Prussian Blue Analogue-Derived p-n Junction Heterostructure for Photothermal Reverse Water–Gas Shift: Enhanced Activity and Selectivity via Synergistic Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Catalysts
2.3. Physical and Chemical Characterizations
2.4. Catalytic Tests
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, B.; Deng, W.; Guo, L.; Ishihara, T. Copper-ceria solid solution with improved catalytic activity for hydrogenation of CO2 to CH3OH. Chin. J. Catal. 2020, 41, 1348–1359. [Google Scholar] [CrossRef]
- Bahmanpour, A.M.; Signorile, M.; Kröcher, O. Recent progress in syngas production via catalytic CO2 hydrogenation reaction. Appl. Catal. B Environ. 2021, 295, 120319. [Google Scholar] [CrossRef]
- Han, B.; Ou, X.; Zhong, Z.; Liang, S.; Deng, H.; Lin, Z. Rational Design of FeNi Bimetal Modified Covalent Organic Frameworks for Photoconversion of Anthropogenic CO2 into Widely Tunable Syngas. Small 2020, 16, 2002985. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Shi, Y.; Meng, N.; Lu, S.; Yu, Y.; Zhang, B. Electrosynthesis of Syngas via the Co-Reduction of CO2 and H2O. Cell Rep. Phys. Sci. 2020, 1, 2666–3864. [Google Scholar] [CrossRef]
- Pan, X.; Jiao, F.; Miao, D.; Bao, X. Oxide–Zeolite-Based Composite Catalyst Concept That Enables Syngas Chemistry beyond Fischer–Tropsch Synthesis. Chem. Rev. 2021, 121, 6588–6609. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, R.; Zhou, T.; Jin, S.; Huang, J.; Ye, L.; Huang, Z.; Wang, F.; Zhou, Y. B–O Bonds in Ultrathin Boron Nitride Nanosheets to Promote Photocatalytic Carbon Dioxide Conversion. ACS Appl. Mater. Interfaces 2020, 12, 9935–9943. [Google Scholar] [CrossRef]
- Kobayashi, D.; Kobayashi, H.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Haneda, M.; Aspera, S.M.; et al. Boosting reverse water-gas shift reaction activity of Pt nanoparticles through light doping of W. J. Mater. Chem. A 2021, 9, 15613–15617. [Google Scholar] [CrossRef]
- Ng, M.; Jovic, V.; Waterhouse, G.I.N.; Kennedy, J. Recent progress in photothermal catalyst design for methanol production. Emergent Mater. 2023, 6, 1097–1115. [Google Scholar] [CrossRef]
- He, Y.; Zhou, Y.; Feng, J.; Xing, M. Photothermal conversion of CO2 to fuel with nickel-based catalysts: A review. Environ. Funct. Mater. 2022, 1, 204–217. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, H.; Wang, H. Photothermal catalysis for CO2 conversion. Chin. Chem. Lett. 2023, 34, 107420. [Google Scholar] [CrossRef]
- Zhang, W.; Mohamed, A.R.; Ong, W.-J. Z-Scheme Photocatalytic Systems for Carbon Dioxide Reduction: Where Are We Now? Angew. Chem. Int. Ed. 2020, 59, 22894–22915. [Google Scholar] [CrossRef] [PubMed]
- Mateo, D.; Cerrillo, J.L.; Durini, S.; Gascon, J. Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev. 2021, 50, 2173–2210. [Google Scholar] [CrossRef] [PubMed]
- Ai, M.; Peng, Z.; Li, X.; Idrees, F.; Zhang, X.; Zou, J.-J.; Pan, L. Piezoelectric-enhanced n-TiO2/BaTiO3/p-TiO2 heterojunction for highly efficient photoelectrocatalysis. Green Energy Environ. 2024, 9, 1466–1476. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Xie, G.; Huang, Z.; Peng, L.; Yu, C.; Xie, X.; Qu, S.; Zhang, N. Isolated Cu Sites in CdS Hollow Nanocubes with Doping-Location-Dependent Performance for Photocatalytic CO2 Reduction. ACS Catal. 2024, 14, 1468–1479. [Google Scholar] [CrossRef]
- Zhang, T.; Li, T.; Gao, M.; Lu, W.; Chen, Z.; Ong, W.L.; Wong, A.S.W.; Yang, L.; Kawi, S.; Ho, G.W. Ligand Mediated Assembly of CdS Colloids in 3D Porous Metal–Organic Framework Derived Scaffold with Multi-Sites Heterojunctions for Efficient CO2 Photoreduction. Adv. Energy Mater. 2024, 14, 2400388. [Google Scholar] [CrossRef]
- Shi, C.; Ye, S.; Wang, X.; Meng, F.; Liu, J.; Yang, T.; Zhang, W.; Wei, J.; Ta, N.; Lu, G.Q.; et al. Modular Construction of Prussian Blue Analog and TiO2 Dual-Compartment Janus Nanoreactor for Efficient Photocatalytic Water Splitting. Adv. Sci. 2021, 8, 2001987. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, L.; Guo, C.; Chen, T.; Feng, C.; Liu, Z.; Qi, Y.; Wang, W.; Wang, J. Ni-doped CdS porous cubes prepared from prussian blue nanoarchitectonics with enhanced photocatalytic hydrogen evolution performance. Int. J. Hydrogen Energy 2022, 47, 3752–3761. [Google Scholar] [CrossRef]
- Zou, Y.; Guo, C.; Cao, X.; Zhang, L.; Chen, T.; Guo, C.; Wang, J. Synthesis of CdS/CoP hollow nanocages with improved photocatalytic water splitting performance for hydrogen evolution. J. Environ. Chem. Eng. 2021, 9, 106270. [Google Scholar] [CrossRef]
- Meng, X.; Yang, J.; Zhang, C.; Fu, Y.; Li, K.; Sun, M.; Wang, X.; Dong, C.; Ma, B.; Ding, Y. Light-Driven CO2 Reduction over Prussian Blue Analogues as Heterogeneous Catalysts. ACS Catal. 2022, 12, 89–100. [Google Scholar] [CrossRef]
- Zhao, S.; Li, C.; Ren, K.; Fang, Z.; Fang, P.; Zhu, Y.; Fang, P. Ternary Ni–Co–Fe oxides based on Prussian blue analog for efficient photothermal catalytic CO2 reduction to CO and CH4. Appl. Catal. A Gen. 2023, 655, 119109. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, T.; Hao, S.; Wang, R.; Zhu, C.; Tang, Y.; Guo, C.; Liu, J.; Wen, X.; Wang, F. Large-Scale Synthesis of Multifunctional Single-Phase Co2C Nanomaterials. Adv. Sci. 2023, 10, 2301073. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Ma, F.; Lei, G.; Jiang, W.; Yang, X.; Liu, Z.; Wan, J.; Liu, Y. Trisodium Citrate as a Double-Edged Sword: Selective Etching Prussian Blue Analog Nanocubes into Orthogonal Frustums and Their Derivatives for Supercapacitors. Small 2024, 20, 2403732. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Gao, Y.; Zhang, H.; Liu, Z.; Zhang, W.; Li, L.; Qiao, Y.; Yang, W.; Wang, J.; Dou, S.; et al. Ball Milling Solid-State Synthesis of Highly Crystalline Prussian Blue Analogue Na2−MnFe(CN)6 Cathodes for All-Climate Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2022, 61, e202205867. [Google Scholar] [CrossRef]
- Wang, S.; Huo, W.; Feng, H.; Zhou, X.; Fang, F.; Xie, Z.; Shang, J.K.; Jiang, J. Controlled Self-Assembly of Hollow Core-Shell FeMn/CoNi Prussian Blue Analogs with Boosted Electrocatalytic Activity. Small 2022, 18, 2203713. [Google Scholar] [CrossRef]
- Wu, L.L.; Chen, X.H.; Zhang, Q.; Luo, J.; Fu, H.C.; Shen, L.; Luo, H.Q.; Li, N.B. Formation of hierarchical NiFe Prussian blue analogues/Prussian blue on nickel foam for superior water oxidation. Appl. Surf. Sci. 2021, 567, 150835. [Google Scholar] [CrossRef]
- Sun, J.; Li, K.; Liu, Z.; Xu, J.; Gao, P.; Wang, M.; Li, Y.; Zhu, R.; Parkin, I.P.; Huang, Z. Construction of electron-rich nickel single atom catalyst by heteroatom doping for enhanced CO2 electroreduction. J. Catal. 2025, 445, 116020. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Luo, N.; Shang, W.; Shi, S.; Li, H.; Liang, Y.; Zhou, A. Kinetic comparison of photocatalysis with H2O2-free photo-Fenton process on BiVO4 and the effective antibiotic degradation. Chem. Eng. J. 2022, 429, 132577. [Google Scholar] [CrossRef]
- Li, X.; Kang, B.; Dong, F.; Zhang, Z.; Luo, X.; Han, L.; Huang, J.; Feng, Z.; Chen, Z.; Xu, J.; et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy 2021, 81, 105671. [Google Scholar] [CrossRef]
- Liu, D.; Jiang, L.; Chen, D.; Hao, Z.; Deng, B.; Sun, Y.; Liu, X.; Jia, B.; Chen, L.; Liu, H. Twin S-scheme g-C3N4/CuFe2O4/ZnIn2S4 heterojunction with a self-supporting three-phase system for photocatalytic CO2 reduction: Mechanism insight and DFT calculations. ACS Catalysis 2024, 14, 5326–5343. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, S.-B.; Yang, M.-Y.; Liu, Y.-F.; Liao, J.-P.; Huang, P.; Zhang, M.; Li, S.-L.; Su, Z.-M.; Lan, Y.-Q. Dual Photosensitizer Coupled Three-Dimensional Metal-Covalent Organic Frameworks for Efficient Photocatalytic Reactions. Angew. Chem. Int. Ed. 2023, 62, e202307632. [Google Scholar] [CrossRef]
- Li, X.; Liu, Q.; Deng, F.; Huang, J.; Han, L.; He, C.; Chen, Z.; Luo, Y.; Zhu, Y. Double-defect-induced polarization enhanced OV-BiOBr/Cu2−xS high-low junction for boosted photoelectrochemical hydrogen evolution. Appl. Catal. B Environ. 2022, 314, 121502. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, L.; Wang, G.; Cui, J.; Guan, G.-L.; Miao, Y.-T.; Wu, J.-F.; Gao, P.; Yang, F.; Ling, Y.; et al. Spinel Nanostructures for the Hydrogenation of CO2 to Methanol and Hydrocarbon Chemicals. J. Am. Chem. Soc. 2024, 146, 14528–14538. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Eid, K.; Li, W. Heteroatom-Doped Porous Carbon-Based Nanostructures for Electrochemical CO2 Reduction. Nanomaterials 2022, 12, 2379. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Zhang, X.; Yue, X.; Zhang, Z.; Zhang, Y.; Wang, K.; Dai, W.; Fu, X. Visible light enhanced thermocatalytic reverse water gas shift reaction via localized surface plasmon resonance of copper nanoparticles. Sep. Purif. Technol. 2025, 361, 131514. [Google Scholar] [CrossRef]
- Shown, I.; Hsu, H.-C.; Chang, Y.-C.; Lin, C.-H.; Roy, P.K.; Ganguly, A.; Wang, C.-H.; Chang, J.-K.; Wu, C.-I.; Chen, L.-C.; et al. Highly Efficient Visible Light Photocatalytic Reduction of CO2 to Hydrocarbon Fuels by Cu-Nanoparticle Decorated Graphene Oxide. Nano Lett. 2014, 14, 6097–6103. [Google Scholar] [CrossRef]
- Zhang, A.; He, R.; Li, H.; Chen, Y.; Kong, T.; Li, K.; Ju, H.; Zhu, J.; Zhu, W.; Zeng, J. Nickel Doping in Atomically Thin Tin Disulfide Nanosheets Enables Highly Efficient CO2 Reduction. Angew. Chem. Int. Ed. 2018, 57, 10954–10958. [Google Scholar] [CrossRef]
- Qin, Y.; Fan, S.; Gao, J.; Tadé, M.O.; Liu, S.; Li, X. Effect of Cu-Doped Co–Mn Spinel for Boosting Low-Temperature NO Reduction by CO: Exploring the Structural Properties, Performance, and Mechanisms. ACS Appl. Mater. Interfaces 2023, 15, 11885–11894. [Google Scholar] [CrossRef]
- Guo, C.; Tang, Y.; Yang, Z.; Zhao, T.; Liu, J.; Zhao, Y.; Wang, F. Reinforcing the Efficiency of Photothermal Catalytic CO2 Methanation through Integration of Ru Nanoparticles with Photothermal MnCo2O4 Nanosheets. ACS Nano 2023, 17, 23761–23771. [Google Scholar] [CrossRef]
- Su, B.; Kong, Y.; Wang, S.; Zuo, S.; Lin, W.; Fang, Y.; Hou, Y.; Zhang, G.; Zhang, H.; Wang, X. Hydroxyl-Bonded Ru on Metallic TiN Surface Catalyzing CO2 Reduction with H2O by Infrared Light. J. Am. Chem. Soc. 2023, 145, 27415–27423. [Google Scholar] [CrossRef]
- Zhuang, G.; Yang, B.; Jiang, W.; Ou, X.; Zhao, L.; Wen, Y.; Zhuang, Z.; Lin, Z.; Yu, Y. Spatially separated oxygen vacancies and nickel sites for ensemble promotion of selective CO2 photoreduction to CO. Cell Rep. Phys. Sci. 2022, 3, 100724. [Google Scholar] [CrossRef]
- Lin, M.; Jiang, W.; Zhang, T.; Yang, B.; Zhuang, Z.; Yu, Y. Ordered CoIII-MOF@CoII-MOF Heterojunction for Highly Efficient Photocatalytic Syngas Production. Small Sci. 2023, 3, 2200085. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, S.; Zhao, J.; Liu, K.; Jiang, B.; Li, H. Boron-doped Cu-Co catalyst boosting charge transfer in photothermal carbon dioxide hydrogenation. Appl. Catal. B Environ. Energy 2024, 352, 124045. [Google Scholar] [CrossRef]
- Li, H.; Xiao, Z.; Hao, R.; Tan, X.; Ye, F.; Gu, J.; Li, J.; Li, G.; Zou, J.; Wang, D. Encapsulating carbon quantum dots by Zr-MOF-supported Pt nanoparticles for enhanced photothermal RWGS reaction. Sep. Purif. Technol. 2025, 365, 132637. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, X.; Wang, Y.; Liao, L.; Xie, Q.; Mo, S. Constructing asymmetric Cu-Ce site pairs over defective Cu/CeO2 catalysts for efficient concentrating solar-driven photothermal RWGS reaction. J. Alloys Compd. 2025, 1024, 180228. [Google Scholar] [CrossRef]
- Peng, Y.; Szalad, H.; Nikacevic, P.; Gorni, G.; Goberna, S.; Simonelli, L.; Albero, J.; López, N.; García, H. Co-doped hydroxyapatite as photothermal catalyst for selective CO2 hydrogenation. Appl. Catal. B Environ. Energy 2023, 333, 122790. [Google Scholar] [CrossRef]
- Wang, L.; Dong, Y.; Yan, T.; Hu, Z.; Ali, F.M.; Meira, D.M.; Duchesne, P.N.; Loh, J.Y.Y.; Qiu, C.; Storey, E.E.; et al. Black indium oxide a photothermal CO2 hydrogenation catalyst. Nat. Commun. 2020, 11, 2432. [Google Scholar] [CrossRef]
- Guo, J.; Duchesne, P.N.; Wang, L.; Song, R.; Xia, M.; Ulmer, U.; Sun, W.; Dong, Y.; Loh, J.Y.Y.; Kherani, N.P.; et al. High-Performance, Scalable, and Low-Cost Copper Hydroxyapatite for Photothermal CO2 Reduction. ACS Catal. 2020, 10, 13668–13681. [Google Scholar] [CrossRef]
- Wang, H.; Fu, S.; Shang, B.; Jeon, S.; Zhong, Y.; Harmon, N.J.; Choi, C.; Stach, E.A.; Wang, H. Solar-Driven CO2 Conversion via Optimized Photothermal Catalysis in a Lotus Pod Structure. Angew. Chem. Int. Ed. 2023, 62, e202305251. [Google Scholar] [CrossRef]
- Li, Z.; Mao, C.; Pei, Q.; Duchesne, P.N.; He, T.; Xia, M.; Wang, J.; Wang, L.; Song, R.; Ali, F.M.; et al. Engineered disorder in CO2 photocatalysis. Nat. Commun. 2022, 13, 7205. [Google Scholar] [CrossRef]
- Xu, Y.; Duchesne, P.N.; Wang, L.; Tavasoli, A.; Ali, F.M.; Xia, M.; Liao, J.; Kuang, D.; Ozin, G.A. High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides. Nat. Commun. 2020, 11, 5149. [Google Scholar] [CrossRef]
- He, Z.; Li, Z.; Wang, Z.; Wang, K.; Sun, Y.; Wang, S.; Wang, W.; Yang, Y.; Liu, Z. Photothermal CO2 hydrogenation to hydrocarbons over trimetallic Co–Cu–Mn catalysts. Green Chem. 2021, 23, 5775–5785. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, S.; Zhang, X.; Ma, J.; Ma, C.; Yu, X.; Wang, Y. Prussian Blue Analogue-Derived p-n Junction Heterostructure for Photothermal Reverse Water–Gas Shift: Enhanced Activity and Selectivity via Synergistic Effects. Nanomaterials 2025, 15, 904. https://doi.org/10.3390/nano15120904
Jia S, Zhang X, Ma J, Ma C, Yu X, Wang Y. Prussian Blue Analogue-Derived p-n Junction Heterostructure for Photothermal Reverse Water–Gas Shift: Enhanced Activity and Selectivity via Synergistic Effects. Nanomaterials. 2025; 15(12):904. https://doi.org/10.3390/nano15120904
Chicago/Turabian StyleJia, Shaorui, Xinbo Zhang, Junhong Ma, Chaoyun Ma, Xue Yu, and Yuanhao Wang. 2025. "Prussian Blue Analogue-Derived p-n Junction Heterostructure for Photothermal Reverse Water–Gas Shift: Enhanced Activity and Selectivity via Synergistic Effects" Nanomaterials 15, no. 12: 904. https://doi.org/10.3390/nano15120904
APA StyleJia, S., Zhang, X., Ma, J., Ma, C., Yu, X., & Wang, Y. (2025). Prussian Blue Analogue-Derived p-n Junction Heterostructure for Photothermal Reverse Water–Gas Shift: Enhanced Activity and Selectivity via Synergistic Effects. Nanomaterials, 15(12), 904. https://doi.org/10.3390/nano15120904