh, D.V.; Sukhinin, G.I.; Novopashin, S.A. Thermal conductivity of nanofluids based on hollow γ-Al2O3 nanoparticles, and the influence of interfacial thermal resistance. Int. J. Heat Mass Transf. 2017, 108, 1314–1319. [Google Scholar] [CrossRef]
- Glazov, A.L.; Kalinovskii, V.S.; Muratikov, K.L. Heat transfer through soldered and bonded joints of multilayer semiconductor devices studied by laser photothermal beam-deflection method. Int. J. Heat Mass Transf. 2018, 120, 870–878. [Google Scholar] [CrossRef]
- Jesudason, C.G. Fourier heat conduction characteristics of a lattice chain arising from considerations in intermolecular potentials and the Second law. Int. J. Therm. Sci. 2017, 120, 491–507. [Google Scholar] [CrossRef]
- Péraud, J.-P.M.; Hadjiconstantinou, N.G. Extending the range of validity of Fourier’s law into the kinetic transport regime via asymptotic solution of the phonon Boltzmann transport equation. Phys. Rev. B 2016, 93, 045424. [Google Scholar] [CrossRef]
- Candela, D.; Walsworth, R.L. Understanding the breakdown of Fourier’s law in granular fluids. Am. J. Phys. 2007, 75, 754–757. [Google Scholar] [CrossRef]
- Cheng, Z.; Koh, Y.R.; Ahmad, H.; Hu, R.; Shi, J.; Liao, M.E.; Wang, Y.; Bai, T.; Li, R.; Lee, E.; et al. Thermal conductance across harmonic-matched epitaxial Al-sapphire heterointerfaces. Commun. Phys. 2020, 3, 115. [Google Scholar] [CrossRef]
- O’Brien, P.J.; Shenogin, S.; Liu, J.; Chow, P.K.; Laurencin, D.; Mutin, P.H.; Yamaguchi, M.; Keblinski, P.; Ramanath, G. Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using nanomolecular monolayers. Nat. Mater. 2012, 12, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Sadasivam, S.; Waghmare, U.V.; Fisher, T.S. Electron-phonon coupling and thermal conductance at a metal-semiconductor interface: First-principles analysis. J. Appl. Phys. 2015, 117, 134502. [Google Scholar] [CrossRef]
- Dai, W.; Wang, Y.; Li, M.; Chen, L.; Yan, Q.; Yu, J.; Jiang, N.; Lin, C.T. 2D Materials-Based Thermal Interface Materials: Structure, Properties, and Applications. Adv. Mater. 2024, 36, 2311315. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Gakovic, B.; Danilov, P.A.; Petrovic, S.M.; Milovanovic, D.; Rudenko, A.A.; Ionin, A.A. Single-shot selective femtosecond laser ablation of multi-layered Ti/Al and Ni/Ti films: “Cascaded” heat conduction and interfacial thermal effects. Appl. Phys. Lett. 2018, 112, 023103. [Google Scholar] [CrossRef]
- Shen, Y.; Yang, H.; Cao, K.; Yang, P. Interlayer surface modification modulating thermal transport at Si/Gr/HEA heterostructure interfaces. Int. J. Therm. Sci. 2025, 210, 109565. [Google Scholar] [CrossRef]
- Liu, Z.; Feng, Y.; Li, H.; Cao, N.; Qiu, L. Quantitative analysis of interface heat transport at the Si3N4/SiO2 van-der Waals point contact. Int. J. Heat Mass Transf. 2024, 232, 125979. [Google Scholar] [CrossRef]
- Li, Y.; Mehra, N.; Ji, T.; Zhu, J. Realizing the nanoscale quantitative thermal mapping of scanning thermal microscopy by resilient tip–surface contact resistance models. Nanoscale Horiz. 2018, 3, 505–516. [Google Scholar] [CrossRef]
- Abs da Cruz, C.; Chantrenne, P.; Gomes de Aguiar Veiga, R.; Perez, M.; Kleber, X. Modified embedded-atom method interatomic potential and interfacial thermal conductance of Si-Cu systems: A molecular dynamics study. J. Appl. Phys. 2013, 113, 023710. [Google Scholar] [CrossRef]
- Li, D.; Shen, Y.; Yang, P. N-Doped and P-Doped Graphene on MgO (111): A First-Principles Study. Adv. Eng. Mater. 2021, 24, 2100762. [Google Scholar] [CrossRef]
- Kononenko, O.; Brzhezinskaya, M.; Zotov, A.; Korepanov, V.; Levashov, V.; Matveev, V.; Roshchupkin, D. Influence of numerous Moiré superlattices on transport properties of twisted multilayer graphene. Carbon 2022, 194, 52–61. [Google Scholar] [CrossRef]
- Brzhezinskaya, M.; Kononenko, O.; Matveev, V.; Zotov, A.; Khodos, I.I.; Levashov, V.; Volkov, V.; Bozhko, S.I.; Chekmazov, S.V.; Roshchupkin, D. Engineering of Numerous Moiré Superlattices in Twisted Multilayer Graphene for Twistronics and Straintronics Applications. ACS Nano 2021, 15, 12358–12366. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, X.; Zhou, J.; Li, B. Interfacial thermal resistance: Past, present and future. Rev. Mod. Phys. 2022, 94, 025002. [Google Scholar] [CrossRef]
- Zhang, P.; Yuan, P.; Jiang, X.; Zhai, S.; Zeng, J.; Xian, Y.; Qin, H.; Yang, D. A Theoretical Review on Interfacial Thermal Transport at the Nanoscale. Small 2017, 14, 1702769. [Google Scholar] [CrossRef]
- Giri, A.; Hopkins, P.E. A Review of Experimental and Computational Advances in Thermal Boundary Conductance and Nanoscale Thermal Transport across Solid Interfaces. Adv. Funct. Mater. 2019, 30, 1903857. [Google Scholar] [CrossRef]
- Yang, B.; Tang, Y.; Xin, Z.; Zheng, H.; Qi, D.; Zhang, N.; Tang, Y.; Wu, X. Modulation of the interfacial thermal resistances of the w-AlN/Graphene/3C-SiC interface by nanoscale nonplanar feature structures. Appl. Surf. Sci. 2024, 659, 159905. [Google Scholar] [CrossRef]
- Shen, Y.; Li, D.; Cheng, Z.; Tang, Y.; Yang, P. Coupling field optimization to improve the thermal transport of Gr/h-BN heterostructure. Diam. Relat. Mater. 2024, 147, 111226. [Google Scholar] [CrossRef]
- Bazrafshan, S.; Rajabpour, A. Thermal transport engineering in amorphous graphene: Non-equilibrium molecular dynamics study. Int. J. Heat Mass Transf. 2017, 112, 379–386. [Google Scholar] [CrossRef]
- Feng, T.; Zhong, Y.; Shi, J.; Ruan, X. Unexpected high inelastic phonon transport across solid-solid interface: Modal nonequilibrium molecular dynamics simulations and Landauer analysis. Phys. Rev. B 2019, 99, 045301. [Google Scholar] [CrossRef]
- Shan, S.; Zhang, Z.; Volz, S.; Chen, J. Phonon mode at interface and its impact on interfacial thermal transport. J. Phys. Condens. Matter 2024, 36, 423001. [Google Scholar] [CrossRef] [PubMed]
- Stoneley, R. Elastic waves at the surface of separation of two solids. Proc. R. Soc. London Ser. A Contain. Pap. A Math. Phys. Character 1997, 106, 416–428. [Google Scholar]
- Ren, S.-F.; Chu, H.; Chang, Y.-C. Anisotropy of optical phonons and interface modes in GaAs-AlAs superlattices. Phys. Rev. B 1988, 37, 8899–8911. [Google Scholar] [CrossRef]
- Martinez, M.; Cardani, L.; Casali, N.; Cruciani, A.; Pettinari, G.; Vignati, M. Measurements and Simulations of Athermal Phonon Transmission from Silicon Absorbers to Aluminum Sensors. Phys. Rev. Appl. 2019, 11, 064025. [Google Scholar] [CrossRef]
- Yang, N.; Luo, T.; Esfarjani, K.; Henry, A.; Tian, Z.; Shiomi, J.; Chalopin, Y.; Li, B.; Chen, G. Thermal Interface Conductance Between Aluminum and Silicon by Molecular Dynamics Simulations. J. Comput. Theor. Nanosci. 2015, 12, 168–174. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, G.; Zhang, L. Interface thermal conductance between β-Ga2O3 and different substrates. J. Phys. D Appl. Phys. 2020, 53, 434001. [Google Scholar] [CrossRef]
- Merabia, S.; Termentzidis, K. Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics. Phys. Rev. B 2012, 86, 094303. [Google Scholar] [CrossRef]
- Polat, S. Theoretical modeling and optimization of interface design to improve thermal conductivity in Mg-Dia composites. Ceram. Int. 2022, 48, 4763–4774. [Google Scholar] [CrossRef]
- Fourier, J.B.J. Th’eorie Analytique de la Chaleur; Cambridge University Press: Cambridge, UK, 1822. [Google Scholar]
- Poisson, S.-D. Th’eorie Math’ematique de la Chaleur; Bachelier: Paris, France, 1835. [Google Scholar]
- Wang, Z.; Sun, F.; Liu, Z.; Zheng, L.; Wang, D.; Feng, Y. Regulated Thermal Boundary Conductance between Copper and Diamond through Nanoscale Interfacial Rough Structures. ACS Appl. Mater. Interfaces 2023, 15, 16162–16176. [Google Scholar] [CrossRef]
- Dickey, J.M.; Paskin, A. Computer Simulation of the Lattice Dynamics of Solids. Phys. Rev. 1969, 188, 1407–1418. [Google Scholar] [CrossRef]
- Xu, X.Y.; Shen, Y.J.; Yang, P. Building efficient thermal transport at graphene/polypropylene interfaces by non-covalent functionalized graphene. Phys. Lett. A 2023, 469, 128766. [Google Scholar] [CrossRef]
- Liang, T.; Zhou, M.; Zhang, P.; Yuan, P.; Yang, D.G. Multilayer in-plane graphene/hexagonal boron nitride heterostructures: Insights into the interfacial thermal transport properties. Int. J. Heat Mass Transf. 2020, 151, 119395. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Xiong, Y.; Li, S.; Chernysh, V.; Liu, X. Atomic-Scale Surface Engineering for Giant Thermal Transport Enhancement Across 2D/3D van der Waals Interfaces. ACS Appl. Mater. Interfaces 2023, 15, 3377–3386. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.C.; Cao, Q.; Shao, W.; Cui, Z. Effect of vacancy defects on the heat transfer coefficient of partially stacked graphene sheets. J. Mater. Sci. 2022, 57, 8167–8179. [Google Scholar] [CrossRef]
- Das, P.; Paul, P.; Hassan, M.; Monjur Morshed, A.K.M.; Paul, T.C. Interfacial thermal resistance in stanene/hexagonal boron nitride van der Waals heterostructures: A molecular dynamics study. Comput. Mater. Sci. 2025, 246, 113359. [Google Scholar] [CrossRef]
- Liao, J.; Zhang, M.; Yang, D.; He, Z.; Liu, Y.; Li, L. The interfacial roughness dependence of Cu/diamond thermal boundary conductance: A molecular dynamics study. Diam. Relat. Mater. 2025, 151, 111850. [Google Scholar] [CrossRef]
- Zhu, Y.; Yin, E.; Luo, W.; Li, Q. Multiscale thermal analysis of diamond/Cu composites for thermal management applications by combining lattice Boltzmann and finite element methods. Int. J. Therm. Sci. 2025, 211, 109736. [Google Scholar] [CrossRef]
- Shen, Y.; Guo, J.; Tang, Y.; Yang, P. Gr/HEA-FexNiCrCoCu interface getting excellent thermal transport. Intermetallics 2025, 182, 108756. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, H.; Wu, C.; Yin, Z.; Liu, C.; Liu, J.; Shi, Z. Interfacial Characterization and Thermal Conductivity of Diamond/Cu Composites Prepared by Liquid-Solid Separation Technique. Nanomaterials 2023, 13, 878. [Google Scholar] [CrossRef]
- Sinha, V.; Spowart, J.E. Influence of interfacial carbide layer characteristics on thermal properties of copper–diamond composites. J. Mater. Sci. 2012, 48, 1330–1341. [Google Scholar] [CrossRef]
- Xu, Y.; Fan, H.; Li, Z.; Zhou, Y. Signatures of anharmonic phonon transport in ultrahigh thermal conductance across atomically sharp metal/semiconductor interface. Int. J. Heat Mass Transf. 2023, 201, 123628. [Google Scholar] [CrossRef]
- Hohensee, G.T.; Wilson, R.B.; Cahill, D.G. Thermal conductance of metal–diamond interfaces at high pressure. Nat. Commun. 2015, 6, 6578. [Google Scholar] [CrossRef]
- Cheng, C.; Ma, S.Y.; Wang, S.Q. The role of phonon anharmonicity on the structural stability and phonon heat transport of CrFeCoNiCux high-entropy alloys at finite temperatures. J. Alloys Compd. 2023, 935, 168003. [Google Scholar] [CrossRef]
- Adnan, K.Z.; Neupane, M.R.; Feng, T. Thermal boundary conductance of metal–diamond interfaces predicted by machine learning interatomic potentials. Int. J. Heat Mass Transf. 2024, 235, 126227. [Google Scholar] [CrossRef]
- Shenogin, S.; Gengler, J.; Roy, A.; Voevodin, A.A.; Muratore, C. Molecular dynamics studies of thermal boundary resistance at carbon–metal interfaces. Scr. Mater. 2013, 69, 100–103. [Google Scholar] [CrossRef]
- Cai, X.; Li, H.; Zhang, J.; Ma, T.; Wang, Q. Mechanism of interfacial thermal resistance variation in diamond/Cu/CNT tri-layer during thermal cycles. Int. J. Therm. Sci. 2025, 207, 109380. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, L.; Li, F.; Sang, L.; Liao, M.; Tang, K.; Ye, J.; Gu, S. Enhancement of interfacial thermal conductance by introducing carbon vacancy at the Cu/diamond interface. Carbon 2024, 223, 119021. [Google Scholar] [CrossRef]
- Xu, Y.; Cao, B.-Y.; Zhou, Y. Near-interface effects on interfacial phonon transport: Competition between phonon-phonon interference and phonon-phonon scattering. Int. J. Heat Mass Transf. 2024, 232, 125943. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, Y.; Ruan, X. Metal/dielectric thermal interfacial transport considering cross-interface electron-phonon coupling: Theory, two-temperature molecular dynamics, and thermal circuit. Phys. Rev. B 2016, 93, 064302. [Google Scholar] [CrossRef]
- Zong, Z.-C.; Pan, D.-K.; Deng, S.-C.; Wan, X.; Yang, L.-N.; Ma, D.-K.; Yang, N. Mixed mismatch model predicted interfacial thermal conductance of metal/semiconductor interface. Acta Phys. Sin. 2023, 72, 034401. [Google Scholar] [CrossRef]
- Di Ventra, M.; Berthod, C.; Binggeli, N. Heterovalent interlayers and interface states: Anab initiostudy ofGaAs∕Si∕GaAs(110) and (100) heterostructures. Phys. Rev. B 2005, 71, 155324. [Google Scholar] [CrossRef]
- Li, Y.; Chen, W.-H. Numerical simulation of electrical characteristics in nanoscale Si/GaAs MOSFETs. J. Comput. Electron. 2006, 5, 255–258. [Google Scholar] [CrossRef]
- Mi, Z.; Bianucci, P. When self-organized In(Ga)As/GaAs quantum dot heterostructures roll up: Emerging devices and applications. Curr. Opin. Solid State Mater. Sci. 2012, 16, 52–58. [Google Scholar] [CrossRef]
- Qiu, Y.; Qiu, X.; Guo, X.; Wang, D.; Sun, L. Thermal Analysis of Si/GaAs Bonding Wafers and Mitigation Strategies of the Bonding Stresses. Adv. Mater. Sci. Eng. 2017, 2017, 4903924. [Google Scholar] [CrossRef]
- Kim, K.; Jang, J.; Kim, H. Negative differential resistance in Si/GaAs tunnel junction formed by single crystalline nanomembrane transfer method. Results Phys. 2021, 25, 104279. [Google Scholar] [CrossRef]
- Vega-Flick, A.; Jung, D.; Yue, S.; Bowers, J.E.; Liao, B. Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain. Phys. Rev. Mater. 2019, 3, 034603. [Google Scholar] [CrossRef]
- Xue, J.; Li, F.; Fan, A.; Ma, W.; Zhang, X. Optimizing interfacial thermal resistance in GaN/AlN heterostructures: The impact of AlN layer thickness. Int. J. Heat Mass Transf. 2025, 239, 126629. [Google Scholar] [CrossRef]
- Wu, S.; Kang, D.; Yu, X.; Dai, J. Thermal transport across armchair–zigzag graphene homointerface. Appl. Phys. Lett. 2024, 125, 0229671. [Google Scholar] [CrossRef]
- Wu, D.; Ding, H.; Fan, Z.Q.; Jia, P.Z.; Xie, H.Q.; Chen, X.K. High interfacial thermal conductance across heterogeneous GaN/graphene interface. Appl. Surf. Sci. 2022, 581, 152344. [Google Scholar] [CrossRef]
- Ding, Z.W.; Pei, Q.-X.; Jiang, J.-W.; Huang, W.X.; Zhang, Y.-W. Interfacial thermal conductance in graphene/MoS2 heterostructures. Carbon 2016, 96, 888–896. [Google Scholar] [CrossRef]
- Gu, L.; Li, Y.; Shen, Y.; Yang, R.-Y.; Ma, H.-P.; Sun, F.Y.; Zuo, Y.; Tang, Z.; Yuan, Q.; Jiang, N.; et al. A strategy for enhancing interfacial thermal transport in Ga2O3-diamond composite structure by introducing an AlN interlayer. Nano Energy 2024, 132, 110389. [Google Scholar] [CrossRef]
- Zhao, X.; Qu, Y.; Deng, N.; Yuan, J.; Du, L.; Hu, W.; Wang, H. Structural and phonon transport analysis of surface-activated bonded SiC-SiC homogenous interfaces. Appl. Surf. Sci. 2024, 678, 161139. [Google Scholar] [CrossRef]
- Liu, Y.L.; Qiu, L.; Liu, J.L.; Feng, Y.H. Enhancing thermal transport across diamond/graphene heterostructure interface. Int. J. Heat Mass Transf. 2023, 209, 124123. [Google Scholar] [CrossRef]
- Yu, X.; Li, Y.; He, R.; Wen, Y.; Chen, R.; Xu, B.; Gao, Y. Mechanical Regulation to Interfacial Thermal Transport in GaN/Diamond Heterostructures for Thermal Switch. Nanoscale Horiz. 2024, 9, 1557–1567. [Google Scholar] [CrossRef]
- Rajabpour, A.; Mortazavi, B.; Mirchi, P.; El Hajj, J.; Guo, Y.; Zhuang, X.; Merabia, S. Accurate estimation of interfacial thermal conductance between silicon and diamond enabled by a machine learning interatomic potential. Int. J. Therm. Sci. 2025, 214, 109876. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, L.; Wang, Z.; Li, H.; Feng, Y. Enhancing interfacial thermal transport efficiently in diamond/graphene heterostructure by involving vacancy defects. Compos. Part A Appl. Sci. Manuf. 2024, 178, 108008. [Google Scholar] [CrossRef]
- Khosravian, N.; Samani, M.K.; Loh, G.C.; Chen, G.C.K.; Baillargeat, D.; Tay, B.K. Molecular dynamic simulation of diamond/silicon interfacial thermal conductance. J. Appl. Phys. 2013, 113, 024907. [Google Scholar] [CrossRef]
- Song, C.; Yang, B.; Wei, B.; Tang, Y.; Wu, X. Mechanism analysis of strengthening interfacial thermal conductance of w-AlN/Graphene/3C-SiC typical heterostructure by graphene interlayer bonding. Ceram. Int. 2025, 51, 19393–19402. [Google Scholar] [CrossRef]
- Wang, B.; Shao, W.; Cao, Q.; Cui, Z. Thermal Conductivity Enhancement of Graphene/Epoxy Nanocomposites by Reducing Interfacial Thermal Resistance. J. Phys. Chem. C 2023, 127, 10282–10290. [Google Scholar] [CrossRef]
- Li, D.B.; Yang, H.Y.; Li, L.; Yang, P. Numerical investigation of thermal conductivity of Cu/graphene/Cu interface. Appl. Phys. Lett. 2023, 123, 041602. [Google Scholar] [CrossRef]
- Liu, F.; Zhu, Y.; Wu, R.; Zou, R.; Zhou, S.; Ning, H.; Hu, N.; Yan, C. Insights into the interfacial thermal transport properties of in-plane graphene/h-BN heterostructure with grain boundary. Int. J. Heat Mass Transf. 2023, 214, 124390. [Google Scholar] [CrossRef]
- Shen, M.; Hao, Z.; Song, J.; An, M.; Ying, T.; Xue, X.; Gao, Y.; Yang, Z. Architectural and component design of CNTs/Al hierarchical composite for enhanced mechanical/thermal properties. J. Mater. Res. Technol. 2024, 30, 120–133. [Google Scholar] [CrossRef]
- Meftakhutdinov, R.M.; Sibatov, R.T. Janus Type Monolayers of S-MoSiN2 Family and Van Der Waals Heterostructures with Graphene: DFT-Based Study. Nanomaterials 2022, 12, 3904. [Google Scholar] [CrossRef] [PubMed]
- Šilhavík, M.; Kumar, P.; Levinský, P.; Zafar, Z.A.; Hejtmánek, J.; Červenka, J. Anderson Localization of Phonons in Thermally Superinsulating Graphene Aerogels with Metal-Like Electrical Conductivity. Small Methods 2024, 8, 2301536. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Ma, J.; Yang, J.; Zhang, Y.Y. Molecular Dynamics Simulation on In-Plane Thermal Conductivity of Graphene/Hexagonal Boron Nitride van der Waals Heterostructures. ACS Appl. Mater. Interfaces 2022, 14, 45742–45751. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Li, L.; Zeng, X.C.; Zhang, J. Tuning thermal contact conductance at graphene-copper interface via surface nanoengineering. Nanoscale 2015, 7, 6286–6294. [Google Scholar] [CrossRef]
- Wu, B.Y.; Zhou, M.; Xu, D.J.; Liu, J.J.; Tang, R.J.; Zhang, P. Interfacial thermal conductance of BP/MoS(2 )van der Waals heterostructures: An insight from the phonon transport. Surf. Interfaces 2022, 32, 102119. [Google Scholar] [CrossRef]
- Liu, B.; Baimova, J.A.; Reddy, C.D.; Law, A.W.-K.; Dmitriev, S.V.; Wu, H.; Zhou, K. Interfacial Thermal Conductance of a Silicene/Graphene Bilayer Heterostructure and the Effect of Hydrogenation. ACS Appl. Mater. Interfaces 2014, 6, 18180–18188. [Google Scholar] [CrossRef]
- Zhang, L.; Zhong, Y.; Qian, X.; Song, Q.; Zhou, J.; Li, L.; Guo, L.; Chen, G.; Wang, E.N. Toward Optimal Heat Transfer of 2D-3D Heterostructures via van der Waals Binding Effects. ACS Appl. Mater. Interfaces 2021, 13, 46055–46064. [Google Scholar] [CrossRef]
- Li, Y.F.; Wei, A.R.; Datta, D. Thermal characteristics of graphene nanoribbons endorsed by surface functionalization. Carbon 2017, 113, 274–282. [Google Scholar] [CrossRef]
- Liu, X.; Gao, J.; Zhang, G.; Zhang, Y.-W. MoS2-graphene in-plane contact for high interfacial thermal conduction. Nano Res. 2017, 10, 2944–2953. [Google Scholar] [CrossRef]
- Chen, X.K.; Xie, Z.X.; Zhou, W.X.; Tang, L.M.; Chen, K.Q. Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction. Carbon 2016, 100, 492–500. [Google Scholar] [CrossRef]
- Ni, Y.; Zhang, H.; Hu, S.; Wang, H.; Volz, S.; Xiong, S. Interface diffusion-induced phonon localization in two-dimensional lateral heterostructures. Int. J. Heat Mass Transf. 2019, 144, 118608. [Google Scholar] [CrossRef]
- Hunter, N.; Azam, N.; Zobeiri, H.; Van Velson, N.; Mahjouri-Samani, M.; Wang, X. Interface Thermal Resistance between Monolayer WSe2 and SiO2: Raman Probing with Consideration of Optical–Acoustic Phonon Nonequilibrium. Adv. Mater. Interfaces 2022, 9, 2102059. [Google Scholar] [CrossRef]
- Deng, Z.; Cai, J.; Wang, G.; Liu, J. Interfacial thermal resistance measurement sensitivity in time and spatial domains of FET-Raman for supported 2D materials. Int. J. Heat Mass Transf. 2024, 230, 125810. [Google Scholar] [CrossRef]
- Plech, A.; Krause, B.; Baumbach, T.; Zakharova, M.; Eon, S.; Girmen, C.; Buth, G.; Bracht, H. Structural and Thermal Characterisation of Nanofilms by Time-Resolved X-ray Scattering. Nanomaterials 2019, 9, 501. [Google Scholar] [CrossRef]
- Cui, S.; Sun, F.; Wang, D.; Zhang, X.; Zhang, H.; Feng, Y. Enhancing interfacial heat conduction in diamond-reinforced copper composites with boron carbide interlayers for thermal management. Compos. Part B Eng. 2024, 287, 111871. [Google Scholar] [CrossRef]
- Liu, F.; Mao, R.; Liu, Z.; Du, J.; Gao, P. Probing phonon transport dynamics across an interface by electron microscopy. Nature 2025, 642, 941–946. [Google Scholar] [CrossRef]
- Chen, N.; Yang, K.; Wang, Z.; Zhong, B.; Wang, J.; Song, J.; Li, Q.; Ni, J.; Sun, F.; Liu, Y.; et al. Quantifying Interfacial Bonding Using Thermal Boundary Conductance at Cubic Boron Nitride/Copper Interfaces with a Large Mismatch of Phonon Density of States. ACS Appl. Mater. Interfaces 2023, 15, 34132–34144. [Google Scholar] [CrossRef]
- Zheng, W.; McClellan, C.J.; Pop, E.; Koh, Y.K. Nonequilibrium Phonon Thermal Resistance at MoS2/Oxide and Graphene/Oxide Interfaces. ACS Appl. Mater. Interfaces 2022, 14, 22372–22380. [Google Scholar] [CrossRef]
- Yang, S.; Song, H.; Peng, Y.; Zhao, L.; Tong, Y.; Kang, F.; Xu, M.; Sun, B.; Wang, X. Reduced thermal boundary conductance in GaN-based electronic devices introduced by metal bonding layer. Nano Res. 2021, 14, 3616–3620. [Google Scholar] [CrossRef]
- Li, R.; Hussain, K.; Liao, M.E.; Huynh, K.; Hoque, M.S.B.; Wyant, S.; Koh, Y.R.; Xu, Z.; Wang, Y.; Luccioni, D.P.; et al. Enhanced Thermal Boundary Conductance across GaN/SiC Interfaces with AlN Transition Layers. ACS Appl. Mater. Interfaces 2024, 16, 8109–8118. [Google Scholar] [CrossRef]
- Khan, S.; Angeles, F.; Wright, J.; Vishwakarma, S.; Ortiz, V.H.; Guzman, E.; Kargar, F.; Balandin, A.A.; Smith, D.J.; Jena, D.; et al. Properties for Thermally Conductive Interfaces with Wide Band Gap Materials. ACS Appl. Mater. Interfaces 2022, 14, 36178–36188. [Google Scholar] [CrossRef]
- Larkin, L.S.; Smoyer, J.L.; Norris, P.M. Laser repetition rate in time-domain thermoreflectance techniques. Int. J. Heat Mass Transf. 2017, 109, 786–790. [Google Scholar] [CrossRef]
- Gengler, J.J.; Roy, S.; Jones, J.G.; Gord, J.R. Two-color time-domain thermoreflectance of various metal transducers with an optical parametric oscillator. Meas. Sci. Technol. 2012, 23, 055205. [Google Scholar] [CrossRef]
- Li, M.; Pan, K.; Ge, Y.; Huynh, K.; Goorsky, M.S.; Fisher, T.S.; Hu, Y. Wafer-scale bonded GaN–AlN with high interface thermal conductance. Appl. Phys. Lett. 2024, 125, 032104. [Google Scholar] [CrossRef]
- Yuan, P.Y.; Li, C.; Xu, S.; Liu, J.; Wang, X.W. Interfacial thermal conductance between few to tens of layered-MoS2 and c-Si: Effect of MoS2 thickness. Acta Mater. 2017, 122, 152–165. [Google Scholar] [CrossRef]
- Yalon, E.; Deshmukh, S.; Muñoz Rojo, M.; Lian, F.; Neumann, C.M.; Xiong, F.; Pop, E. Spatially Resolved Thermometry of Resistive Memory Devices. Sci. Rep. 2017, 7, 15360. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Gan, L.; Zhang, D.; Sun, H.; Li, Y.; Ning, C.Z. Extreme Thermal Insulation and Tradeoff of Thermal Transport Mechanisms between Graphene and WS2 Monolayers. Adv. Mater. 2024, 36, e2313753. [Google Scholar] [CrossRef]
- Li, Q.-Y.; Katakami, K.; Ikuta, T.; Kohno, M.; Zhang, X.; Takahashi, K. Measurement of thermal contact resistance between individual carbon fibers using a laser-flash Raman mapping method. Carbon 2019, 141, 92–98. [Google Scholar] [CrossRef]
- Hopkins, P.E.; Norris, P.M. Thermal boundary conductance response to a change in Cr∕Si interfacial properties. Appl. Phys. Lett. 2006, 89, 131909. [Google Scholar] [CrossRef]
- Xu, W.; Hou, F.; Zhang, H.; Xia, C.; Li, Z.; Li, Y.; Xu, C.; Cui, Q. Mediating coherent acoustic phonon oscillation of a 2D semiconductor/3D dielectric heterostructure by interfacial engineering. J. Phys. D Appl. Phys. 2024, 57, 485303. [Google Scholar] [CrossRef]
- Ma, W.G.; Wang, H.D.; Zhang, X.; Wang, W. Theoretical and experimental study of femtosecond pulse laser heating on thin metal film. Acta Phys. Sin. 2011, 60, 064401. [Google Scholar] [CrossRef]
- Mohamad, H.J.; Shelford, L.R.; Aziz, M.; Al-Jarah, U.A.S.; Al-Saigh, R.; Valkass, R.A.J.; Marmion, S.; Hickey, B.J.; Hicken, R.J. Thermally induced magnetization dynamics of optically excited YIG/Cu/Ni81Fe19 trilayers. Phys. Rev. B 2017, 96, 134431. [Google Scholar] [CrossRef]
- Hoveyda, F.; Adnani, M.; Smadici, S. Heat diffusion in magnetic superlattices on glass substrates. J. Appl. Phys. 2017, 122, 184304. [Google Scholar] [CrossRef]
- Yang, H.; Li, L.; Yang, P. Deep learning-based molecular dynamics simulation reconfiguration of efficient heat energy transport of Gra/h-BN heterointerface. Appl. Phys. Lett. 2025, 127, 021601. [Google Scholar] [CrossRef]
- Sun, H.; Surblys, D.; Ohara, T. Enhancement of thermal transport via electrostatic surface modification by ionic organic additives under electric fields: A molecular dynamics study. Appl. Therm. Eng. 2025, 274, 126803. [Google Scholar] [CrossRef]
Typical Heterostructures | Computational Method | Simulated Values of ITC |
---|---|---|
Cu/Diamond | NEMD | 35–48 MW/m2K [62,73] |
Al/Diamond | MLMD | 284 MW/m2K [70] |
Al/Si | NEMD | 350 MW/m2K [67] |
Cu/Si | NEMD | 600 MW/m2K [74] |
Cu/Si | TT-MD | 357 MW/m2K [75] |
Ge/Si | NEMD | 410 MW/m2K [44] |
Al/SiC | MMM | 92 MW/m2K [76] |
Al/GaAs | AMM | 420 MW/m2K [76] |
Al/GaN | AMM | 440 MW/m2K [76] |
Cu/SWCNT | NEMD | 32 MW/m2K [71] |
Al/SWCNT | NEMD | 48 MW/m2K [71] |
Typical Heterostructures | Computational Method | Simulated Values of ITC |
---|---|---|
vdW graphene/silene | TTP | 11.74 MW/m2K [104] |
vdW MoS2/a-SiO2 | TTP | 5.6 MW/m2K [105] |
vdW graphene/HEA | TTP | 9.5–11.1 MW/m2K [64] |
vdW graphene/MoS2 | NEMD | 13.8 MW/m2K [86] |
vdW MoS2/MoS2 | NEMD | 44.48 MW/m2K [86] |
vdW graphene/graphene | NEMD | 212.65 MW/m2K [86] |
In-plane graphene/h-BN | NEMD | 4.3 GW/m2K [58] |
In-plane graphene/graphane | RNEMD | 22 GW/m2K [106] |
In-plane graphene/MoS2 | NEMD | 0.225–0.25 GW/m2K [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Fu, J.; Han, F.; Li, D.; Yang, B.; Tang, Y. Interface Thermal Resistance in Heterostructures of Micro–Nano Power Devices: Current Status and Future Challenges. Nanomaterials 2025, 15, 1236. https://doi.org/10.3390/nano15161236
Shen Y, Fu J, Han F, Li D, Yang B, Tang Y. Interface Thermal Resistance in Heterostructures of Micro–Nano Power Devices: Current Status and Future Challenges. Nanomaterials. 2025; 15(16):1236. https://doi.org/10.3390/nano15161236
Chicago/Turabian StyleShen, Yinjie, Jia Fu, Fengguo Han, Dongbo Li, Bing Yang, and Yunqing Tang. 2025. "Interface Thermal Resistance in Heterostructures of Micro–Nano Power Devices: Current Status and Future Challenges" Nanomaterials 15, no. 16: 1236. https://doi.org/10.3390/nano15161236
APA StyleShen, Y., Fu, J., Han, F., Li, D., Yang, B., & Tang, Y. (2025). Interface Thermal Resistance in Heterostructures of Micro–Nano Power Devices: Current Status and Future Challenges. Nanomaterials, 15(16), 1236. https://doi.org/10.3390/nano15161236