Recent Advances in the Design and Structure–Activity Relationships of Oxygen Evolution Catalysts for Alkaline Water Electrolysis
Abstract
1. Introduction
2. Electrocatalytic Water Splitting
2.1. Oxygen Evolution Reaction

2.2. Electrochemical Parameters of Water Electrolysis
3. Oxygen Evolution Reaction Mechanisms
3.1. Adsorbate Evolution Mechanism
3.2. Lattice Oxygen-Mediated Mechanism
4. Rational Design of Oxygen Evolution Catalysts
4.1. Reconstruction Engineering

4.2. Defect and Vacancy Engineering
4.3. Phase and Interface Engineering
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gong, Y.; Yao, J.; Wang, P.; Li, Z.; Zhou, H.; Xu, C. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting. Chin. J. Chem. Eng. 2022, 43, 282–296. [Google Scholar] [CrossRef]
- Gür, T.M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy Environ. Sci. 2018, 11, 2696–2767. [Google Scholar] [CrossRef]
- Ager, J.W.; Lapkin, A.A. Chemical storage of renewable energy. Science 2018, 360, 707–708. [Google Scholar] [CrossRef]
- Sun, J.; Li, J.; Li, Z.; Li, C.; Ren, G.; Zhang, Z.; Meng, X. Modulating the electronic structure on cobalt sites by compatible heterojunction fabrication for greatly improved overall water/seawater electrolysis. ACS Sustain. Chem. Eng. 2022, 10, 9980–9990. [Google Scholar] [CrossRef]
- Goswami, A.; Ghosh, D.; Pradhan, D.; Biradha, K. In situ grown Mn(II) MOF upon nickel foam acts as a robust self-supporting bifunctional electrode for overall water splitting: A bimetallic synergistic collaboration strategy. ACS Appl. Mater. Interfaces 2022, 14, 29722–29734. [Google Scholar] [CrossRef]
- Chen, Z.; Chang, J.; Liang, C.; Wang, W.; Li, Y.; Li, Z.; Zhang, Y. Size-dependent and support-enhanced electrocatalysis of 2H-MoS2 for hydrogen evolution. Nano Today 2022, 46, 101592. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Z.; Shao, W.; Gao, Y.; Wang, W.; Ma, T.; Ma, L.; Li, S.; Cheng, C.; Zhao, C. Interfacial atom-substitution engineered transition-metal hydroxide nanofibers with high-valence Fe for efficient electrochemical water oxidation. Angew. Chem. Int. Ed. 2022, 61, e202115331. [Google Scholar] [CrossRef]
- Subbaraman, R.; Tripkovic, D.; Chang, K.C.; Strmcnik, D.; Paulikas, A.P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N.M. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liang, H. Ir-based bifunctional electrocatalysts for overall water splitting. Catal. Sci. Technol. 2021, 11, 4673–4689. [Google Scholar] [CrossRef]
- Arif, M.; Yasin, G.; Shakeel, M.; Mushtaq, M.A.; Ye, W.; Fang, X.; Ji, S.; Yan, D. Highly active sites of NiVB nanoparticles dispersed onto graphene nanosheets towards efficient and pH-universal overall water splitting. J. Energy Chem. 2021, 58, 237–246. [Google Scholar] [CrossRef]
- Wang, B.; Tang, C.; Wang, H.-F.; Chen, X.; Cao, R.; Zhang, Q. A nanosized CoNi hydroxide@hydroxysulfide core–shell heterostructure for enhanced oxygen evolution. Adv. Mater. 2019, 31, 1805658. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, C.; Lu, X. Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting. J. Mater. Chem. A 2021, 9, 3786–3827. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, L.; Zhao, P.; Lee, L.Y.S.; Wong, K.-Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Gao, D.; Ding, J.; Chao, D.; Wang, J. TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. Chem. Soc. Rev. 2018, 47, 4332–4356. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Ren, J.; Hong, H.; Liu, D.; Liu, L.; Wang, D. Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 2022, 14, 148. [Google Scholar]
- Man, I.; Su, H.-Y.; Calle-Vallejo, F.; Hansen, H.; Hansen, A.; Nilay; Inoglu, G.; Kitchin, J.; Jaramillo, T.; Nørskov, J.; et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. Chemcatchem 2011, 3, 1159. [Google Scholar]
- Zhang, L.; Xiao, J.; Wang, H.; Shao, M. Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions. Acs Catal 2017, 7, 7855–7865. [Google Scholar] [CrossRef]
- Bockris, J.O.M.; Otagawa, T. The Electrocatalysis of Oxygen Evolution on Perovskites. J. Electrochem. Soc. 1984, 131, 290. [Google Scholar] [CrossRef]
- Lei, Z.; Wang, T.; Zhao, B.; Cai, W.; Liu, Y.; Jiao, S.; Li, Q.; Cao, R.; Liu, M. Recent progress in electrocatalysts for acidic water oxidation. Adv. Energy Mater. 2020, 10, 2000478. [Google Scholar] [CrossRef]
- Laursen, A.B.; Varela, A.S.; Dionigi, F.; Fanchiu, H.; Miller, C.; Trinhammer, O.L.; Rossmeisl, J.; Dahl, S. Electrochemical hydrogen evolution: Sabatier’s principle and the volcano plot. J. Chem. Educ. 2012, 89, 1595–1599. [Google Scholar] [CrossRef]
- Yu, M.; Budiyanto, E.; Tüysüz, H. Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2022, 61, e202103824. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, H.; Xu, S.; Liu, Q.; Li, T.; Luo, Y.; Gao, S.; Shi, X.; Asiri, A.M.; Sun, X. Recent Advances in 1D Electrospun Nanocatalysts for Electrochemical Water Splitting. Small Struct. 2021, 2, 2000048. [Google Scholar] [CrossRef]
- Lu, F.; Zhou, M.; Zhou, Y.; Zeng, X. First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: Basic principles and recent advances. Small 2017, 13, 1701931. [Google Scholar] [CrossRef] [PubMed]
- Radford, A.; Szalay, D.; Chen, Q.; Ying, M.; Luo, M.; Pan, X.; Stamatakis, M.; Li, Y.; Wu, C.; Tsang, S.C.E. Untangling the Mechanisms in Magneto-Electrocatalytic Oxygen Evolution. Small 2025, 21, 2412852. [Google Scholar] [CrossRef] [PubMed]
- Ibupoto, Z.H.; Aftab, A.; Ali, M.; Tahira, A.; Hassanpouryouzband, A.; Sarmadivaleh, M.; Vigolo, B.; Vomiero, A. Advances in MoS2 composites for electrocatalytic energy conversion: Synthesis, Applications, and Future Perspectives in Hydrogen, Oxygen, and CO2 Reactions. Renew. Energ. 2025, 256, 124582. [Google Scholar] [CrossRef]
- Lu, X.; Yang, X.; Wang, L.; Li, F.; Zhang, H.; Li, J.; Zan, L.; Bron, M. N-doped carbon nanotubes with high amount of graphitic nitrogen as an excellent electrocatalyst for water splitting in alkaline solution. J. Electroanal. Chem. 2023, 931, 117160. [Google Scholar] [CrossRef]
- Zhang, H.; de Souza e Silva, J.M.; Lu, X.; de Oliveira, C.S.; Cui, B.; Li, X.; Lin, C.; Schweizer, S.L.; Maijenburg, A.W.; Bron, M.; et al. Novel Stable 3D Stainless Steel-Based Electrodes for Efficient Water Splitting. Adv. Mater. Interfaces 2019, 6, 1900774. [Google Scholar] [CrossRef]
- Zhang, N.; Feng, X.; Rao, D.; Deng, X.; Cai, L.; Qiu, B.; Long, R.; Xiong, Y.; Lu, Y.; Chai, Y. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 2020, 11, 4066. [Google Scholar] [CrossRef]
- Hong, W.T.; Risch, M.; Stoerzinger, K.A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 2015, 8, 1404–1427. [Google Scholar] [CrossRef]
- Gao, L.; Cui, X.; Sewell, C.D.; Li, J.; Lin, Z. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 8428–8469. [Google Scholar] [CrossRef]
- He, R.; Huang, X.; Feng, L. Recent progress in transition-metal sulfide catalyst regulation for improved oxygen evolution reaction. Energy Fuels 2022, 36, 6675–6694. [Google Scholar] [CrossRef]
- Zagalskaya, A.; Alexandrov, V. Role of defects in the interplay between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution reaction in RuO2 and IrO2. ACS Catal. 2020, 10, 3650–3657. [Google Scholar] [CrossRef]
- Xu, S.; Feng, S.; Yu, Y.; Xue, D.; Liu, M.; Wang, C.; Zhao, K.; Xu, B.; Zhang, J. Dual-site segmentally synergistic catalysis mechanism: Boosting CoFeSx nanocluster for sustainable water oxidation. Nat. Commun. 2024, 15, 1720. [Google Scholar] [CrossRef] [PubMed]
- Rong, X.; Parolin, J.; Kolpak, A.M. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 2016, 6, 1153–1158. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Y.; Zapata, F.; Lin, G.; Qian, G.; Lobkovsky, E.B. Luminescent open metal sites within a metal–organic framework for sensing small molecules. Adv. Mater. 2007, 19, 1693–1696. [Google Scholar] [CrossRef]
- Pan, Y.; Xu, X.; Zhong, Y.; Ge, L.; Chen, Y.; Veder, J.-P.M.; Guan, D.; O’Hayre, R.; Li, M.; Wang, G.; et al. Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun. 2020, 11, 2002. [Google Scholar] [CrossRef]
- Liu, J.; Jia, E.; Wang, L.; Stoerzinger, K.A.; Zhou, H.; Tang, C.S.; Yin, X.; He, X.; Bousquet, E.; Bowden, M.E.; et al. Tuning the electronic structure of LaNiO3 through alloying with strontium to enhance qxygen evolution activity. Adv. Sci. 2019, 6, 1901073. [Google Scholar] [CrossRef]
- Cai, Y.; Hu, B.; Wang, X. Defect engineering on constructing surface active sites in catalysts for environment and energy applications. Front. Chem. Sci. Eng. 2024, 18, 74. [Google Scholar] [CrossRef]
- Fabbri, E.; Habereder, A.; Waltar, K.; Kötz, R.; Schmidt, T.J. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 2014, 4, 3800–3821. [Google Scholar] [CrossRef]
- Exner, K.S. Four generations of volcano plots for the oxygen evolution reaction: Beyond proton-coupled electron transfer steps? Acc. Chem. Res. 2024, 57, 1336–1345. [Google Scholar] [CrossRef]
- May, K.J.; Carlton, C.E.; Stoerzinger, K.A.; Risch, M.; Suntivich, J.; Lee, Y.-L.; Grimaud, A.; Shao-Horn, Y. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J. Phys. Chem. Lett. 2012, 3, 3264–3270. [Google Scholar] [CrossRef]
- Sun, X.; Yuan, Y.; Liu, S.; Zhao, H.; Yao, S.; Sun, Y.; Zhang, M.; Liu, Y.; Lin, Z. Recent advances in perovskite oxides for oxygen evolution reaction: Structures, mechanisms, and strategies for performance enhancement. Adv. Funct. Mater. 2025, 35, 2416705. [Google Scholar] [CrossRef]
- Liu, X.; He, Z.; Ajmal, M.; Shi, C.; Gao, R.; Pan, L.; Huang, Z.-F.; Zhang, X.; Zou, J.-J. Recent advances in the comprehension and regulation of lattice oxygen oxidation mechanism in oxygen evolution reaction. Trans. Tianjin Univ. 2023, 29, 247–253. [Google Scholar] [CrossRef]
- Wan, W.; Zhao, Y.; Wei, S.; Triana, C.A.; Li, J.; Arcifa, A.; Allen, C.S.; Cao, R.; Patzke, G.R. Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts. Nat. Commun. 2021, 12, 5589. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, R.; Ding, Y.; Zhang, B.; Li, H.; Bai, B.; Li, M.; Cui, Y.; Xiao, J.; Wu, Z.-S. Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation. Nat. Commun. 2023, 14, 1412. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Liu, Y.; Zheng, Z.; Liu, B.; Chen, M.; Guan, G.; Yan, K. Recent advances on transition–metal–based layered double hydroxides nanosheets for electrocatalytic energy conversion. Adv. Sci. 2023, 10, 2207519. [Google Scholar] [CrossRef]
- Grimaud, A.; Hong, W.T.; Shao-Horn, Y.; Tarascon, J.M. Anionic redox processes for electrochemical devices. Nat. Mater. 2016, 15, 121–126. [Google Scholar] [CrossRef]
- Friebel, D.; Louie, M.W.; Bajdich, M.; Sanwald, K.E.; Cai, Y.; Wise, A.M.; Cheng, M.-J.; Sokaras, D.; Weng, T.-C.; Alonso-Mori, R.; et al. Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313. [Google Scholar] [CrossRef]
- Roy, C.; Sebok, B.; Scott, S.B.; Fiordaliso, E.M.; Sørensen, J.E.; Bodin, A.; Trimarco, D.B.; Damsgaard, C.D.; Vesborg, P.C.K.; Hansen, O.; et al. Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. Nat. Catal. 2018, 1, 820–829. [Google Scholar] [CrossRef]
- Hinnemann, B.; Moses, P.G.; Bonde, J.; Jørgensen, K.P.; Nielsen, J.H.; Horch, S.; Chorkendorff, I.; Nørskov, J.K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309. [Google Scholar] [CrossRef]
- Sattar, U.; Ali, Z.; Li, W.; Zhang, J. Unveiling the potential of the TM3-BDC as an electrocatalyst for OER and HER, a DFT approach. Surf. Interfaces 2025, 56, 105609. [Google Scholar] [CrossRef]
- Xu, S.; Yang, J.; Su, P.; Wang, Q.; Yang, X.; Zhou, Z.; Li, Y. Identifying key intermediates for the oxygen evolution reaction on hematite using ab-initio molecular dynamics. Nat. Commun. 2024, 15, 10411. [Google Scholar] [CrossRef] [PubMed]
- Abdelghafar, F.; Xu, X.; Jiang, S.P.; Shao, Z. Perovskite for Electrocatalytic Oxygen Evolution at Elevated Temperatures. ChemSusChem 2024, 17, e202301534. [Google Scholar] [CrossRef] [PubMed]
- Malek, A.; Xue, Y.; Lu, X. Dynamically Restructuring NixCryO Electrocatalyst for Stable Oxygen Evolution Reaction in Real Seawater. Angew. Chem. Int. Ed. 2023, 62, e202309854. [Google Scholar] [CrossRef]
- Aalling-Frederiksen, O.; Schlegel, N.; Punke, S.; Anker, A.S.; Wiberg, G.K.H.; Wang, B.; Edelvang-Pejrup, J.; Holde, F.B.; Salinas-Quezada, M.P.; Magnard, N.P.L.; et al. Structural Changes of NiFe Layered Double Hydroxides During the Oxygen Evolution Reaction: A Diffraction and Total Scattering Operando Study. Small 2025, 21, 2411211. [Google Scholar] [CrossRef]
- Linke, J.; Rohrbach, T.; Clark, A.H.; Andrzejewski, M.; Casati, N.P.M.; Buchauer, F.L.; Kraglund, M.R.; Chatzichristodoulou, C.; Meade, E.; Ranocchiari, M.; et al. From Operando Investigations to Implementation of Ni-MOF-74 Oxygen Evolution Electrocatalysts. Adv. Energy Mater. 2025, 15, 2501401. [Google Scholar] [CrossRef]
- Wang, C.; Zhai, P.; Xia, M.; Liu, W.; Gao, J.; Sun, L.; Hou, J. Identification of the Origin for Reconstructed Active Sites on Oxyhydroxide for Oxygen Evolution Reaction. Adv. Mater. 2023, 35, 2209307. [Google Scholar] [CrossRef]
- Sun, Y.; Xie, Y.; Chen, X.; Wu, J.; Liu, P.; Wang, X.; Tian, Z.; Zheng, W.; Jiang, Z.; Kang, Z.; et al. Updating the sub-nanometric cognition of reconstructed oxyhydroxide active phase for water oxidation. Nat. Commun. 2025, 16, 3073. [Google Scholar] [CrossRef]
- Wang, Q.; Gong, Y.; Zi, X.; Gan, L.; Pensa, E.; Liu, Y.; Xiao, Y.; Li, H.; Liu, K.; Fu, J.; et al. Coupling Nano and Atomic Electric Field Confinement for Robust Alkaline Oxygen Evolution. Angew. Chem. Int. Ed. 2024, 63, e202405438. [Google Scholar] [CrossRef]
- Shi, F.; Xiao, L.; Zhou, Z.; Zhao, X.; Liu, Y.; Mao, J.; Qin, J.; Deng, Y.; Yang, J. Accelerating the Transformation of Active β-NiOOH on NiFe Layered Double Hydroxide via Cation–anion Collaborative Coordination for Alkaline Water Oxidation at High Current Densities. Adv. Funct. Mater. 2025, 35, 2501070. [Google Scholar] [CrossRef]
- Zhu, J.; Zi, S.; Zhang, N.; Hu, Y.; An, L.; Xi, P. Surface Reconstruction of Covellite CuS Nanocrystals for Enhanced OER Catalytic Performance in Alkaline Solution. Small 2023, 19, 2301762. [Google Scholar] [CrossRef]
- Wang, B.; Chen, J.; Luo, L.; Huang, G.; Shi, Q.; Wei, Q.; Shang, M.; Liu, Q. Ions-Migration-Mediated Structural Stabilization in NiFe (Oxy)Hydroxides for Durable Alkaline Water Electrolysis. Adv. Funct. Mater. 2025, 35, 2505763. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, C.; Xu, X.; Kang, Y.; Henzie, J.; Que, W.; Yamauchi, Y. MXene nanoarchitectonics: Defect–engineered 2D MXenes towards enhanced electrochemical water splitting. Adv. Energy Mater. 2022, 12, 2103867. [Google Scholar] [CrossRef]
- Mudoi, R.; Saikia, L. Heteroatom Doping, Defect Engineering, and Stability of Transition Metal Diselenides for Electrocatalytic Water Splitting. Chem.—Asian J. 2025, 20, e00755. [Google Scholar] [CrossRef] [PubMed]
- Pamungkas, A.; Rahmani, F.N.; Ikramullah, F.; Mardiana, S.; Kadja, G.T. MXene-based nanocomposite for electrochemical hydrogen evolution reaction: Experimental and theoretical advances. FlatChem 2024, 46, 100692. [Google Scholar] [CrossRef]
- Meshkian, R.; Dahlqvist, M.; Lu, J.; Wickman, B.; Halim, J.; Thörnberg, J.; Tao, Q.; Li, S.; Intikhab, S.; Snyder, J.; et al. W–based atomic laminates and their 2D derivative W1.33C MXene with vacancy ordering. Adv. Mater. 2018, 30, 1706409. [Google Scholar] [CrossRef]
- Liu, D.; Wu, Z.; Liu, J.; Gu, H.; Li, Y.; Li, X.; Liu, S.; Liu, S.; Zhang, J. Heteroatom doped amorphous/crystalline ruthenium oxide nanocages as a remarkable bifunctional electrocatalyst for overall water splitting. Small 2023, 19, 2207235. [Google Scholar] [CrossRef]
- Senapati, S.; Bal, R.; Mohapatra, M.; Jena, B. Vacancy Enriched Structurally Modulated Nickel Ferrite for Oxygen Evolution Reaction. ChemNanoMat 2025, 11, e202400480. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, C.; Yang, Y.; Pi, S.; Yu, Y.; Wan, C.; Zhou, B.; Chao, W.; Lu, L. Molten-salt-induced phosphorus vacancy defect engineering of heterostructured cobalt phosphides for efficient overall water splitting. Inorg. Chem. Front. 2023, 10, 325–334. [Google Scholar] [CrossRef]
- Nam, D.; Jang, E.; Kim, J. Phosphorus doping and Sulfur vacancies defect engineering for efficient electrocatalytic water-splitting by modulating the electronic structure of the Cobalt sulfide with synergy effect. J. Alloys Compd. 2023, 947, 169625. [Google Scholar] [CrossRef]
- Huang, G.; Xiao, Z.; Chen, R.; Wang, S. Defect Engineering of Cobalt-Based Materials for Electrocatalytic Water Splitting. ACS Sustain. Chem. Eng. 2018, 6, 15954–15969. [Google Scholar] [CrossRef]
- Du, Y.; Wang, Q.; Zang, X.; Xiao, W.; Zong, Y.; Guo, X.; Wu, Z.; Wang, L. Unlocking the catalytic potential of NbB2 via vacancy creation and ruthenium decoration for efficient electrocatalytic water splitting. Fuel 2025, 399, 135624. [Google Scholar] [CrossRef]
- Niu, S.; Jiang, W.; Wei, Z.; Tang, T.; Ma, J.; Hu, J.; Wan, L. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 2019, 141, 7005–7013. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Singh, J.; Dhiman, R.; Sharma, D.P.; Mahajan, A. Oxygen vacancy engineering in MXenes for sustainable electrochemical energy conversion and storage applications. J. Mater. Chem. A 2025, 13, 25457–25475. [Google Scholar] [CrossRef]
- Zhou, W.; Yu, Z.; Zhao, Y.; Zhi, T.; Wang, L. Unlocking the potential of MXenes in electrocatalysis: A review from fundamentals to applications. J. Alloys Compd. 2025, 1036, 181615. [Google Scholar] [CrossRef]
- Li, W.; Ding, Y.; Zhao, Y.; Li, Z.; Lin, G.; Wang, L.; Sun, L. Zwitterion–Modified NiFe OER Catalyst Achieving Ultrastable Anion Exchange Membrane Water Electrolysis via Dynamic Alkaline Microenvironment Engineering. Angew. Chem. 2025, 137, e202505924. [Google Scholar] [CrossRef]
- Cheng, W.; Yang, H.; Wang, T.; He, X.; Tian, L.; Li, Z. Heteroatom doping promoting CoP for driving water splitting. Chem. Rec. 2024, 24, e202300088. [Google Scholar] [CrossRef]
- Ren, J.-T.; Wan, C.-Y.; Pei, T.-Y.; Lv, X.-W.; Yuan, Z.-Y. Promotion of electrocatalytic nitrogen reduction reaction on N-doped porous carbon with secondary heteroatoms. Appl. Catal. B Environ. 2020, 266, 118633. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, Q.; Li, J.; Rao, P.; Li, R.; Du, Y.; Jia, C.; Huang, W.; Luo, J.; Deng, P. Progress in the development of heteroatom-doped nickel phosphates for electrocatalytic water splitting. J. Colloid Interface Sci. 2022, 607, 1091–1102. [Google Scholar] [CrossRef]
- Saha, E.; Karthick, K.; Kundu, S.; Mitra, J. Regulating the heteroatom doping in metallogel-derived Co@ dual self-doped carbon onions to maximize electrocatalytic water splitting. J. Mater. Chem. A 2021, 9, 26800–26809. [Google Scholar] [CrossRef]
- Zhai, Q.; Pan, Y.; Dai, L. Carbon-based metal-free electrocatalysts: Past, present, and future. Acc. Mater. Res. 2021, 2, 1239–1250. [Google Scholar] [CrossRef]
- Lu, X.; Yang, X.; Tariq, M.; Li, F.; Steimecke, M.; Li, J.; Varga, A.; Bron, M.; Abel, B. Plasma-etched functionalized graphene as a metal-free electrode catalyst in solid acid fuel cells. J. Mater. Chem. A 2020, 8, 2445–2452. [Google Scholar] [CrossRef]
- Alanezi, K.M.; Ahmad, I.; AlFaify, S.; Ali, I.; Mohammad, A.; Jabir, M.S.; Majdi, H.; Almutairi, F.M. A review of advanced heteroatom-doped graphene and its derivatives materials for photocatalytic applications. J. Ind. Eng. Chem. 2025, 143, 1–32. [Google Scholar] [CrossRef]
- Lan, R.; Liu, L.; Feng, H.; Chen, B.-y.; Shi, X.; Hong, J. Boron-doped reduced graphene oxide as an efficient cathode in microbial fuel cells for biological toxicity detection. Bioresour. Technol. 2024, 403, 130883. [Google Scholar] [CrossRef]
- Lei, X.; Tang, Q.; Zheng, Y.; Kidkhunthod, P.; Zhou, X.; Ji, B.; Tang, Y. High-entropy single-atom activated carbon catalysts for sustainable oxygen electrocatalysis. Nat. Sustain. 2023, 6, 816–826. [Google Scholar] [CrossRef]
- Xu, J.; Yu, L.; Dong, B.; Yang, F.; Feng, L. Ruthenium-nickel oxide derived from Ru-coupled Ni metal-organic framework for effective oxygen evolution reaction. J. Colloid. Interface Sci. 2023, 654, 1080–1088. [Google Scholar] [CrossRef]
- Huang, J.; Huang, Z.; Chen, J.; Zhang, R.; Huang, M.; Liu, Y.; Xing, L.; Ye, S.; Du, L. Surface Reconstruction in Precious and Non-Precious Metal-Based Electrocatalysts for Oxygen Evolution Reaction: A pH-Dependent Perspective. Adv. Sustain. Syst. 2025, 9, 2500047. [Google Scholar] [CrossRef]
- Wu, F.; Tian, F.; Li, M.; Geng, S.; Qiu, L.; He, L.; Li, L.; Chen, Z.; Yu, Y.; Yang, W.; et al. Engineering Lattice Oxygen Regeneration of NiFe Layered Double Hydroxide Enhances Oxygen Evolution Catalysis Durability. Angew. Chem. Int. Ed. 2025, 64, e202413250. [Google Scholar] [CrossRef]
- Wen, N.; Wang, H.; Liu, Q.; Song, K.; Jiao, X.; Xia, Y.; Chen, D. Field-Effect Enhancement of Non-Faradaic Processes at Interfaces Governs Electrocatalytic Water Splitting Activity. Adv. Sci. 2024, 11, 2403206. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, L.; Yang, X.; Xu, M.; Gao, P.; Yang, J.; S. Khan, W.; Hou, J.; Zhai, L.; Zhu, S.; et al. Deconstructing Amorphous MoS2-Crystalline Ni3S2 Heterostructures Toward High-Performance Alkaline Water Splitting. Carbon Energy 2025, 7, e70066. [Google Scholar] [CrossRef]
- Xu, X.; Pan, Y.; Ge, L.; Chen, Y.; Mao, X.; Guan, D.; Li, M.; Zhong, Y.; Hu, Z.; Peterson, V.K.; et al. High-Performance Perovskite Composite Electrocatalysts Enabled by Controllable Interface Engineering. Small 2021, 17, 2101573. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-J.; Zhang, S.; Zhou, Y.-N.; Yu, W.-L.; Ma, Y.; Wang, S.-T.; Chai, Y.-M.; Dong, B. Dynamically Stabilized Electronic Regulation and Electrochemical Reconstruction in Co and S Atomic Pair Doped Fe3O4 for Water Oxidation. Small 2023, 19, 2301255. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, X.; Liu, G.; Wang, Y.; Du, X.; Li, J. Copper doping-induced high-valence nickel-iron-based electrocatalyst toward enhanced and durable oxygen evolution reaction. Chem. Catal. 2023, 3, 100552. [Google Scholar] [CrossRef]
- Wang, X.; Liu, B.; Duan, R.; Zhang, H.; Zhou, X.; Hu, W.; Li, C. Tailoring the Electronic and Hydrophilic Properties of Nickel Oxide Hydroxides by Bismuth Incorporation Toward Enhanced Alkaline Electrocatalytic Water Oxidation. Small 2025, 21, 2411577. [Google Scholar] [CrossRef]
- Lyu, S.; Guo, C.; Wang, J.; Li, Z.; Yang, B.; Lei, L.; Wang, L.; Xiao, J.; Zhang, T.; Hou, Y. Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks. Nat. Commun. 2022, 13, 6171. [Google Scholar] [CrossRef]
- Zhao, S.; Tan, C.; He, C.-T.; An, P.; Xie, F.; Jiang, S.; Zhu, Y.; Wu, K.-H.; Zhang, B.; Li, H.; et al. Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890. [Google Scholar] [CrossRef]
- Zhou, S.; Shi, L.; Li, Y.; Yang, T.; Zhao, S. Metal-Organic Framework-Based Electrocatalysts for Acidic Water Splitting. Adv. Funct. Mater. 2024, 34, 2400767. [Google Scholar] [CrossRef]







| Materials | Overpotential /mV | Tafel Slope /mV·dec−1 | Stability /h | |
|---|---|---|---|---|
| Section 4.1 | NixCryO | a 270 | 50 | c 475 [54] |
| Cu2S/CoFeCuOOH | a 170, c 258 | 41 | c 100 [57] | |
| Mn SA-CoP NNs | c 189 | 69.4 | c 100 [59] | |
| S-NiFeZn LDH/NiF | a 201, c 235 | 44.2 | e 400 [60] | |
| CuS | a 192 | 144 | a 120 [61] | |
| Section 4.2 | Co-ZnRuOx | a 224 | 67.55 | b 120 [67] |
| Vo-NiF(O) | a 260 | 25 | a 18 [68] | |
| CoPx-350 | a 351 | 91 | d 24 [69] | |
| z-NiFe | e 190 | 28.5 | e 14,000 [76] | |
| Ru/RuO2-NbB2-v | a 270 | 42 | a 20 [72] | |
| Section 4.3 | NiFe-LDH/Ni4Mo | a 20.9, c 115.2 | 42 | c 150 [88] |
| MoS2@Ni3S2-NiF | a 245 | 25 | c 100 [90] | |
| FeOx@Co0.75Fe0.25P | c 240 | 35.1 | e 120 [89] | |
| Co-FeOOH-Ov/IF | c 296 | 43.3 | e 200 [92] | |
| Ni97Bi3(OH)x | a 248, e 394 | 33.3 | d 1000 [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liu, X.; Lai, C.; Liu, J.; Wang, W.; Wang, X.; Bo, X.; Cheng, T.; Li, J.; Wang, Z.; et al. Recent Advances in the Design and Structure–Activity Relationships of Oxygen Evolution Catalysts for Alkaline Water Electrolysis. Molecules 2025, 30, 4350. https://doi.org/10.3390/molecules30224350
Wang L, Liu X, Lai C, Liu J, Wang W, Wang X, Bo X, Cheng T, Li J, Wang Z, et al. Recent Advances in the Design and Structure–Activity Relationships of Oxygen Evolution Catalysts for Alkaline Water Electrolysis. Molecules. 2025; 30(22):4350. https://doi.org/10.3390/molecules30224350
Chicago/Turabian StyleWang, Limin, Xinyue Liu, Cunxiao Lai, Jiabao Liu, Wenqi Wang, Xiaomei Wang, Xin Bo, Tao Cheng, Jianfeng Li, Zenglin Wang, and et al. 2025. "Recent Advances in the Design and Structure–Activity Relationships of Oxygen Evolution Catalysts for Alkaline Water Electrolysis" Molecules 30, no. 22: 4350. https://doi.org/10.3390/molecules30224350
APA StyleWang, L., Liu, X., Lai, C., Liu, J., Wang, W., Wang, X., Bo, X., Cheng, T., Li, J., Wang, Z., & Lu, X. (2025). Recent Advances in the Design and Structure–Activity Relationships of Oxygen Evolution Catalysts for Alkaline Water Electrolysis. Molecules, 30(22), 4350. https://doi.org/10.3390/molecules30224350

