Constructing Sulfur Vacancy-Rich NiCo2S4@MoS2 Core@shell Heterostructure via Interface Engineering for Enhanced HER Electrocatalysis
Abstract
1. Introduction
2. Materials and Methods
- Materials:
- Synthesis of NiCo2S4 nanoparticles:
- Synthesis of NiCo2S4@MoS2 core@shell heterostructure:
- Synthesis of NiCo2S4/MoS2 supported heterostructure:
- Sample Characterization:
- Electrocatalytic Performance Evaluation:
- Computational details:
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef]
- Han, S.; Peng, D.; Guo, Y.; Aslam, M.U.; Xu, R. Harnessing technological innovation and renewable energy and their impact on environmental pollution in G-20 countries. Sci. Rep. 2025, 15, 2236. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef]
- Turner, J.A. Sustainable hydrogen production. Science 2004, 305, 972–974. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.I.; Lai, Z.Y.; Farghali, M.; Yiin, C.L.; Elgarahy, A.M.; Hammad, A.; Ihara, I.; Al-Fatesh, A.S.; Rooney, D.W.; Yap, P.S. Optimizing biomass pathways to bioenergy and biochar application in electricity generation, biodiesel production, and biohydrogen production. Environ. Chem. Lett. 2023, 21, 2639–2705. [Google Scholar] [CrossRef]
- Zou, X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. [Google Scholar] [CrossRef]
- Slobodkin, I.; Davydova, E.; Sananis, M.; Breytus, A.; Rothschild, A. Electrochemical and chemical cycle for high-efficiency decoupled water splitting in a near-neutral electrolyte. Nat. Mater. 2024, 23, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Allard, C. Efficient catalyst for alkaline water. Nat. Rev. Mater. 2025, 10, 84. [Google Scholar] [CrossRef]
- Jin, H.; Joo, J.; Chaudhari, N.K.; Choi, S.I.; Lee, K. Recent progress in bifunctional electrocatalysts for overall water splitting under acidic conditions. ChemElectroChem 2019, 6, 3244–3253. [Google Scholar] [CrossRef]
- Wei, J.; Shao, Y.; Xu, J.; Yin, F.; Li, Z.; Qian, H.; Wei, Y.; Chang, L.; Han, Y.; Li, J.; et al. Sequential oxygen evolution and decoupled water splitting via electrochemical redox reaction of nickel hydroxides. Nat. Commun. 2024, 15, 9012. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Q.; Lin, Y.; Liu, J.; Pan, J.; Hu, J.; Xu, X. Boosting oxygen evolution reaction by FeNi hydroxide-organic framework electrocatalyst toward alkaline water electrolyzer. Nat. Commun. 2024, 15, 7278. [Google Scholar] [CrossRef]
- Li, D.; Shi, J.; Li, C. Transition-metal-based electrocatalysts as cocatalysts for photoelectrochemical water splitting: A mini review. Small 2018, 14, 1704179. [Google Scholar] [CrossRef]
- Zhan, F.; Huang, L.; Luo, Y.; Chen, M.; Tan, R.; Liu, X.; Liu, G.; Feng, Z. Recent advances on support materials for enhanced Pt-based catalysts: Applications in oxygen reduction reactions for electrochemical energy storage. J. Mater. Sci. 2025, 60, 2199–2223. [Google Scholar] [CrossRef]
- Feidenhans’l, A.A.; Regmi, Y.N.; Wei, C.; Xia, D.; Kibsgaard, J.; King, L.A. Precious metal free hydrogen evolution catalyst design and application. Chem. Rev. 2024, 124, 5617–5667. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Huang, Z.-H.; Yang, Z.; Tang, S.; Kang, F.; Lv, R. Facile synthesis of free-standing nickel chalcogenide electrodes for overall water splitting. J. Energy Chem. 2017, 26, 1217–1222. [Google Scholar] [CrossRef]
- Qin, J.F.; Lin, J.H.; Chen, T.S.; Liu, D.P.; Xie, J.Y.; Guo, B.Y.; Wang, L.; Chai, Y.M.; Dong, B. Facile synthesis of V-doped CoP nanoparticles as bifunctional electrocatalyst for efficient water splitting. J. Energy Chem. 2019, 39, 182–187. [Google Scholar] [CrossRef]
- Irshad, A.; Munichandraiah, N. Electrodeposited nickel–cobalt–sulfide catalyst for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 19746–19755. [Google Scholar] [CrossRef]
- Ding, X.; Liu, D.; Zhao, P.; Chen, X.; Wang, H.; Oropeza, F.E.; Gorni, G.; Barawi, M.; García-Tecedor, M.; de la Peña O’Shea, V.A.; et al. Dynamic restructuring of nickel sulfides for electrocatalytic hydrogen evolution reaction. Nat. Commun. 2024, 15, 5336. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Xu, X.; Kim, H.; Shao, Z.; Jung, W. Advanced electrocatalysts with unusual active sites for electrochemical water splitting. InfoMat 2023, 6, e12494. [Google Scholar] [CrossRef]
- Guo, Y.; Park, T.; Yi, J.W.; Henzie, J.; Kim, J.; Wang, Z.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J.; et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1807134. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, L.; He, Y.; Zhu, H. Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2021, 9, 5320–5363. [Google Scholar] [CrossRef]
- Hu, X.; Gao, Y.; Luo, X.; Xiong, J.; Chen, P.; Wang, B. Insight into the intrinsic activity of various transition metal sulfides for efficient hydrogen evolution reaction. Nanoscale 2024, 16, 4909–4918. [Google Scholar] [CrossRef]
- Zhai, P.; Zhang, Y.; Wu, Y.; Gao, J.; Zhang, B.; Cao, S.; Zhang, Y.; Li, Z.; Sun, L.; Hou, J. Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nat. Commun. 2020, 11, 5462. [Google Scholar] [CrossRef]
- Cai, J.; Liu, H.; Luo, Y.; Xiong, Y.; Zhang, L.; Wang, S.; Xiao, K.; Liu, Z.-Q. Single-phase bimetal sulfide or metal sulfide heterojunction: Which one is better for reversible oxygen electrocatalyst? J. Energy Chem. 2022, 74, 420–428. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, Y.; Chang, C.; Wang, X.; Hou, L.; Jin, J.; Gao, F. Construction of heterogeneous core–shell CoFeMo polymetallic sulfide/N-rich carbon skeleton composite catalysts based on stepwise displacement of MOF for overall water splitting. Fuel 2024, 365, 131230. [Google Scholar] [CrossRef]
- Ding, Q.; Cheng, A.; Ma, L.; Ding, Y.; Men, D. In situ-generated NiCo@NiS nanoparticle anchored S-doped carbon nanotubes as dual electrocatalysts for oxygen reduction reaction and hydrogen evolution reaction. Nanotechnology 2020, 31, 135401. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Z.; Zeng, W.; Chen, J.; Deng, L. Construction of NiCo2S4@NiMoO4 core-shell nanosheet arrays with superior electrochemical performance for asymmetric supercapacitors. ChemElectroChem 2018, 6, 590–597. [Google Scholar] [CrossRef]
- Li, M.; Chu, G.; Gao, J.; Ye, X.; Hou, M.; Guo, S.; Li, Y.; Zhou, Z.; Yang, L.; Briois, P. Electrochemical deposition of bimetallic sulfides on novel BDD electrode for bifunctional alkaline seawater electrolysis. Sci. Rep. 2025, 15, 2862. [Google Scholar] [CrossRef]
- Inamdar, A.I.; Salunke, A.S.; Shrestha, N.K.; Im, H. Heterogeneous oxide/sulfide materials as superior bifunctional electrocatalysts for carbon-neutral green hydrogen production: A short review. Appl. Phys. Rev. 2024, 11, 041310. [Google Scholar] [CrossRef]
- Lakhan, M.N.; Hanan, A.; Hussain, A.; Ali Soomro, I.; Wang, Y.; Ahmed, M.; Aftab, U.; Sun, H.; Arandiyan, H. Transition metal-based electrocatalysts for alkaline overall water splitting: Advancements, challenges, and perspectives. Chem. Commun. 2024, 60, 5104–5135. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, H.; Qu, J.; Li, J. Two-dimensional layered MoS2: Rational design, properties and electrochemical applications. Energy Environ. Sci. 2016, 9, 1190–1209. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Le, Q.V.; Choi, S.; Lee, T.H.; Hong, S.-P.; Choi, K.S.; Jang, H.W.; Lee, M.H.; Park, T.J.; Kim, S.Y. Surface extension of MeS2 (Me = Mo or W) nanosheets by embedding MeSx for hydrogen evolution reaction. Electrochim. Acta 2018, 292, 136–141. [Google Scholar] [CrossRef]
- Gao, X.; Qi, J.; Wan, S.; Zhang, W.; Wang, Q.; Cao, R. Conductive molybdenum sulfide for efficient electrocatalytic hydrogen evolution. Small 2018, 14, 1803361. [Google Scholar] [CrossRef]
- González-Poggini, S. Hydrogen evolution descriptors: A review for electrocatalyst development and optimization. Int. J. Hydrogen Energy 2024, 59, 30–42. [Google Scholar] [CrossRef]
- Li, Y.; Feng, A.; Dai, L.; Xi, B.; An, X.; Xiong, S.; An, C. Progress on the design of electrocatalysts for large-current hydrogen production by tuning thermodynamic and kinetic factors. Adv. Funct. Mater. 2024, 34, 2316296. [Google Scholar] [CrossRef]
- Zhao, G.; Rui, K.; Dou, S.X.; Sun, W. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater. 2018, 28, 1803291. [Google Scholar] [CrossRef]
- Gaur, A.P.S.; Zhang, B.; Lui, Y.H.; Tang, X.; Hu, S. Morphologically tailored nano-structured MoS2 catalysts via introduction of Ni and Co ions for enhanced HER activity. Appl. Surf. Sci. 2020, 516, 146094. [Google Scholar] [CrossRef]
- Bian, L.; Gao, W.; Sun, J.; Han, M.; Li, F.; Gao, Z.; Shu, L.; Han, N.; Yang, Z.x.; Song, A.; et al. Phosphorus-doped MoS2 nanosheets supported on carbon cloths as efficient hydrogen-generation electrocatalysts. ChemCatChem 2018, 10, 1571–1577. [Google Scholar] [CrossRef]
- Xu, J.; Shao, G.; Tang, X.; Lv, F.; Xiang, H.; Jing, C.; Liu, S.; Dai, S.; Li, Y.; Luo, J.; et al. Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nat. Commun. 2022, 13, 2193. [Google Scholar] [CrossRef] [PubMed]
- Shan, A.; Teng, X.; Zhang, Y.; Zhang, P.; Xu, Y.; Liu, C.; Li, H.; Ye, H.; Wang, R. Interfacial electronic structure modulation of Pt-MoS2 heterostructure for enhancing electrocatalytic hydrogen evolution reaction. Nano Energy 2022, 94, 106913. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, X.; Yang, J.; Duan, W.; Li, J. Ultrafast charge transfer in lithium-ion and water-intercalated MoS2/WS2 heterostructures. Nano Lett. 2024, 24, 16383–16390. [Google Scholar] [CrossRef]
- Guan, X.; Zong, S.; Shen, S. Homojunction photocatalysts for water splitting. Nano Res. 2022, 15, 10171–10184. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Wang, V.; Xu, N.; Liu, J.C.; Tang, G.; Geng, W.T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Bligaard, T.; Logadottir, A.; Kitchin, J.R.; Chen, J.G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23. [Google Scholar] [CrossRef]
- Li, S.; Gao, Y.; Li, N.; Ge, L.; Bu, X.; Feng, P. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ. Sci. 2021, 14, 1897–1927. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, Y.; Jin, J.; Wang, Y.; Peng, Y.; Yin, J.; Shen, W.; Hou, Y.; Zhu, L.; An, L.; et al. Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reaction. Nat. Commun. 2023, 14, 1949. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Yap, C.C.R.; Tay, B.K.; Edwin, T.H.T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390. [Google Scholar] [CrossRef]
- Thripuranthaka, M.; Kashid, R.V.; Sekhar Rout, C.; Late, D.J. Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets. Appl. Phys. Lett. 2014, 104, 081911. [Google Scholar] [CrossRef]
- Chee, S.S.; Lee, W.J.; Jo, Y.R.; Cho, M.K.; Chun, D.; Baik, H.; Kim, B.J.; Yoon, M.H.; Lee, K.; Ham, M.H. Atomic vacancy control and elemental substitution in a monolayer molybdenum disulfide for high performance optoelectronic device arrays. Adv. Funct. Mater. 2020, 30, 1908147. [Google Scholar] [CrossRef]
- Santhoshkumar, S.; Wei, W.-S.; Madhu, M.; Tseng, W.-B.; Tseng, W.-L. Chemically engineered sulfur vacancies on few-layered molybdenum disulfide nanosheets for remarkable surface-enhanced Raman scattering activity. J. Phys. Chem. C 2023, 127, 8803–8813. [Google Scholar] [CrossRef]
- Zhu, Y.; Lim, J.; Zhang, Z.; Wang, Y.; Sarkar, S.; Ramsden, H.; Li, Y.; Yan, H.; Phuyal, D.; Gauriot, N.; et al. Room-temperature photoluminescence mediated by sulfur vacancies in 2D molybdenum disulfide. ACS Nano 2023, 17, 13545–13553. [Google Scholar] [CrossRef]
- Huang, W.H.; Li, X.M.; Yang, X.F.; Zhang, H.Y.; Liu, P.B.; Ma, Y.M.; Lu, X. CeO2-embedded mesoporous CoS/MoS2 as highly efficient and robust oxygen evolution electrocatalyst. Chem. Eng. J. 2021, 420, 127595. [Google Scholar] [CrossRef]
- Bai, H.; Yang, Y.; Dong, M.; Yuan, H.; Huang, Y.; Liu, X.; Ni, C. Structure and defect engineering synergistically boost Mo6+/Mo4+ circulation of Sv-MoS2 based photo-Fenton-like system for efficient levofloxacin degradation. Appl. Catal. B Environ. Energy 2024, 358, 124430. [Google Scholar] [CrossRef]
- Grünleitner, T.; Henning, A.; Bissolo, M.; Zengerle, M.; Gregoratti, L.; Amati, M.; Zeller, P.; Eichhorn, J.; Stier, A.V.; Holleitner, A.W.; et al. Real-time investigation of sulfur vacancy generation and passivation in monolayer molybdenum disulfide via in situ X-ray photoelectron spectromicroscopy. ACS Nano 2022, 16, 20364–20375. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Liu, Y.; Yin, P.; Dai, J.; Xu, Y.; Wang, R.; Duan, S. Constructing Sulfur Vacancy-Rich NiCo2S4@MoS2 Core@shell Heterostructure via Interface Engineering for Enhanced HER Electrocatalysis. Nanomaterials 2025, 15, 1061. https://doi.org/10.3390/nano15141061
Song Z, Liu Y, Yin P, Dai J, Xu Y, Wang R, Duan S. Constructing Sulfur Vacancy-Rich NiCo2S4@MoS2 Core@shell Heterostructure via Interface Engineering for Enhanced HER Electrocatalysis. Nanomaterials. 2025; 15(14):1061. https://doi.org/10.3390/nano15141061
Chicago/Turabian StyleSong, Ziteng, Yuan Liu, Peng Yin, Jie Dai, Yingying Xu, Rongming Wang, and Sibin Duan. 2025. "Constructing Sulfur Vacancy-Rich NiCo2S4@MoS2 Core@shell Heterostructure via Interface Engineering for Enhanced HER Electrocatalysis" Nanomaterials 15, no. 14: 1061. https://doi.org/10.3390/nano15141061
APA StyleSong, Z., Liu, Y., Yin, P., Dai, J., Xu, Y., Wang, R., & Duan, S. (2025). Constructing Sulfur Vacancy-Rich NiCo2S4@MoS2 Core@shell Heterostructure via Interface Engineering for Enhanced HER Electrocatalysis. Nanomaterials, 15(14), 1061. https://doi.org/10.3390/nano15141061