Prospective Obstacles and Improvement Strategies of Manganese-Based Materials in Achieving High-Performance Rechargeable Zinc–Air Batteries
Abstract
1. Introduction
2. Mn–N–C Electrocatalysts
2.1. Atomic Mn-Nx-C
2.2. Mn-Based Alloys Confined in N-Doped C
Electrocatalysts | ORR | Performance (ZABs) | Ref. | |||
---|---|---|---|---|---|---|
E1/2 [V] | OCV [V] | Specific Capacity [mAh g−1] | Peak Power Density [mW cm−2] | Stability | ||
Fe/Mn-Nx-C | 0.88 | - | - | 208.6 | >18 h@10 mA cm−2 | [27] |
FeMn-N/S-C-1000 | 0.924 | 1.45 | - | 346 | 90 h@10 mA cm−2 | [28] |
CoMn/NC | 0.82 (acidic) 0.89 (alkaline) | 1.487 | - | 176 | >30 h@40 mA cm−2 | [31] |
Fe/Mn-N/C | 0.891 | 1.35 | - | 178.18 | - | [32] |
Z-Fe1Mn1-NC | 0.80 (acidic) 0.82 (alkaline) | 1.475 | 596.0 − | 164.3 | - | [33] |
PBA-MnCo-N-C | 0.859 | 1.48 | 917.31 | 102.25 | >167 h | [34] |
FeMn ac/Mn-N4C | 0.79 | 1.46 | - | 207 | 100 h | [35] |
Co3Fe7/N, Mn-PC | 0.87 | - | - | - | 2000 cycles | [36] |
MnNC-PDA-700 | 0.87 | - | 760.2 | 122.7 | 10,000 cycles | [37] |
Mn-Fe@NCNTs | 0.80 (acidic) 0.872 (alkaline) | 1.487 | 628.7 | 139.2 | 29,000 s | [38] |
FeMn(mIm)-N-C | 0.778 (acidic) 0.861 (alkaline) | 1.518 | - | 160 | 20,000 s | [39] |
FeMn-DSAC | 0.922 | 1.45 | - | 184 | 80 h@ 2mA cm−2 | [40] |
MnCoZn-NC | 0.88 | 1.50 | - | 119.2 | >150 h | [41] |
MnCoNi-C-D | - | 1.46 | 841.3 | 116.4 | >180 h | [42] |
3. Manganese Oxide
3.1. MnO
3.2. MnO2
3.3. Mn3O4
3.4. Mn2O3
Electrocatalysts | OER E10 [V] | ORR E1/2 [V] | Performance (ZABs) | Ref. | |||
---|---|---|---|---|---|---|---|
OCV [V] | Specific Capacity [mAh g−1] | Peak Power Density [mW cm−2] | Stability | ||||
Co–Mn3O4/G | 1.505 | 0.866 | 1.415 | - | 115.24 | 945 cycles@10 mAcm−2 | [64] |
α-MnO2 Nanowires | 1.625 | 0.83 | 1.51 | 717 | 166 | 40 h@100 mA cm−2 | [75] |
Mn0.3Ru0.7O2 nanosheets | 1.44 | 0.85 | 1.52 | 821 | 154 | 200 h | [60] |
MC@NC | 1.59 | 0.82 | 1.43 | 950 | 153 | 300 h@4 mAcm−2 | [46] |
Co@C,MnO-NAC | 1.55 | 0.83 | 1.46 | - | 58 | 37 h@5 mA cm−2 | [45] |
Ni|MnO/CNF | 1.58 | 0.83 | 1.563 | - | 138.6 | 350 cycles @10 mAcm−2 | [50] |
Co-MnO2/CNTs | 1.65 | 0.872 | 1.578 | - | 342.5 | 129 h | [53] |
Co3O4/Mn3O4 (2:1)/N-rGO | 1.59 | 0.86 | 1.54 | - | 194.6 | 2000 cycles | [66] |
Co@Co4N/MnO–NC | 1.62 | 0.81 | 1.47 | 762 | 200.5 | 2800 cycles@10 mAcm−2 | [76] |
MnxOy/C (ZMC) | - | 0.763 | 1.443 | - | 140 | - | [77] |
MnO (II) | - | 0.895 | - | - | 63.2 | >35 h@40 mA cm−2 | [78] |
FG-MnOx | - | - | - | - | 170 | 100 h | [79] |
4. Manganate
4.1. MMnO3
4.2. MMn2O4 and MnM2O4
Electrocatalysts | OER E10 [V] | ORR | Performance (ZABs) | Ref. | |||
---|---|---|---|---|---|---|---|
E1/2 [V] | OCV [V] | Specific Capacity [mAh g−1] | Peak Power Density [mW cm−2] | Stability | |||
CoMn2-xCrxO4/N-rGO | 1.52 | 0.82 | 1.37 | 806.89 | 140.26 | 43 h@10 mA cm−2 | [102] |
CoMn1.5Ni0.5O4 | 1.643 | 0.780 | 1.6 | - | 147.4 (aqueous state) 85.8 (solid state) | - | [103] |
Co0.5Ni0.5Mn2O4 | 1.78 | 0.65 | 1.36 | 808.9 | 49 | 10 h@2 mA cm−2 | [104] |
ZnMn2O4 | 1.813 | 0.75 | - | - | - | 40 cycles@10 mA cm−2 | [105] |
NiMn2O4 | 1.85 | 0.74 | 1.30 | - | 72 | 300 cycles@10 mA cm−2 | [106] |
Ball-milled Ni-Co-Mn oxides | 1.597 | - | 1.45 | - | 85.42 | 100 h@10 mA cm−2 | [107] |
Optimized Co-Mn spinel cathode | 1.587 | 0.898 | - | 717.7 | - | 2000 cycles@10 mA cm−2 | [108] |
Co2MnO4/NCNTs | 1.593 | 0.76 | 1.48 | 827 | 74.63 | 300 cycles@5 mA cm−2 | [109] |
ZnMn1.4Co0.6O4/NCNTs | - | 0.77 | 1.48 | 848 | 93 | 280 h@5 mA cm−2 | [110] |
MnCo2O4 3DOM CoMn2O4 3DOM | - | 0.94 0.96 | 1.49 1.42 | 1004 1440 | 98.7 101.6 | - | [111] |
5. Other Manganese-Based Compounds
5.1. Mn-LDHs
5.2. Manganese Sulfide
5.3. Manganese Phosphide and Manganese Nitride
6. Summary and Outlook
- (1)
- Elucidating Catalytic Mechanisms: By combining experimental exploration with theoretical simulations, a deep understanding of the specific catalytic roles and synergistic effects of each constituent element in manganese-based catalysts during ORR and OER should be achieved, providing a theoretical basis for the rational design of catalysts.
- (2)
- Optimizing Catalyst Design: Based on a comprehensive understanding of reaction pathways, surface/interface behaviors, and deactivation factors, systematic and rational design of manganese-based electrocatalysts should be conducted, including optimization of their structures, compositions, and morphologies, to improve their catalytic activity and stability.
- (3)
- Developing In Situ Characterization Techniques: Utilizing in situ Raman, infrared spectroscopy (IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and other in situ characterization techniques, the real-time tracking of reaction pathways and a comprehensive understanding of reaction mechanisms should be achieved, providing direct evidence for catalyst improvement.
- (4)
- Establishing Standard Evaluation Systems: For the commercialization of rechargeable ZABs, a series of standard evaluation criteria for catalytic/battery performance testing should be established to unify evaluation standards, promote the dissemination and application of ZAB technology, and drive the development of the entire industry [126].
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Chen, W.; Zhang, H.; Zhang, Z. Integratable solid-state zinc-air battery with extended cycle life inspired by bionics. Chem. Eng. J. 2022, 435, 134900. [Google Scholar] [CrossRef]
- García-Rodríguez, M.; Cazorla-Amorós, D.; Morallón, E. Eco-Friendly Mechanochemical Synthesis of Bifunctional Metal Oxide Electrocatalysts for Zn-Air Batteries. ChemSusChem 2024, 17, e202401055. [Google Scholar] [CrossRef] [PubMed]
- Labbe, M.; Clark, M.P.; Cadien, K.; Ivey, D.G. Bifunctional Mn-Fe Oxide Catalysts for Zn-Air Battery Air Electrodes Fabricated Through Atomic Layer Deposition. Batter. Supercaps 2024, 7, e202400133. [Google Scholar] [CrossRef]
- Xu, H.; Gao, Y.; Li, R.; Sun, W.; Lu, X.; Bai, J.; Yang, P. Manganese, nitrogen co-doped porous carbon with high-loading active sites as the oxygen reduction catalyst for Zn–air batteries. Sustain. Energy Fuels 2024, 8, 3290–3295. [Google Scholar] [CrossRef]
- Wang, Y.; Chu, F.; Zeng, J.; Wang, Q.; Naren, T.; Li, Y.; Cheng, Y.; Lei, Y.; Wu, F. Single Atom Catalysts for Fuel Cells and Rechargeable Batteries: Principles, Advances, and Opportunities. ACS Nano 2021, 15, 210–239. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Q.; Zhang, X.; Lei, Y.; Hu, W.; Luo, Y.; Wang, Y. N-doped defective carbon with trace Co for efficient rechargeable liquid electrolyte-/all-solid-state Zn-air batteries. Sci. Bull. 2018, 63, 548–555. [Google Scholar] [CrossRef]
- Ambriz-Peláez, O.; Béjar, J.; Delgado, A.D.; Rodríguez-González, C.; Ramos-Castillo, C.M.; Álvarez-Contreras, L.; Guerra-Balcázar, M.; Arjona, N. NiMn layered double hydroxides with promoted surface defects as bifunctional electrocatalysts for rechargeable zinc–air batteries. FlatChem 2024, 45, 100664. [Google Scholar] [CrossRef]
- Zou, X.; Lu, Q.; Tang, M.; Wu, J.; Zhang, K.; Li, W.; Hu, Y.; Xu, X.; Zhang, X.; Shao, Z.; et al. Catalyst–Support Interaction in Polyaniline-Supported Ni3Fe Oxide to Boost Oxygen Evolution Activities for Rechargeable Zn-Air Batteries. Nano-Micro Lett. 2024, 17, 6. [Google Scholar] [CrossRef]
- Pan, Y.; Li, M.; Mi, W.; Wang, M.; Li, J.; Zhao, Y.; Ma, X.; Wang, B.; Zhu, W.; Cui, Z.; et al. Single-atomic Mn sites coupled with Fe3C nanoparticles encapsulated in carbon matrixes derived from bimetallic Mn/Fe polyphthalocyanine conjugated polymer networks for accelerating electrocatalytic oxygen reduction. Nano Res. 2022, 15, 7976–7985. [Google Scholar] [CrossRef]
- Wang, Y.; Kumar, A.; Ma, M.; Jia, Y.; Wang, Y.; Zhang, Y.; Zhang, G.; Sun, X.; Yan, Z. Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery. Nano Res. 2020, 13, 1090–1099. [Google Scholar] [CrossRef]
- Jin, W.; Chen, J.; Liu, B.; Hu, J.; Wu, Z.; Cai, W.; Fu, G. Oxygen Vacancy–Rich In-Doped CoO/CoP Heterostructure as an Effective Air Cathode for Rechargeable Zn–Air Batteries. Small 2019, 15, 1904210. [Google Scholar] [CrossRef]
- Tang, B.; Yang, J.; Kou, Z.; Xu, L.; Seng, H.L.; Xie, Y.; Handoko, A.D.; Liu, X.; Seh, Z.W.; Kawai, H.; et al. Surface-engineered cobalt oxide nanowires as multifunctional electrocatalysts for efficient Zn-Air batteries-driven overall water splitting. Energy Storage Mater. 2019, 23, 1–7. [Google Scholar] [CrossRef]
- Xu, M.; Wei, M. Layered Double Hydroxide-Based Catalysts: Recent Advances in Preparation, Structure, and Applications. Adv. Funct. Mater. 2018, 28, 1802943. [Google Scholar] [CrossRef]
- Li, L.; Li, Y.; Huang, R.; Cao, X.; Wen, Y. Single Mn Atom Anchored on Nitrogen-Doped Graphene as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. Chem. A Eur. J. 2021, 27, 9686–9693. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sun, C.; Zhang, H.; Ke, S.; Liu, H.; Dou, M.; Wang, F. Bimetal Organic Framework Derived Atomically Dispersed Mn and N Codoped Porous Carbon for Efficient Oxygen Reduction. Eur. J. Inorg. Chem. 2021, 2021, 4452–4457. [Google Scholar] [CrossRef]
- Li, P.; Zhu, C.; Yang, L.; Shi, J.; Hu, W.; Li, Z.; Wu, J.; Wang, H. One single-atom Mn doping strategy enabling two functions of oxygen reduction reaction and pseudocapacitive performance. Energy Storage Mater. 2024, 71, 103639. [Google Scholar] [CrossRef]
- Zong, L.; Lu, F.; Zhang, W.; Fan, K.; Chen, X.; Johannessen, B.; Qi, D.; Bedford, N.M.; Warren, M.; Segre, C.U.; et al. Atomically-dispersed Mn-(N-C2)2(O-C2)2 sites on carbon for efficient oxygen reduction reaction. Energy Storage Mater. 2022, 49, 209–218. [Google Scholar] [CrossRef]
- Zhong, G.; Zou, L.; Chi, X.; Meng, Z.; Chen, Z.; Li, T.; Huang, Y.; Fu, X.; Liao, W.; Zheng, S.; et al. Atomically dispersed Mn–Nx catalysts derived from Mn-hexamine coordination frameworks for oxygen reduction reaction. Carbon Energy 2024, 6, e484. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F.; Sun, S.; Wei, K.; Liu, H.; Li, G.; Sun, Y.; Li, X.; Qian, J.; Du, S.; et al. Boosting oxygen reduction via MnP nanoparticles encapsulated by N, P-doped carbon to Mn single atoms sites for Zn-air batteries. J. Colloid. Interface Sci. 2024, 657, 240–249. [Google Scholar] [CrossRef]
- Wang, H.; Kong, Z.; Wang, M.; Huang, B.; Guan, L. Mn–N–C catalysts derived from metal triazole framework with hierarchical porosity for efficient oxygen reduction. Nanotechnology 2023, 34, 145403. [Google Scholar] [CrossRef]
- Bai, X.; Wang, Y.; Han, J.; Niu, X.; Guan, J. Engineering the electronic structure of isolated manganese sites to improve the oxygen reduction, Zn-air battery and fuel cell performances. Appl. Catal. B Environ. 2023, 337, 122966. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, Q.; Chen, Y.; Feng, J.; Wang, L.; Jiang, Y.; Li, L.; Xu, X.; Feng, J. Mn–N3–O-Loaded Graphitic Carbon Aerogel for an Efficient Oxygen Reduction Reaction. ACS Sustain. Chem. Eng. 2023, 11, 8075–8083. [Google Scholar] [CrossRef]
- Wang, Q.; Tan, Y.; Tang, S.; Liu, W.; Zhang, Y.; Xiong, X.; Lei, Y. Edge-Hosted Mn-N4-C12 Site Tunes Adsorption Energy for Ultralow-Temperature and High-Capacity Solid-State Zn-Air Battery. ACS Nano 2023, 17, 9565–9574. [Google Scholar] [CrossRef]
- Li, J.; Zou, S.; Huang, J.; Wu, X.; Lu, Y.; Liu, X.; Song, B.; Dong, D. Mn-N-P doped carbon spheres as an efficient oxygen reduction catalyst for high performance Zn-Air batteries. Chin. Chem. Lett. 2023, 34, 107222. [Google Scholar] [CrossRef]
- Zhan, X.; Jin, Y.; Gao, Z.; Liu, W.; Zhi, Q.; Chen, B.; Xu, Q.; Jiang, R.; Wang, K.; Sun, T.; et al. Biomass-derived carbon fiber with atomic Mn-N4 sites for efficient electrocatalytic oxygen reduction reaction. J. Mater. Sci. 2022, 57, 15943–15953. [Google Scholar] [CrossRef]
- Chen, T.; Huang, Z.; Liu, J.; Jiang, L.; Chu, J.; Song, C.; Kong, A. Mn-Pyridine N site-enriched Mn-N–C derived from covalent organic polymer for electrochemical oxygen reduction and capacitive storage. Ionics 2021, 27, 5229–5239. [Google Scholar] [CrossRef]
- Chen, Z.; Liao, X.; Sun, C.; Zhao, K.; Ye, D.; Li, J.; Wu, G.; Fang, J.; Zhao, H.; Zhang, J. Enhanced performance of atomically dispersed dual-site Fe-Mn electrocatalysts through cascade reaction mechanism. Appl. Catal. B Environ. 2021, 288, 120021. [Google Scholar] [CrossRef]
- He, Y.; Li, H.; Wang, Y.; Jia, Y.; Liu, Y.; Tan, Q. Heteroatom anchors Fe-Mn dual-atom catalysts with bi-functional oxygen catalytic activity for low-temperature rechargeable flexible Zn-air batteries. J. Energy Chem. 2024, 90, 610–620. [Google Scholar] [CrossRef]
- Sarkar, S.; Biswas, A.; Purkait, T.; Das, M.; Kamboj, N.; Dey, R.S. Unravelling the Role of Fe–Mn Binary Active Sites Electrocatalyst for Efficient Oxygen Reduction Reaction and Rechargeable Zn-Air Batteries. Inorg. Chem. 2020, 59, 5194–5205. [Google Scholar] [CrossRef]
- Chao, G.; Zhang, Y.; Zhang, L.; Zong, W.; Zhang, N.; Xue, T.; Fan, W.; Liu, T.; Xie, Y. Nitrogen-coordinated single-atom catalysts with manganese and cobalt sites for acidic oxygen reduction. J. Mater. Chem. A 2022, 10, 5930–5936. [Google Scholar] [CrossRef]
- Dey, G.; Jana, R.; Saifi, S.; Kumar, R.; Bhattacharyya, D.; Datta, A.; Sinha, A.S.K.; Aijaz, A. Dual Single-Atomic Co–Mn Sites in Metal–Organic-Framework-Derived N-Doped Nanoporous Carbon for Electrochemical Oxygen Reduction. ACS Nano 2023, 17, 19155–19167. [Google Scholar] [CrossRef]
- Jiao, Y.; Deng, L.; Liu, D.; Jiao, Y.; Wang, D.; Chen, J.-F. Process intensification for Fe/Mn-nitrogen-doped carbon-based catalysts toward efficient oxygen reduction reaction of Zn-air battery. Chem. Eng. Sci. 2022, 259, 117811. [Google Scholar] [CrossRef]
- Situ, A.; Zhao, T.; Huang, Y.; Li, P.; Yang, L.; Zhang, Z.; Wang, Z.; Ou, Y.; Guan, X.; Wen, J.; et al. Dual-MOFs-Derived Fe and Mn Species Anchored on Bamboo-like Carbon Nanotubes for Efficient Oxygen Reduction as Electrocatalysts. Catalysts 2023, 13, 1161. [Google Scholar] [CrossRef]
- Wei, W.; Deng, X.; Zhao, K.; Zhang, M.; Zhou, H.; Wang, W. Dual-metal M-N-C (M = Mn, Co) as an effective oxygen electrocatalyst for zinc-air battery. J. Alloys Compd. 2023, 968, 172136. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, L.; Khan, J.; Wang, X.; Xiao, J.; Zhang, H.; Xie, H.; Li, L.; Wang, S.; Han, L. Decorating Single-Atomic Mn Sites with FeMn Clusters to Boost Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2022, 62, e202214988. [Google Scholar] [CrossRef]
- Sun, R.-M.; Yao, Y.-Q.; Wang, A.-J.; Fang, K.-M.; Zhang, L.; Feng, J.-J. One-step pyrolysis synthesis of nitrogen, manganese-codoped porous carbon encapsulated cobalt-iron nanoparticles with superior catalytic activity for oxygen reduction reaction. J. Colloid. Interface Sci. 2021, 592, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Cui, X.; Dong, H.; Meng, G.; Kong, F.; Chen, Y.; Peng, L.; Chen, C.; Chang, Z.; Shi, J. Engineering single MnN4 atomic active sites on polydopamine-modified helical carbon tubes towards efficient oxygen reduction. Energy Storage Mater. 2021, 37, 274–282. [Google Scholar] [CrossRef]
- Guo, X.; Xue, S.; Zhang, X.; Qin, J.; Hong, M.; Chen, Q.; Liu, W.; Du, C.; Chen, J. Mn atomic clusters and Fe nanoparticles in-situ confined nitrogen carbon nanotubes for efficient and durable ORR electrocatalysts in both alkaline and acidic media. J. Alloys Compd. 2023, 953, 169992. [Google Scholar] [CrossRef]
- Zhao, S.; Ma, Z.; Wan, Z.; Li, J.; Wang, X. Noble-Metal-Free FeMn-N-C catalyst for efficient oxygen reduction reaction in both alkaline and acidic media. J. Colloid. Interface Sci. 2023, 642, 800–809. [Google Scholar] [CrossRef]
- Cui, T.; Wang, Y.P.; Ye, T.; Wu, J.; Chen, Z.; Li, J.; Lei, Y.; Wang, D.; Li, Y. Engineering Dual Single-Atom Sites on 2D Ultrathin N-doped Carbon Nanosheets Attaining Ultra-Low-Temperature Zinc-Air Battery. Angew. Chem. Int. Ed. 2022, 61, e202115219. [Google Scholar] [CrossRef]
- Zhang, X.; Du, K.; Wang, H.; Li, Z.; Zhang, G. Atomic ternary-doped MnCoZn-N-C for efficient oxygen electroreduction. J. Energy Storage 2023, 72, 108508. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Ma, D.; Feng, X.; Wang, L.; Wang, B. Metal–Organic Framework-Derived Trimetallic Nanocomposites as Efficient Bifunctional Oxygen Catalysts for Zinc–Air Batteries. ACS Appl. Mater. Interfaces 2021, 13, 33209–33217. [Google Scholar] [CrossRef]
- Zhou, Q.; Hou, S.; Cheng, Y.; Sun, R.; Shen, W.; Tian, R.; Yang, J.; Pang, H.; Xu, L.; Huang, K.; et al. Interfacial engineering Co and MnO within N,S co-doped carbon hierarchical branched superstructures toward high-efficiency electrocatalytic oxygen reduction for robust Zn-air batteries. Appl. Catal. B Environ. 2021, 295, 120281. [Google Scholar] [CrossRef]
- Sun, C.; Zhu, E.; Shi, C.; Yu, J.; Yin, S.; Liu, C.; Cui, X.; Liu, W.; Xu, M. High-performance MnO/N-rGO catalyst for half-cell and Zn-air batteries by photochemically assisted synthesis. Ceram. Int. 2023, 49, 13972–13981. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, Y.; Wu, D.; Zhang, P.; Zhang, G.; Sun, K.; Li, B.; Jiang, J. Co@C,MnO-NAC via selective wrapping for effective oxygen electrocatalysis in rechargeable Zn–air batteries. Sustain. Energy Fuels 2022, 6, 791–799. [Google Scholar] [CrossRef]
- Peng, L.; Peng, X.; Zhu, Z.; Xu, Q.; Luo, K.; Ni, Z.; Yuan, D. Efficient MnO and Co nanoparticles coated with N-doped carbon as a bifunctional electrocatalyst for rechargeable Zn-air batteries. Int. J. Hydrogen Energy 2023, 48, 19126–19136. [Google Scholar] [CrossRef]
- Ruan, Y.; Lei, H.; Xue, W.; Wang, T.; Song, S.; Xu, H.; Yu, Y.; Zhang, G.-R.; Mei, D. Cu-N-C assisted MnO nanorods as bifunctional electrocatalysts for superior long-cycle Zn-air batteries. J. Alloys Compd. 2023, 934, 167781. [Google Scholar] [CrossRef]
- Qian, J.; Guo, X.; Wang, T.; Liu, P.; Zhang, H.; Gao, D. Bifunctional porous Co-doped NiO nanoflowers electrocatalysts for rechargeable zinc-air batteries. Appl. Catal. B Environ. 2019, 250, 71–77. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, H.; Wang, X. Make the chemical industry greener with green carbon science: An interview with Mingyuan He. GreenChE 2020, 1, 3–4. [Google Scholar] [CrossRef]
- Ji, D.; Sun, J.; Tian, L.; Chinnappan, A.; Zhang, T.; Jayathilaka, W.A.D.M.; Gosh, R.; Baskar, C.; Zhang, Q.; Ramakrishna, S. Engineering of the Heterointerface of Porous Carbon Nanofiber–Supported Nickel and Manganese Oxide Nanoparticle for Highly Efficient Bifunctional Oxygen Catalysis. Adv. Funct. Mater. 2020, 30, 1910568. [Google Scholar] [CrossRef]
- Yan, G.; Lian, Y.; Gu, Y.; Yang, C.; Sun, H.; Mu, Q.; Li, Q.; Zhu, W.; Zheng, X.; Chen, M.; et al. Phase and Morphology Transformation of MnO2 Induced by Ionic Liquids toward Efficient Water Oxidation. ACS Catal. 2018, 8, 10137–10147. [Google Scholar] [CrossRef]
- Ni, S.; Zhang, H.; Zhao, Y.; Li, X.; Sun, Y.; Qian, J.; Xu, Q.; Gao, P.; Wu, D.; Kato, K.; et al. Single atomic Ag enhances the bifunctional activity and cycling stability of MnO2. Chem. Eng. J. 2019, 366, 631–638. [Google Scholar] [CrossRef]
- Xu, N.; Zhang, Y.; Wang, Y.; Wang, M.; Su, T.; Coco, C.A.; Qiao, J.; Zhou, X.-D. Hierarchical bifunctional catalysts with tailored catalytic activity for high-energy rechargeable Zn-air batteries. Appl. Energy 2020, 279, 115876. [Google Scholar] [CrossRef]
- Meng, Y.; Song, W.; Huang, H.; Ren, Z.; Chen, S.-Y.; Suib, S.L. Structure–Property Relationship of Bifunctional MnO2 Nanostructures: Highly Efficient, Ultra-Stable Electrochemical Water Oxidation and Oxygen Reduction Reaction Catalysts Identified in Alkaline Media. JACS 2014, 136, 11452–11464. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Jiang, R.; Zhang, Y.; Xie, B.; Fu, J.; Yuan, X.; Yang, W.; Wu, Y.; Zhang, R. An MnO2 nanosheet@nitrogen-doped graphene aerogel enables high specific energy and high specific power for supercapacitors and Zn–air batteries. J. Mater. Chem. A 2021, 9, 5848–5856. [Google Scholar] [CrossRef]
- Zhou, B.; Xu, N.; Lu, T.; Wang, Y.; Lou, S.; Cai, D.; Wu, L.; Yang, W.; Liu, G.; Lee, J.K.; et al. Dual-Carbon Assisted Oxygen Vacancy Engineering for Optimizing Mn(III) Sites to Enhance Zn–air Battery Performances. Adv. Funct. Mater. 2024, 35, 2414269. [Google Scholar] [CrossRef]
- Chai, H.; Wei, M.; Su, Y.; Wang, Y.; Jia, D.; Sun, Z.; Zhou, W. Facile Controlled Growth of Podetium-Like MnO2 Crystals and the Catalytic Effect of MnO2/N-Doped Graphene on the Oxygen Reduction Reaction. Eur. J. Inorg. Chem. 2018, 2018, 1315–1321. [Google Scholar] [CrossRef]
- Ou, X.; Li, Q.; Xu, D.; Guo, J.; Yan, F. In Situ Growth of MnO2 Nanosheets on N-Doped Carbon Nanotubes Derived from Polypyrrole Tubes for Supercapacitors. Chem. Asian J. 2018, 13, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zuria, A.M.; Mohamedi, M. Free-Standing Tunnel-Structured MnO2 Nanorods-Doped with Nickel and Cobalt Cations as Bifunctional Electrocatalysts for Zn–Air Batteries. Adv. Mater. Technol. 2023, 8, 2301142. [Google Scholar] [CrossRef]
- Wang, Y.; Qiao, M.; Qiao, L.; Shi, K. Molten salt method for preparing Mn0.3Ru0.7O2 nanosheets as a superior bifunctional catalyst for rechargeable zinc-air batteries. J. Power Sources 2024, 622, 235367. [Google Scholar] [CrossRef]
- Li, T.; Hu, Y.; Liu, K.; Yin, J.; Li, Y.; Fu, G.; Zhang, Y.; Tang, Y. Hollow yolk-shell nanoboxes assembled by Fe-doped Mn3O4 nanosheets for high-efficiency electrocatalytic oxygen reduction in Zn-Air battery. Chem. Eng. J. 2022, 427, 131992. [Google Scholar] [CrossRef]
- Huang, Z.; Qin, X.; Gu, X.; Li, G.; Mu, Y.; Wang, N.; Ithisuphalap, K.; Wang, H.; Guo, Z.; Shi, Z.; et al. Mn3O4 Quantum Dots Supported on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as Oxygen Reduction Electrocatalysts for High-Performance Zn–Air Batteries. ACS Appl. Mater. Interfaces 2018, 10, 23900–23909. [Google Scholar] [CrossRef]
- Li, L.; Yang, J.; Yang, H.; Zhang, L.; Shao, J.; Huang, W.; Liu, B.; Dong, X. Anchoring Mn3O4 Nanoparticles on Oxygen Functionalized Carbon Nanotubes as Bifunctional Catalyst for Rechargeable Zinc-Air Battery. ACS Appl. Energy Mater. 2018, 1, 963–969. [Google Scholar] [CrossRef]
- Dong, M.; Liu, X.; Jiang, L.; Zhu, Z.; Shu, Y.; Chen, S.; Dou, Y.; Liu, P.; Yin, H.; Zhao, H. Cobalt-doped Mn3O4 nanocrystals embedded in graphene nanosheets as a high-performance bifunctional oxygen electrocatalyst for rechargeable Zn–Air batteries. Green. Energy Env. 2020, 5, 499–505. [Google Scholar] [CrossRef]
- Wang, W.; Chen, J.-Q.; Tao, Y.-R.; Zhu, S.-N.; Zhang, Y.-X.; Wu, X.-C. Flowerlike Ag-Supported Ce-Doped Mn3O4 Nanosheet Heterostructure for a Highly Efficient Oxygen Reduction Reaction:Roles of Metal Oxides in Ag Surface States. ACS Catal. 2019, 9, 3498–3510. [Google Scholar] [CrossRef]
- Huang, Q.; Zhong, X.; Zhang, Q.; Wu, X.; Jiao, M.; Chen, B.; Sheng, J.; Zhou, G. Co3O4/Mn3O4 hybrid catalysts with heterointerfaces as bifunctional catalysts for Zn-air batteries. J. Energy Chem. 2022, 68, 679–687. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, S.; Wang, Z.; Mo, Y.; Luo, X.; Yang, F.; Lv, M.; Li, Z.; Liu, X. Manganese-based oxide electrocatalysts for the oxygen evolution reaction: A review. J. Mater. Chem. A 2023, 11, 5476–5494. [Google Scholar] [CrossRef]
- Akbarian, P.; Kheirmand, M. Efficient and Stable Dual-Active-Site of Core-Shell NiFe-Layered Double Hydroxide Anchored on FeMnON-N-Doped Carbon Nanotubes as Bifunctional Oxygen Electrocatalysts for Zn-Air Batteries. J. Electrochem. Soc. 2024, 171, 020514. [Google Scholar] [CrossRef]
- Wu, L.; Zhao, R.; Du, G.; Wang, H.; Hou, M.; Zhang, W.; Sun, P.; Chen, T. Hierarchically porous Fe/N/S/C nanospheres with high-content of Fe-Nx for enhanced ORR and Zn-air battery performance. Green. Energy Environ. 2023, 8, 1693–1702. [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.; Wang, R.; Zhang, G.; Xu, X.; Liu, J.; Sun, Z.; Liu, M.; Wang, C.; Meng, X.; et al. Activating and stabilizing Co sites in CoP for triggering oxygen electrocatalysis in zinc-air battery. Chem. Eng. J. 2023, 475, 146154. [Google Scholar] [CrossRef]
- Miao, W.; Cao, X.; Qin, M.; Lv, E.; Yu, H.; Zhang, X.; Dong, X. N-doping FeNi@C(Nx) core-shell nanoparticles synthesized by arc plasma as a highly efficient bifunctional electrocatalyst for all-solid zinc-air batteries. Compos. Part. B-Eng. 2023, 260, 110769. [Google Scholar] [CrossRef]
- Ma, X.; Liu, M.; Xu, Z.; Qiao, P.; Li, Q.; Wang, R.; Zhang, S.; Zou, J.; Jiang, B. Heterointerface engineering of yolk-shell-structured Mn2O3/RuO2 for boosting oxygen electrocatalysis in rechargeable liquid and flexible zinc-air batteries. Chem. Eng. J. 2024, 498, 155118. [Google Scholar] [CrossRef]
- Shao, C.; Liao, F.; Zhu, W.; Zhang, Y.; Ma, M.; Yang, J.; Yin, K.; Shao, M.; Jiang, B. Carbon dots bridge NiO and Mn2O3 as highly efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Appl. Surf. Sci. 2022, 596, 153642. [Google Scholar] [CrossRef]
- Kim, H.; Min, K.; Shim, S.E.; Lim, D.; Baeck, S.-H. Ni-doped Mn2O3 microspheres as highly efficient electrocatalyst for oxygen reduction reaction and Zn-air battery. Int. J. Hydrogen Energy 2022, 47, 2378–2388. [Google Scholar] [CrossRef]
- Gu, Y.; Yan, G.; Lian, Y.; Qi, P.; Mu, Q.; Zhang, C.; Deng, Z.; Peng, Y. MnIII-enriched α-MnO2 nanowires as efficient bifunctional oxygen catalysts for rechargeable Zn-air batteries. Energy Storage Mater. 2019, 23, 252–260. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, H.; Ma, Y.; Yang, Y.; Li, B.; Cui, Y.; Guo, Z.; Wang, L. Core-shell-structured Co@Co4N nanoparticles encapsulated into MnO-modified porous N-doping carbon nanocubes as bifunctional catalysts for rechargeable Zn–air batteries. J. Energy Chem. 2020, 50, 52–62. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, J.; Chai, L.; Tang, G.; Wan, K.; Pan, J. A new MnxOy/carbon nanorods derived from bimetallic Zn/Mn metal–organic framework as an efficient oxygen reduction reaction electrocatalyst for alkaline Zn-Air batteries. J. Solid State Electrochem. 2022, 26, 1163–1173. [Google Scholar] [CrossRef]
- Tian, H.; Zeng, L.; Huang, Y.; Ma, Z.; Meng, G.; Peng, L.; Chen, C.; Cui, X.; Shi, J. In Situ Electrochemical Mn(III)/Mn(IV) Generation of Mn(II)O Electrocatalysts for High-Performance Oxygen Reduction. Nano-Micro Lett. 2020, 12, 161. [Google Scholar] [CrossRef]
- Clark, M.P.; Xiong, M.; Cadien, K.; Ivey, D.G. High Performance Oxygen Reduction/Evolution Electrodes for Zinc–Air Batteries Prepared by Atomic Layer Deposition of MnOx. ACS Appl. Energy Mater. 2019, 3, 603–613. [Google Scholar] [CrossRef]
- Varignon, J.; Bibes, M.; Zunger, A. Origin of band gaps in 3d perovskite oxides. Nat. Commun. 2019, 10, 1658. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, R.; Zhang, L.; Gu, Q.; Qiao, Z.A. A Resol-Assisted Cationic Coordinative Co-assembly Approach to Mesoporous ABO3 Perovskite Oxides with Rich Oxygen Vacancy for Enhanced Hydrogenation of Furfural to Furfuryl Alcohol. Angew. Chem. Int. Ed. 2021, 60, 4774–4781. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, L.; Liu, H.; Yang, J.; Zhang, R.; Zhang, L.; Qiao, Z.A. A Modular Co-assembly Strategy for Ordered Mesoporous Perovskite Oxides with Abundant Surface Active Sites. Angew. Chem. Int. Ed. 2022, 61, e202209038. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.-h.; Chen, B.; Zhang, Y.; Tan, F.; Liu, T. Boosting the bifunctional electrocatalytic activity of cobalt free perovskite oxide (La0.8Sr0.2)0.95MnO3 via iron doping for high-efficiency Zn–air batteries. Sep. Purif. Technol. 2022, 300, 121858. [Google Scholar] [CrossRef]
- Xu, X.; Wang, W.; Zhou, W.; Shao, Z. Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energy-Related Applications. Small Methods 2018, 2, 1800071. [Google Scholar] [CrossRef]
- Xu, X.; Su, C.; Shao, Z. Fundamental Understanding and Application of Ba0.5Sr0.5Co0.8Fe0.2O3−δPerovskite in Energy Storage and Conversion: Past, Present, and Future. Energy Fuels 2021, 35, 13585–13609. [Google Scholar] [CrossRef]
- Kuai, L.; Kan, E.; Cao, W.; Huttula, M.; Ollikkala, S.; Ahopelto, T.; Honkanen, A.-P.; Huotari, S.; Wang, W.; Geng, B. Mesoporous LaMnO3+δ perovskite from spray−pyrolysis with superior performance for oxygen reduction reaction and Zn−air battery. Nano Energy 2018, 43, 81–90. [Google Scholar] [CrossRef]
- Shui, Z.; Tian, H.; Yu, S.; Xiao, H.; Zhao, W.; Chen, X. La0.75Sr0.25MnO3-based perovskite oxides as efficient and durable bifunctional oxygen electrocatalysts in rechargeable Zn-air batteries. Sci. China Mater. 2022, 66, 1002–1012. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, F.; Zhang, C.; Zheng, Q.; Wang, C.; Hu, H.; Wu, M.; Guo, Y. Enhanced Catalytic Activity of LaMnO3 by A-Site Substitution as Air Electrode of Zn–Air Batteries with Attractive Durability. Energy Fuels 2020, 34, 10170–10177. [Google Scholar] [CrossRef]
- Flores-Lasluisa, J.X.; García-Rodríguez, M.; Cazorla-Amorós, D.; Morallón, E. In-situ synthesis of encapsulated N-doped carbon metal oxide nanostructures for Zn-air battery applications. Carbon 2024, 225, 119147. [Google Scholar] [CrossRef]
- Shi, W.; Dong, X.; Luo, Y.; Wang, R.; Wang, G.; Chen, J.; Liu, C.; Zhang, J. Regulation of the B Site at La(Ni0.1)MnO3 Perovskite Decorated with N-Doped Carbon for a Bifunctional Electrocatalyst in Zn–Air Batteries. Ind. Eng. Chem. Res. 2023, 62, 2687–2697. [Google Scholar] [CrossRef]
- Yan, L.; Lin, Y.; Yu, X.; Xu, W.; Salas, T.; Smallidge, H.; Zhou, M.; Luo, H. La0.8Sr0.2MnO3-Based Perovskite Nanoparticles with the A-Site Deficiency as High Performance Bifunctional Oxygen Catalyst in Alkaline Solution. ACS Appl. Mater. Interfaces 2017, 9, 23820–23827. [Google Scholar] [CrossRef]
- Miao, H.; Wang, Z.; Wang, Q.; Sun, S.; Xue, Y.; Wang, F.; Zhao, J.; Liu, Z.; Yuan, J. A new family of Mn-based perovskite (La1-xYxMnO3) with improved oxygen electrocatalytic activity for metal-air batteries. Energy 2018, 154, 561–570. [Google Scholar] [CrossRef]
- Shui, Z.; Tian, H.; Raza, M.A.; Zhu, L.; Zhao, W.; Chen, X. Advanced Zn-air batteries based on efficient and durable perovskite/dual-doped graphene bifunctional oxygen catalysts. J. Alloys Compd. 2023, 939, 168817. [Google Scholar] [CrossRef]
- Stoerzinger, K.A.; Risch, M.; Han, B.; Shao-Horn, Y. Recent Insights into Manganese Oxides in Catalyzing Oxygen Reduction Kinetics. ACS Catal. 2015, 5, 6021–6031. [Google Scholar] [CrossRef]
- Yang, C.; Grimaud, A. Factors Controlling the Redox Activity of Oxygen in Perovskites: From Theory to Application for Catalytic Reactions. Catalysts 2017, 7, 149. [Google Scholar] [CrossRef]
- Liu, W.; Su, Q.; Yu, L.; Du, G.; Li, C.; Zhang, M.; Ding, S.; Xu, B. Understanding reaction mechanism of oxygen evolution reaction using Ru single atoms as catalyst for Li-O2 battery. J. Alloys Compd. 2021, 886, 161189. [Google Scholar] [CrossRef]
- Li, X.X.; Wang, Y.; Li, Y.C.; Liang, Y. Durable bifunctional electrocatalyst for cathode of zinc-air battery: Surface pre-reconstruction of La0.7Sr0.3MnO3 perovskite by iron ions. J. Alloys Compd. 2024, 976, 173398. [Google Scholar] [CrossRef]
- Dai, Y.; Yu, J.; Zhang, Z.; Zhai, S.; Cheng, C.; Zhao, S.; Tan, P.; Shao, Z.; Ni, M. Regulating the Interfacial Electron Density of La0.8Sr0.2Mn0.5Co0.5O3/RuOx for Efficient and Low-Cost Bifunctional Oxygen Electrocatalysts and Rechargeable Zn-Air Batteries. ACS Appl. Mater. Interfaces 2021, 13, 61098–61106. [Google Scholar] [CrossRef]
- Moon, G.h.; Yu, M.; Chan, C.K.; Tüysüz, H. Highly Active Cobalt-Based Electrocatalysts with Facile Incorporation of Dopants for the Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 2019, 58, 3491–3495. [Google Scholar] [CrossRef]
- Alegre, C.; Busacca, C.; Di Blasi, A.; Cannilla, C.; Barbera, O.; Antonucci, V.; Lázaro, M.J.; Baglio, V. Electrospun MnCo2O4/carbon-nanofibers as oxygen electrode for alkaline zinc-air batteries. J. Energy Storage 2022, 55, 105404. [Google Scholar] [CrossRef]
- Li, J.; He, X.; Du, Y.; Jiang, M.; Hu, Q.; Yin, J.; Yang, F.; Zhang, J. Superior bifunctional oxygen electrocatalysts based on Co2MnO4 with mixed site occupancy, Mn-rich surfaces and twin defects. Chem. Eng. J. 2023, 475, 146183. [Google Scholar] [CrossRef]
- Liu, W.; Bao, J.; Xu, L.; Guan, M.; Lei, Y. Chromium-modulated multifunctional electrocatalytic activities of spinel oxide for Zn-air batteries and overall water splitting. J. Power Sources 2020, 479, 229099. [Google Scholar] [CrossRef]
- Chen, B.; Miao, H.; Yin, M.; Hu, R.; Xia, L.; Zhang, C.; Yuan, J. Mn-based spinels evolved from layered manganese dioxides at mild temperature for the robust flexible quasi-solid-state zinc-air batteries. Chem. Eng. J. 2021, 417, 129179. [Google Scholar] [CrossRef]
- Kosasang, S.; Gatemala, H.; Ma, N.; Chomkhuntod, P.; Sawangphruk, M. Trimetallic Spinel-Type Cobalt Nickel-Doped Manganese Oxides as Bifunctional Electrocatalysts for Zn-Air Batteries. Batter. Supercaps 2020, 3, 631–637. [Google Scholar] [CrossRef]
- Sasidharachari, K.; Cho, K.Y.; Yoon, S. Mesoporous ZnMn2O4 Nanospheres as a Nonprecious Bifunctional Catalyst for Zn–Air Batteries. ACS Appl. Energy Mater. 2020, 3, 3293–3301. [Google Scholar] [CrossRef]
- Béjar, J.; Delgado, A.D.; Espinosa-Magaña, F.; Aguilar-Elguezabal, A.; Guerra-Balcázar, M.; Arjona, N.; Álvarez-Contreras, L. Electrodeposition of small sized NiM2O4 spinels (M: Co, Mn) as bifunctional nanomaterials for rechargeable zinc–air batteries. J. Alloys Compd. 2022, 929, 167266. [Google Scholar] [CrossRef]
- Balqis, F.; Irmawati, Y.; Geng, D.; Nugroho, F.A.A.; Sumboja, A. Nanostructured Ball-Milled Ni–Co–Mn Oxides from Spent Li-Ion Batteries as Electrocatalysts for Oxygen Evolution Reaction. ACS Appl. Nano Mater. 2023, 7, 18138–18145. [Google Scholar] [CrossRef]
- Zou, J.; Chen, B.; Li, B.; Yin, M.; Miao, H.; Wang, F.; Zhang, C.; Zhang, H.; Yuan, J. Achieving high energy efficiency of alkaline hybrid zinc battery by using the optimized Co–Mn spinel cathode. Int. J. Hydrogen Energy 2022, 47, 27470–27480. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, J.; Wang, L.; Liu, Y.; Liu, W.; Zhao, S.; Liu, Z.Q. Cation-Tuning Induced d-Band Center Modulation on Co-Based Spinel Oxide for Oxygen Reduction/Evolution Reaction. Angew. Chem. Int. Ed. 2022, 61, e202114696. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, P.; Zou, X.; Wang, S.; Du, L.; Ouyang, T.; Liu, Z.Q. Optimizing the Oxygen-Catalytic Performance of Zn–Mn–Co Spinel by Regulating the Bond Competition at Octahedral Sites. Adv. Funct. Mater. 2023, 33, 2214275. [Google Scholar] [CrossRef]
- Béjar, J.; Espinosa-Magaña, F.; Guerra-Balcázar, M.; Ledesma-García, J.; Álvarez-Contreras, L.; Arjona, N.; Arriaga, L.G. Three-Dimensional-Order Macroporous AB2O4 Spinels (A, B =Co and Mn) as Electrodes in Zn–Air Batteries. ACS Appl. Mater. Interfaces 2020, 12, 53760–53773. [Google Scholar] [CrossRef]
- Li, J.-G.; Sun, H.; Lv, L.; Li, Z.; Ao, X.; Xu, C.; Li, Y.; Wang, C. Metal–Organic Framework-Derived Hierarchical (Co,Ni)Se2@NiFe LDH Hollow Nanocages for Enhanced Oxygen Evolution. ACS Appl. Mater. Interfaces 2019, 11, 8106–8114. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.A.; Reddy, K.A.J.; Gopannagari, M.; Kim, Y.; Rangappa, A.P.; Kumar, D.P.; Kim, T.K. Exposure of NiFe-LDH active sites by cation–exchange to promote photoelectrochemical water splitting performance. Appl. Surf. Sci. 2021, 570, 151134. [Google Scholar] [CrossRef]
- Chala, S.A.; Tsai, M.-C.; Su, W.-N.; Ibrahim, K.B.; Thirumalraj, B.; Chan, T.-S.; Lee, J.-F.; Dai, H.; Hwang, B.-J. Hierarchical 3D Architectured Ag Nanowires Shelled with NiMn-Layered Double Hydroxide as an Efficient Bifunctional Oxygen Electrocatalyst. ACS Nano 2020, 14, 1770–1782. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yu, C.; Han, X.; Yang, J.; Zhao, C.; Huang, H.; Qiu, J. CoMn Layered Double Hydroxides/Carbon Nanotubes Architectures as High-Performance Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem 2016, 3, 906–912. [Google Scholar] [CrossRef]
- Li, K.; Guo, D.; Kang, J.; Wei, B.; Zhang, X.; Chen, Y. Hierarchical Hollow Spheres Assembled with Ultrathin CoMn Double Hydroxide Nanosheets as Trifunctional Electrocatalyst for Overall Water Splitting and Zn Air Battery. ACS Sustain. Chem. Eng. 2018, 6, 14641–14651. [Google Scholar] [CrossRef]
- Beltran-Huarac, J.; Resto, O.; Carpena-Nuñez, J.; Jadwisienczak, W.M.; Fonseca, L.F.; Weiner, B.R.; Morell, G. Single-Crystal γ-MnS Nanowires Conformally Coated with Carbon. ACS Appl. Mater. Interfaces 2014, 6, 1180–1186. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, C.; Hou, Z.; Zhou, M.; He, B.; Wang, W.; Ren, W.; Liu, Y.; Chen, L.; Xu, W. 3D N, S-co-doped carbon nanotubes/graphene/MnS ternary hybrid derived from Hummers’ method for highly efficient oxygen reduction reaction. Mater. Today Energy 2020, 16, 100402. [Google Scholar] [CrossRef]
- Rui, X.; Tan, H.; Yan, Q. Nanostructured metal sulfides for energy storage. Nanoscale 2014, 6, 9889–9924. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Z.; Liu, Y.; Liu, J.; Cui, Z.; Zhang, X.; Ciucci, F.; Tang, Z. Tailoring the interfacial active center of MnSxO2−x/MnCo2S4 heterostructure to boost the performance for oxygen evolution reaction and Zn-Air batteries in neutral electrolyte. Chem. Eng. J. 2022, 427, 131966. [Google Scholar] [CrossRef]
- Chen, K.; Wang, X.; Zhang, C.; Xu, R.; Wang, H.; Chu, L.; Huang, M. Three-phases Co/Co9S8/MnS heterostructures engineering for boosted ORR/OER activities in Zn–air batteries. Mater. Today Energy 2022, 30, 101150. [Google Scholar] [CrossRef]
- Rao, Y.; Li, W.; Chen, S.; Yue, Q.; Zhang, Y.; Kang, Y. V2O3/MnS Arrays as Bifunctional Air Electrode for Long-Lasting and Flexible Rechargeable Zn-Air Batteries. Small 2022, 18, 2104411. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Duan, X.; Wei, W.; Wang, S.; Ni, B.-J. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J. Mater. Chem. A 2019, 7, 14971–15005. [Google Scholar] [CrossRef]
- Dutta, S.; Indra, A.; Feng, Y.; Han, H.; Song, T. Promoting electrocatalytic overall water splitting with nanohybrid of transition metal nitride-oxynitride. Appl. Catal. B Environ. 2019, 241, 521–527. [Google Scholar] [CrossRef]
- Davari, E.; Ivey, D.G. Synthesis and electrochemical performance of manganese nitride as an oxygen reduction and oxygen evolution catalyst for zinc–air secondary batteries. J. Appl. Electrochem. 2017, 47, 815–827. [Google Scholar] [CrossRef]
- Hopkins, B.J.; Chervin, C.N.; Parker, J.F.; Long, J.W.; Rolison, D.R. An Areal-Energy Standard to Validate Air-Breathing Electrodes for Rechargeable Zinc–Air Batteries. Adv. Energy Mater. 2020, 10, 2001287. [Google Scholar] [CrossRef]
Electrocatalysts | Loading [Mn Atoms] | ORR | Performance (ZABs) | Ref. | |||
---|---|---|---|---|---|---|---|
E1/2 [V] | OCV [V] | Specific Capacity [mAh·g−1] | Peak Power Density [mW cm−2] | Stability | |||
Mn-NÀC (2.0) | 0.035 wt% | 0.885 | 1.53 | 828.1 | 116.6 | 3000 cycles | [15] |
MnSAs/NMC | 1.61 wt% | 0.9 | 1.52 | 842 | 210.3 | 200 h@ 10 mA cm−2 | [16] |
MnNCS-4-800 | 0.20 wt% | 0.89 (acidic) 0.71 (alkaline) | 1.51 | 796.43 | 233 | - | [18] |
MnSA-MnP-980 | - | 0.88 | - | - | 51 | 27 h@2 mA cm−2 | [19] |
Mn-N-C-35 | 1.71 wt% | 0.92 (acidic) 0.78 (alkaline) | - | 655 | 176 | 250,000 s cycle test at 10 mA cm−2 | [20] |
Mn-N2S2-C | 0.7 wt% | 0.91 | 1.51 | 780.4 | 193 | 250 h@10 mA cm−2 | [21] |
Mn-N3-O | - | 0.900 | 1.53 | - | 210 | >350 h@10 mA cm−2 | [22] |
Mn/NDC | 0.2 wt% | - | 1.48 | 1.29 | 268.5 | >1600 h@20 mAcm−2 | [23] |
Mn-N-P-C | 1.54 wt% | 0.82 | 1.45 | 830 | 133 | - | [24] |
Mn@NC-900 | 1.17 wt% | 0.900 | 1.33 | - | 118 | 20,000 s | [25] |
Mn-N-C | - | 0.87 | 1.55 | - | 141 | 100 h@10 mA cm−2 | [26] |
Optimization Strategies | Main Advantages | Limitations | Ref. |
---|---|---|---|
Morphological modulation | (1) Increase the specific surface area and improve the exposure of active sites. (2) Optimize mass transfer path and improve reaction rate. | (1) Difficult to control morphology, requiring precise regulation of synthesis conditions. (2) Some forms may be unstable and prone to agglomeration. | [98] |
Structural engineering | Constructing specific structures such as core–shell structures and hollow structures to improve stability and activity. | (1) High structural complexity and increased synthesis costs. (2) The structural stability is greatly affected by the preparation process. | [115] |
Carbon hybridization | (1) Improve conductivity and promote electron transport. (2) Provide a stable support structure to prevent agglomeration of manganese-based materials. | (1) The selection and composite ratio of carbon materials need to be optimized. (2) Impurities may be introduced during the carbonization process, affecting performance. | [55] |
Heterointerface construction | (1) Generates synergistic effects to enhance catalytic activity. (2) Facilitates rapid electron and ion transfer at the interface. | (1) The interface engineering is complex and difficult to control precisely. (2) The stability of the interface is significantly influenced by environmental factors. | [66] |
Heteroatom doping | (1) Modulates the electronic structure to optimize adsorption energy. (2) Introduces new active sites, thereby improving catalytic performance. | (1) The type and amount of doping elements need to be precisely controlled. (2) Doping may lead to lattice distortion, affecting the stability of the material. | [19,47] |
Defect engineering | (1) Generates defects such as oxygen vacancies to enhance catalytic activity. (2) Modulates the surface electronic structure to optimize reaction pathways. | (1) The type and concentration of defects are difficult to control accurately. (2) Excessive defects may cause structural damage to the material, leading to a decrease in stability. | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Z.; Wu, T.; Yi, L.; Jing, M. Prospective Obstacles and Improvement Strategies of Manganese-Based Materials in Achieving High-Performance Rechargeable Zinc–Air Batteries. Batteries 2025, 11, 255. https://doi.org/10.3390/batteries11070255
Ye Z, Wu T, Yi L, Jing M. Prospective Obstacles and Improvement Strategies of Manganese-Based Materials in Achieving High-Performance Rechargeable Zinc–Air Batteries. Batteries. 2025; 11(7):255. https://doi.org/10.3390/batteries11070255
Chicago/Turabian StyleYe, Zhangli, Tianjing Wu, Lanhua Yi, and Mingjun Jing. 2025. "Prospective Obstacles and Improvement Strategies of Manganese-Based Materials in Achieving High-Performance Rechargeable Zinc–Air Batteries" Batteries 11, no. 7: 255. https://doi.org/10.3390/batteries11070255
APA StyleYe, Z., Wu, T., Yi, L., & Jing, M. (2025). Prospective Obstacles and Improvement Strategies of Manganese-Based Materials in Achieving High-Performance Rechargeable Zinc–Air Batteries. Batteries, 11(7), 255. https://doi.org/10.3390/batteries11070255