Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (986)

Search Parameters:
Keywords = heavy-duty

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1925 KB  
Article
Dynamic Behaviour of Double Basalt- and Double Flax FRP Tube-Confined Coconut Fibre-Reinforced Concrete Under Impact Loading
by Bo Zhong and Yang Lv
Dynamics 2026, 6(1), 5; https://doi.org/10.3390/dynamics6010005 - 14 Jan 2026
Viewed by 22
Abstract
The dynamic behaviour of a column excited at the base, e.g., under an earthquake load, has been extensively studied. However, the column may also experience impact at the tip like a heavy-duty truck braking on a bridge. The caused base shear of the [...] Read more.
The dynamic behaviour of a column excited at the base, e.g., under an earthquake load, has been extensively studied. However, the column may also experience impact at the tip like a heavy-duty truck braking on a bridge. The caused base shear of the pier is very important. In this work, the dynamic behaviour, particularly the impact load from the tip to the base, was studied on two different composites: double basalt- and double flax fibre-reinforced polymer tube (DBFRP and DFFRP)-confined coconut fibre-reinforced concrete (CFRC). For each composite, two columns with a height of 1 m, an inner diameter of the outer tube of 100 mm, and an inner tube of 30 mm were fabricated. The column was fully fixed at the base and struck at the top with an impulse hammer. The base shear was calculated through an equivalent mass method using the acceleration at the tip. The results show that both DBFRP-CFRC and DFFRP-CFRC can dissipate a portion of the impact force, resulting in a reduction in force at the base of the specimens. The base shear of DFFRP-CFRC columns is larger and dissipates energy faster than that of DBFRP-CFRC columns. Full article
Show Figures

Figure 1

26 pages, 5612 KB  
Article
Dynamics Parameter Calibration for Performance Enhancement of Heavy-Duty Servo Press
by Jian Li, Shuaiyi Ma, Bingqing Liu, Tao Liu and Zhen Wang
Appl. Sci. 2026, 16(2), 847; https://doi.org/10.3390/app16020847 - 14 Jan 2026
Viewed by 32
Abstract
The accuracy of dynamics parameters in the transmission system is essential for high-performance motion trajectory planning and stable operation of heavy-duty servo presses. To mitigate the performance degradation and potential overload risks caused by deviations between theoretical and actual parameters, this paper proposes [...] Read more.
The accuracy of dynamics parameters in the transmission system is essential for high-performance motion trajectory planning and stable operation of heavy-duty servo presses. To mitigate the performance degradation and potential overload risks caused by deviations between theoretical and actual parameters, this paper proposes a dynamics model accuracy enhancement method that integrates multi-objective global sensitivity analysis and ant colony optimization-based calibration. First, a nonlinear dynamics model of the eight-bar mechanism was constructed based on Lagrange’s equations, which systematically incorporates generalized external force models consistent with actual production, including gravity, friction, balance force, and stamping process load. Subsequently, six key sensitive parameters were identified from 28 system parameters using Sobol global sensitivity analysis, with response functions defined for torque prediction accuracy, transient overload risk, thermal load, and work done. Based on the sensitivity results, a parameter calibration model was formulated to minimize torque prediction error and transient overload risk, and solved by the ant colony algorithm. Experimental validation showed that, after calibration, the root mean square error between predicted and measured torque decreased significantly from 1366.9 N·m to 277.7 N·m (a reduction of 79.7%), the peak error dropped by 72.7%, and the servo motor’s effective torque prediction error was reduced from 7.6% to 1.4%. In an automotive door panel stamping application on a 25,000 kN heavy-duty servo press, the production rate increased from 11.4 to 11.6 strokes per minute, demonstrating enhanced performance without operational safety. This study provides a theoretical foundation and an effective engineering solution for high-precision modeling and performance optimization of heavy-duty servo presses. Full article
Show Figures

Figure 1

21 pages, 2324 KB  
Article
A Seamless Mode Switching Control Method for Independent Metering Controlled Hydraulic Actuator
by Yixin Liu, Jiaqi Li and Dacheng Cong
Technologies 2026, 14(1), 63; https://doi.org/10.3390/technologies14010063 - 14 Jan 2026
Viewed by 36
Abstract
Hydraulic manipulators are vital for heavy-duty applications such as rescue robotics due to their high power density, yet these scenarios increasingly demand safe and compliant physical interaction. Impedance control is a key enabling technology for such capabilities. However, a significant challenge arises when [...] Read more.
Hydraulic manipulators are vital for heavy-duty applications such as rescue robotics due to their high power density, yet these scenarios increasingly demand safe and compliant physical interaction. Impedance control is a key enabling technology for such capabilities. However, a significant challenge arises when implementing impedance control on Independent Metering Systems (IMS), which are widely adopted for their energy efficiency. The inherent multi-mode operation of IMS relies on discrete switching logic. Crucially, when mode switching occurs during physical interaction with the environment, the unpredictable external forces can trigger frequent and abrupt switching between operating modes (e.g., resistive and overrunning), leading to severe chattering. This phenomenon not only undermines the smooth interaction that impedance control aims to achieve but also jeopardizes overall system stability. To address this critical issue, this paper proposes a seamless control framework based on a Takagi–Sugeno (T-S) fuzzy model. Two premise variables based on the physical characteristics of the system are innovatively designed to make the rule division highly consistent with the dynamic nature of the system. Asymmetric membership functions are introduced to handle direction-dependent switching, with orthogonal functions ensuring logical exclusivity between extension and retraction, and smooth complementary functions enabling seamless transitions between resistance and overrunning modes. Experimental validation on a small hydraulic manipulator validates the effectiveness of the proposed method. The controller eliminates switching-induced instability and smooths velocity transitions, even under dynamic external force disturbances. This work provides a crucial solution for high-performance, stable hydraulic interaction control, paving the way for the application of hydraulic robots in complex and dynamic environments. Full article
Show Figures

Figure 1

33 pages, 7044 KB  
Article
A Digital Engineering Framework for Piston Pin Bearings via Multi-Physics Thermo-Elasto-Hydrodynamic Modeling
by Zhiyuan Shu and Tian Tian
Systems 2026, 14(1), 77; https://doi.org/10.3390/systems14010077 - 11 Jan 2026
Viewed by 107
Abstract
The piston pin operates under severe mechanical and thermal conditions, making accurate lubrication prediction essential for engine durability. This study presents a comprehensive digital engineering framework for piston pin bearings, built upon a fully coupled thermo-elasto-hydrodynamic (TEHD) formulation. The framework integrates: (1) a [...] Read more.
The piston pin operates under severe mechanical and thermal conditions, making accurate lubrication prediction essential for engine durability. This study presents a comprehensive digital engineering framework for piston pin bearings, built upon a fully coupled thermo-elasto-hydrodynamic (TEHD) formulation. The framework integrates: (1) a Reynolds-equation hydrodynamic solver with temperature-/pressure-dependent viscosity and cavitation; (2) elastic deformation obtained from FEA (finite element analysis)-based compliance matrices; (3) a break-in module that iteratively adjusts surface profiles before steady-state simulation; (4) a three-body heat transfer model resolving heat conduction, convection, and solid–liquid interfacial heat exchange. Applied to a heavy-duty diesel engine, the framework reproduces experimentally observed behaviors, including bottom-edge rounding at the small end and the slow unidirectional drift of the floating pin. By integrating multi-physics modeling with design-level flexibility, this work aims to provide a robust digital twin for the piston-pin system, enabling virtual diagnostics, early-stage failure prediction, and data-driven design optimization for engine development. Full article
(This article belongs to the Special Issue Digital Engineering: Transformational Tools and Strategies)
Show Figures

Figure 1

27 pages, 2526 KB  
Article
Thermodynamic Modelling and Sensitivity Analysis of a 70 MPa Hydrogen Storage System for Heavy Duty Vehicles
by Roberta Tatti, Nejc Klopčič, Fabian Radner, Christian Zinner and Alexander Trattner
Hydrogen 2026, 7(1), 8; https://doi.org/10.3390/hydrogen7010008 - 8 Jan 2026
Viewed by 157
Abstract
Reducing CO2 emissions in transport requires sustainable alternatives such as fuel cell electric vehicles. A critical challenge is the efficient and safe storage and fast refueling of hydrogen at 70 MPa. This study proposes a practical design-support tool to optimize hydrogen storage [...] Read more.
Reducing CO2 emissions in transport requires sustainable alternatives such as fuel cell electric vehicles. A critical challenge is the efficient and safe storage and fast refueling of hydrogen at 70 MPa. This study proposes a practical design-support tool to optimize hydrogen storage systems for heavy-duty vehicles with capacities up to 100 kg. A customizable, dynamic Matlab-Simulink model was developed, including all components from dispenser to onboard tanks, enabling evaluation of multiple design options. The aim is to provide clear guidelines to ensure fast, safe, and complete refueling compliant with SAE J2601-5 limits. Simulations showed Type III tanks deliver the best performance. The fastest refueling (~10 min) was achieved with shorter pipes, larger diameters and low temperatures (20 °C ambient, −40 °C dispenser), while Average Pressure Ramp Rate was maximized up to 9 MPa/min (220 g/s of hydrogen from the dispenser) without exceeding SAE limits for pressure and temperature. Full article
Show Figures

Figure 1

15 pages, 4830 KB  
Article
Numerical Investigation on Mixture Formation and Injection Strategy Optimization in a Heavy-Duty PFI Methanol Engine
by Zhancheng Dou, Xiaoting Xu, Changhui Zhai, Xiaoxiao Zeng, Kui Shi, Xinbo Wu, Yi Liu, Yunliang Qi and Zhi Wang
Energies 2026, 19(2), 304; https://doi.org/10.3390/en19020304 - 7 Jan 2026
Viewed by 150
Abstract
Methanol is a liquid fuel with high oxygen content and the potential for a closed-loop carbon-neutral production cycle. To investigate the mixture formation and combustion characteristics of a heavy-duty Port Fuel Injection (PFI) methanol engine, a three-dimensional numerical simulation model was established using [...] Read more.
Methanol is a liquid fuel with high oxygen content and the potential for a closed-loop carbon-neutral production cycle. To investigate the mixture formation and combustion characteristics of a heavy-duty Port Fuel Injection (PFI) methanol engine, a three-dimensional numerical simulation model was established using the CONVERGE 3.0 software. Multi-cycle simulations were performed to analyze the influence of wall film dynamics on engine performance. The results indicate that the “adhesion–evaporation” equilibrium of the intake port wall film determines the in-cylinder mixture concentration. Due to the high latent heat of vaporization of methanol, severe wall-wetting occurs during the initial cycles, causing the actual fuel intake to lag behind the injection and leading to an overly lean mixture and misfire. Regarding injection strategies, the open valve injection (OVI) strategy utilizes high-speed intake airflow to reduce wall adhesion and improve fuel transport efficiency compared to closed valve injection. OVI refers to the fuel injection strategy that injects fuel into the intake port during the intake valve opening phase. The open valve injection strategy (e.g., SOI −500° CA) demonstrates distinct superiority over closed valve strategies (SOI −200°/−100° CA), achieving a 75% reduction in wall film mass. The long injection duration and early phasing allow the high-speed intake airflow to carry fuel directly into the cylinder, significantly minimizing wall film accumulation and avoiding the “fuel starvation” observed in closed-valve strategies. Additionally, OVI fully utilizes methanol’s latent heat to generate an intake cooling effect, which lowers the in-cylinder temperature and helps suppress knock. Furthermore, a dual-injector strategy is proposed to balance spatial atomization and rapid fuel transport, which achieves a 66.7% increase in the fuel amount entering the cylinder compared with the original strategy. This configuration effectively resolves the fuel induction lag, achieving stable combustion starting from the first cycle. Full article
Show Figures

Figure 1

20 pages, 1047 KB  
Article
The Influence of One-Time Physical Activity at a Temperature of −10 °C on Erythrocyte Deformability in Young Men
by Aneta Teległów, Konrad Rembiasz, Janusz Pobędza, Iga Wilczyńska, Zygmunt Dziechciowski, Andrzej Czerwiński, Jakub Leśniowski, Jakub Marchewka and Piotr Mika
Appl. Sci. 2026, 16(1), 535; https://doi.org/10.3390/app16010535 - 5 Jan 2026
Viewed by 125
Abstract
The study aimed to determine the effect of acute, one-time physical effort performed under different environmental temperature conditions on erythrocyte deformability in healthy young men. This exploratory randomized parallel-group study involved 30 men randomly assigned to an experimental group exercising at −10 °C [...] Read more.
The study aimed to determine the effect of acute, one-time physical effort performed under different environmental temperature conditions on erythrocyte deformability in healthy young men. This exploratory randomized parallel-group study involved 30 men randomly assigned to an experimental group exercising at −10 °C in a climatic chamber and a control group exercising under thermoneutral outdoor conditions. Erythrocyte deformability was assessed using the elongation index (EI), reflecting erythrocyte elasticity and the ability to pass through microcirculation vessels. Participants performed an incremental 20 m shuttle run test. Venous blood samples were collected before and immediately after exercise, and erythrocyte deformability was analyzed using a Lorrca analyzer across a shear stress range of 0.30–60.00 Pa. A two-factor repeated-measures analysis of variance was applied. An increase in EI after exercise was observed in both groups, predominantly at higher shear stress values, indicating enhanced erythrocyte deformability under conditions of increased shear forces. However, the magnitude of post-exertion changes differed between groups. At lower shear stress levels (0.30 Pa and 0.58 Pa), EI tended to decrease after exercise. These findings indicate that a single bout of physical effort influences erythrocyte deformability, while the potential effects of cold exposure on this response remain uncertain and warrant further investigation. Full article
(This article belongs to the Special Issue Exercise Physiology and Rheology—New Experience)
Show Figures

Figure 1

16 pages, 3451 KB  
Article
An Enhanced Automatic Emergency Braking Control Method Based on Vehicle-to-Vehicle Communication
by Chaoqun Huang and Fei Lai
Algorithms 2026, 19(1), 34; https://doi.org/10.3390/a19010034 - 1 Jan 2026
Viewed by 202
Abstract
The automatic emergency braking (AEB) system plays a crucial role in reducing rear-end collisions and is mandatory on certain heavy-duty vehicles, with future regulations extending to passenger cars. However, most current AEB systems are designed based on onboard sensors such as cameras and [...] Read more.
The automatic emergency braking (AEB) system plays a crucial role in reducing rear-end collisions and is mandatory on certain heavy-duty vehicles, with future regulations extending to passenger cars. However, most current AEB systems are designed based on onboard sensors such as cameras and radar, which may fail to prevent collisions in scenarios where the lead vehicle is already in a collision. To address this issue, this study proposes an enhanced AEB control method based on Vehicle-to-Vehicle (V2V) communication and onboard sensors. The method utilizes V2V communication and onboard sensors to predict obstacles ahead, applying effective braking when necessary. Simulation results in Matlab/Simulink R2022a show that the proposed V2V-based AEB control method reduces the risk of chain collisions, ensuring that the ego vehicle can avoid rear-end collisions even when the lead vehicle is involved in a crash. Three simulation scenarios were designed, where both the subject vehicle and the lead vehicle travel at 120 km/h. The following three distances between the subject vehicle and the lead vehicle were considered: 45 m, 70 m, and 30 m. When the lead vehicle detects an obstacle 30 m ahead and suddenly applies emergency braking, the lead vehicle fails to avoid a collision. In this case, the subject vehicle, equipped only with onboard sensors, is also unable to successfully avoid the crash. However, when the subject vehicle is equipped with both onboard sensors and vehicle-to-vehicle communication, it can prevent a rear-end collision with the lead vehicle, maintaining a vehicle-to-vehicle distance of 1 m, 6.8 m, and 3.1 m, respectively, during the stopping process. This control method contributes to advancing the active safety technologies of autonomous vehicles. Full article
Show Figures

Figure 1

18 pages, 3721 KB  
Article
Research on Longitudinal Dynamics of 20,000-Ton Heavy Haul Trains Considering Braking Characteristics
by Bo Zhang, Guoyun Liu, Shun Guo, Zhaorui Chang, Siqi Hu, Xingwen Wu and Wubin Cai
Mathematics 2026, 14(1), 158; https://doi.org/10.3390/math14010158 - 31 Dec 2025
Viewed by 232
Abstract
With the development of heavy-haul trains towards long formation and large axle load, the longitudinal impulse problem of trains is aggravated not only by improving the transport capacity of railway freight cars, but also by the braking characteristics such as the asymmetry in [...] Read more.
With the development of heavy-haul trains towards long formation and large axle load, the longitudinal impulse problem of trains is aggravated not only by improving the transport capacity of railway freight cars, but also by the braking characteristics such as the asymmetry in brake release, which has a greater impact on the longitudinal impulse of trains, seriously affecting the operation safety of trains. In this paper, a 20,000-ton heavy-haul train is taken as the research object, a train air brake system model is established by the parallel method, and the train longitudinal dynamics model is co-simulated to study the influence of braking characteristics on the longitudinal force of the train. The results indicate that the train is primarily subjected to compressive coupler forces during braking, with the maximum compressive force occurring at car 109. Compared to the maximum compressive coupler force observed under a 50 kPa reduction in brake pipe pressure, the maximum forces under 70 kPa and 100 kPa reductions increased by 16.8% and 36.8%, respectively. The controllable tail system influences the braking of middle and rear cars by supplying a braking source to the last car. When the delay time of the controllable tail system is set to 3 s, braking synchronization can be improved. Furthermore, compared to scenarios without last-car charging, the installation of a last-car charging device reduces the maximum tensile coupler force from 780 kN to 489 kN, representing a 37% decrease. The findings of this study provide theoretical insights for ensuring the safe operation of heavy-haul trains and contribute to enhancing their operational performance. Full article
(This article belongs to the Special Issue Recent Developments in Vehicle System Dynamics)
Show Figures

Figure 1

33 pages, 5502 KB  
Article
Study on Lightweight Algorithm for Multi-Scale Target Detection of Personnel and Equipment in Open Pit Mine
by Erxiang Zhao, Caimou Qiu and Chunyang Zhang
Appl. Sci. 2026, 16(1), 354; https://doi.org/10.3390/app16010354 - 29 Dec 2025
Viewed by 197
Abstract
Personnel and equipment target detection algorithms in open pit mines have significantly improved mining safety, production efficiency, and management optimization. However, achieving precise target localization in complex backgrounds, addressing mutual occlusion among multiple targets, and detecting large-scale and spatially extensive targets remain challenges [...] Read more.
Personnel and equipment target detection algorithms in open pit mines have significantly improved mining safety, production efficiency, and management optimization. However, achieving precise target localization in complex backgrounds, addressing mutual occlusion among multiple targets, and detecting large-scale and spatially extensive targets remain challenges for current target detection algorithms in open pit mining areas. To address these issues, this study proposes a novel target detection algorithm named RSLH-YOLO, specifically designed for personnel and equipment detection in complex open pit mining scenarios. Based on the YOLOv11 (You Only Look Once version 11) framework, the algorithm enhances the backbone network by introducing receptive field attention convolution and dilated convolution to expand the model’s receptive field and reduce information loss, thereby improving target localization capability in complex environments. Additionally, a bidirectional fusion mechanism between high-resolution and low-resolution features is adopted, along with a dedicated small-target detection layer, to strengthen multi-scale target recognition. Finally, a lightweight detection head is implemented to reduce model parameters and computational costs while improving occlusion handling, making the model more suitable for personnel and vehicle detection in mining environments. Experimental results demonstrate that RSLH-YOLO achieves a mAP (mean average precision) of 89.1%, surpassing the baseline model by 3.2 percentage points while maintaining detection efficiency. These findings indicate that the proposed model is applicable to open pit mining scenarios with limited computational resources, providing effective technical support for personnel and equipment detection in mining operations. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

11 pages, 1724 KB  
Article
Coupling Dynamic Behavior Analysis of Multiple Vibration Excitation Sources in Heavy-Duty Mining Screen
by Xiaohao Li, Yang Zhou, Mingzheng Bao and Yahui Wang
Machines 2026, 14(1), 41; https://doi.org/10.3390/machines14010041 - 29 Dec 2025
Viewed by 142
Abstract
A heavy-duty vibrating screen with excitation sources is a mining vibrating machine synchronized by two eccentric rotors, exhibiting typical coupled dynamic behavior. Aiming at the coupling dynamic behavior of dual excitation sources based on the nonlinear vibration of a heavy-duty mining screen, theoretical [...] Read more.
A heavy-duty vibrating screen with excitation sources is a mining vibrating machine synchronized by two eccentric rotors, exhibiting typical coupled dynamic behavior. Aiming at the coupling dynamic behavior of dual excitation sources based on the nonlinear vibration of a heavy-duty mining screen, theoretical research and experimental analysis of coupling synchronization are carried out, and the dynamic reasons for the dual excitation sources to achieve vibration synchronization are discussed. Based on nonlinear vibration theory, electromechanical coupling nonlinear dynamics equations for a dual excitation source vibrating screen are established in this paper, and the coupled dynamics factors of the two eccentric rotors are analyzed. The impact of coupling strength on the equilibrium state of the nonlinear vibration system is discussed, and the evolution process of the synchronous motion of the two eccentric rotors is further investigated, revealing the causal relationship by which the dual excitation sources achieve synchronization due to coupled dynamics behavior. The results show that the coupling effect of the multi-exciter is based on the nonlinear vibration of the vibration system, and the motion characteristics and motion mode of the exciter will change, and, finally, a coupled synchronous motion state will be reached. The research results can provide ideas for the mechanical structure design of heavy-duty mining screens excited by multiple excitation sources and can provide a theoretical basis and application reference for the selection of structural parameters of this kind of mining machinery. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

15 pages, 1584 KB  
Article
Curvature-Constrained Motion Planning Method for Differential-Drive Mobile Robot Platforms
by Rudolf Krecht and Áron Ballagi
Appl. Sci. 2026, 16(1), 322; https://doi.org/10.3390/app16010322 - 28 Dec 2025
Viewed by 309
Abstract
Compact heavy-duty skid-steer robots are increasingly used for city logistics and intralogistics tasks where high payload capacity and stability are required. However, their limited maneuverability and non-negligible turning radius challenge conventional waypoint-tracking controllers that assume unconstrained motion. This paper proposes a curvature-constrained trajectory [...] Read more.
Compact heavy-duty skid-steer robots are increasingly used for city logistics and intralogistics tasks where high payload capacity and stability are required. However, their limited maneuverability and non-negligible turning radius challenge conventional waypoint-tracking controllers that assume unconstrained motion. This paper proposes a curvature-constrained trajectory planning and control framework that guarantees geometrically feasible motion for such platforms. The controller integrates an explicit curvature limit into a finite-state machine, ensuring smooth heading transitions without in-place rotation. The overall architecture integrates GNSS-RTK and IMU localization, modular ROS 2 nodes for trajectory execution, and a supervisory interface developed in Foxglove Studio for intuitive mission planning. Field trials on a custom four-wheel-drive skid-steer platform demonstrate centimeter-scale waypoint accuracy on straight and curved trajectories, with stable curvature compliance across all tested scenarios. The proposed method achieves the smoothness required by most applications while maintaining the computational simplicity of geometric followers. Computational simplicity is reflected in the absence of online optimization or trajectory reparameterization; the controller executes a constant-time geometric update per cycle, independent of waypoint count. The results confirm that curvature-aware control enables reliable navigation of compact heavy-duty robots in semi-structured outdoor environments and provides a practical foundation for future extensions. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

47 pages, 2127 KB  
Article
Overcoming Challenges in the Transition Towards Battery Electric and Software-Intensive Modular Heavy-Duty Vehicles
by Rakesh Kadaba Jayaprakash, Ellen Bergseth, Martin Törngren and David Williamsson
Systems 2026, 14(1), 24; https://doi.org/10.3390/systems14010024 - 25 Dec 2025
Viewed by 392
Abstract
The automotive industry is undergoing a significant transition, where the development of Battery Electric Vehicles (BEV) and the increasing use of intelligent vehicle functions are transforming vehicles into advanced Cyber-Physical Systems. For heavy-duty OEMs, this transition challenges a Product Development (PD) heritage inherent [...] Read more.
The automotive industry is undergoing a significant transition, where the development of Battery Electric Vehicles (BEV) and the increasing use of intelligent vehicle functions are transforming vehicles into advanced Cyber-Physical Systems. For heavy-duty OEMs, this transition challenges a Product Development (PD) heritage inherent in an ecosystem of established processes, IT systems, and organization structures. This study primarily comprises semi-structured interviews, conducted at a heavy-duty OEM, and a focused literature search. The study contributes by the following: (i) identifying key PD challenges in the ICE–BEV transition, (ii) outlining obstacles in adopting Model-Based Systems Engineering (MBSE) for managing architectural complexity, and (iii) synthesizing recommendations for architecture-driven collaboration. Interview findings, highlighted intertwined challenges such as fragmented architecture descriptions across physical and software domains, weak continuity between early-phase system context and detailed design, and collaboration constrained by inconsistent terminologies, strained communication channels, and manual reconciliation of architectural information through documents and disconnected tools. These factors hinder function-component traceability and concurrent development across domains. While MBSE is often recommended to address such issues, practical obstacles are noted, including trade-offs between modeling effort and fidelity, limited support for early spatial layout integration, difficulties in bridging physical and software architectures, and the limited integration of document-based practices preferred in early conceptual phases. Based on these insights, the study recommends architecture-driven collaboration anchored in a federated vehicle-architecture description, supported by a distributed systems-engineering function. A layered development approach combining document artifacts with progressively rigorous MBSE is advised for early-phase agility, later-stage traceability, and structured information flow. Full article
(This article belongs to the Special Issue Advanced Model-Based Systems Engineering)
Show Figures

Figure 1

24 pages, 3769 KB  
Article
Study on Transient Thermal Characteristics of Aviation Wet Clutches with Conical Separate Discs for Helicopters in Successive Shifting
by Xiaokang Li, Dahuan Wei, Yixiong Yan, Hongzhi Yan, Mei Yin and Yexin Xiao
Lubricants 2026, 14(1), 10; https://doi.org/10.3390/lubricants14010010 - 25 Dec 2025
Viewed by 368
Abstract
Thermal gradients induced by friction frequently trigger buckling deformation of the friction elements, especially in heavy-duty helicopters. Nevertheless, the subsequent influence of such post-buckling deformation on transient thermal characteristics during helicopter successive shifting remains insufficiently addressed in existing research. In the present work, [...] Read more.
Thermal gradients induced by friction frequently trigger buckling deformation of the friction elements, especially in heavy-duty helicopters. Nevertheless, the subsequent influence of such post-buckling deformation on transient thermal characteristics during helicopter successive shifting remains insufficiently addressed in existing research. In the present work, a gap model for friction pairs with conical separate discs is first proposed. Subsequently, a comprehensive thermal-fluid-dynamic model incorporating spline friction, split springs, and time-varying thermal parameters is developed to investigate the transient thermal characteristics of wet clutches with conical separate discs in successive shifting. A corresponding qualitative analysis is performed to explore the transient thermal response and influence mechanisms of operating parameters, including shifting interval, rotation speed and control oil pressure. The results indicate that a rise in the control oil pressure from 1.5 MPa to 1.9 MPa facilitates a 42.65% increase in the maximum radial temperature gradient and augments the maximum axial temperature gradient by 24.35%. Meanwhile, an increase in rotation speed accelerates heat dissipation but compromises the uniformity of the temperature field. Additionally, extended shifting intervals under inadequate heat dissipation exacerbates thermal buildup, driving a persistent and significant escalation in the temperature of friction elements. The conclusions can provide a theoretical basis for the optimal design, condition monitoring, and fault diagnosis of aviation clutches. Full article
Show Figures

Figure 1

24 pages, 5595 KB  
Article
Online End Deformation Calculation Method for Mill Relining Manipulator Based on Structural Decomposition and Kolmogorov-Arnold Network
by Mingyuan Wang, Yujun Xue, Jishun Li, Shuai Li and Yunhua Bai
Machines 2026, 14(1), 21; https://doi.org/10.3390/machines14010021 - 23 Dec 2025
Viewed by 290
Abstract
Due to the large mass, high end load, and long action distance of a mill relining manipulator, gravity effects inevitably lead to a reduction in end effector positioning accuracy. To solve this problem, an online calculation method is proposed to realize real-time end [...] Read more.
Due to the large mass, high end load, and long action distance of a mill relining manipulator, gravity effects inevitably lead to a reduction in end effector positioning accuracy. To solve this problem, an online calculation method is proposed to realize real-time end effector deformation prediction. First, a manipulator is simplified into two cantilever beams: the upper arm and the forearm. Second, a reaction force and moment transformation model is established based on the coupling relationship between the forearm and upper arm. Third, finite element (FE) static analysis and simulation are carried out to obtain the end deformation. A total of 3528 discrete joint configurations are selected to cover the entire joint space, and their corresponding FE solutions are used to establish the end deformation offline dataset. Finally, an online deformation calculation algorithm based on Kolmogorov–Arnold networks (KANs) is developed to predict end deformation in any working condition. Visualization analysis and validation experiments are conducted and demonstrate the superiority of the proposed method in reducing gravity effects and improving computational efficiency. In summary, the proposed method provides support for end position compensation, especially for heavy-duty manipulators. Full article
(This article belongs to the Special Issue The Kinematics and Dynamics of Mechanisms and Robots)
Show Figures

Figure 1

Back to TopTop