Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,543)

Search Parameters:
Keywords = heat pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2287 KiB  
Article
Compressive Strength Impact on Cut Depth of Granite During Abrasive Water Jet Machining
by Isam Qasem, La’aly A. Al-Samrraie and Khalideh Al Bkoor Alrawashdeh
J. Manuf. Mater. Process. 2025, 9(8), 262; https://doi.org/10.3390/jmmp9080262 - 5 Aug 2025
Viewed by 105
Abstract
Background: Compared to the conventional method of machining granite, abrasive water jet machining (AWJM) offers several benefits, including flexible cutting mechanisms and machine efficiency, among other possible advantages. The high-speed particles carried by water remove the materials, preventing heat damage and maintaining the [...] Read more.
Background: Compared to the conventional method of machining granite, abrasive water jet machining (AWJM) offers several benefits, including flexible cutting mechanisms and machine efficiency, among other possible advantages. The high-speed particles carried by water remove the materials, preventing heat damage and maintaining the granite’s structure. Methods: Three types of granite with different compressive strengths are investigated in terms of the effects of pump pressure (P), traverse speed (T), and abrasive mass flow (A) on the cutting depth. Results: The results of the study demonstrated that the coarse-grained granite negatively affected the penetration depth, while the fine-grained granite produced a higher cutting depth. The value of an optimal depth of penetration was also generated; for example, the optimum depth obtained for Black Galaxy Granite, M1 (32.27 mm), was achieved at P = 300 MPa, T = 100 mm/min, and A = 180.59 g/min. Conclusions: In terms of processing parameters, the maximum penetration depth can be achieved in granite with a higher compressive strength. Full article
Show Figures

Figure 1

18 pages, 2664 KiB  
Article
Analysis of Heat Exchange Efficiency and Influencing Factors of Energy Tunnels: A Case Study of the Torino Metro in Italy
by Mei Yin, Pengcheng Liu and Zhenhuang Wu
Buildings 2025, 15(15), 2704; https://doi.org/10.3390/buildings15152704 - 31 Jul 2025
Viewed by 185
Abstract
Both ground source heat pumps (GSHPs) and energy underground structures are engineered systems that utilize shallow geothermal energy. However, due to the construction complexity and associated costs of energy tunnels, their heat exchange efficiency relative to GSHPs remains a topic worthy of in-depth [...] Read more.
Both ground source heat pumps (GSHPs) and energy underground structures are engineered systems that utilize shallow geothermal energy. However, due to the construction complexity and associated costs of energy tunnels, their heat exchange efficiency relative to GSHPs remains a topic worthy of in-depth investigation. In this study, a thermal–hydraulic (TH) coupled finite element model was developed based on a section of the Torino Metro Line in Italy to analyze the differences in and influencing factors of heat transfer performance between energy tunnels and GSHPs. The model was validated by comparing the outlet temperature curves under both winter and summer loading conditions. Based on this validated model, a parametric analysis was conducted to examine the effects of the tunnel air velocity, heat carrier fluid velocity, and fluid type. The results indicate that, under identical environmental conditions, energy tunnels exhibit higher heat exchange efficiency than conventional GSHP systems and are less sensitive to external factors such as fluid velocity. Furthermore, a comparison of different heat carrier fluids, including alcohol-based fluids, refrigerants, and water, revealed that the fluid type significantly affects thermal performance, with the refrigerant R-134a outperforming ethylene glycol and water in both heating and cooling efficiency. Full article
Show Figures

Figure 1

24 pages, 3325 KiB  
Article
Multi-Energy Flow Optimal Dispatch of a Building Integrated Energy System Based on Thermal Comfort and Network Flexibility
by Jian Sun, Bingrui Sun, Xiaolong Cai, Dingqun Liu and Yongping Yang
Energies 2025, 18(15), 4051; https://doi.org/10.3390/en18154051 - 30 Jul 2025
Viewed by 251
Abstract
An efficient integrated energy system (IES) can enhance the potential of building energy conservation and carbon mitigation. However, imbalances between user-side demand and supply side output present formidable challenges to the operational dispatch of building energy systems. To mitigate heat rejection and improve [...] Read more.
An efficient integrated energy system (IES) can enhance the potential of building energy conservation and carbon mitigation. However, imbalances between user-side demand and supply side output present formidable challenges to the operational dispatch of building energy systems. To mitigate heat rejection and improve dispatch optimization, an integrated building energy system incorporating waste heat recovery via an absorption heat pump based on the flow temperature model is adopted. A comprehensive analysis was conducted to investigate the correlation among heat pump operational strategies, thermal comfort, and the dynamic thermal storage capacity of piping network systems. The optimization calculations and comparative analyses were conducted across five cases on typical season days via the CPLEX solver with MATLAB R2018a. The simulation results indicate that the operational modes of absorption heat pump reduced the costs by 4.4–8.5%, while the absorption rate of waste heat increased from 37.02% to 51.46%. Additionally, the utilization ratio of battery and thermal storage units decreased by up to 69.82% at most after considering the pipeline thermal inertia and thermal comfort, thus increasing the system’s energy-saving ability and reducing the pressure of energy storage equipment, ultimately increasing the scheduling flexibility of the integrated building energy system. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Figure 1

17 pages, 3138 KiB  
Article
Addressing Energy Performance Challenges in a 24-h Fire Station Through Green Remodeling
by June Hae Lee, Jae-Sik Kang and Byonghu Sohn
Buildings 2025, 15(15), 2658; https://doi.org/10.3390/buildings15152658 - 28 Jul 2025
Viewed by 190
Abstract
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric [...] Read more.
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric heat pumps, energy recovery ventilation, and rooftop photovoltaic systems), while maintaining uninterrupted emergency operations. A detailed analysis of annual energy use before and after the remodeling shows a 44% reduction in total energy consumption, significantly exceeding the initial reduction target of 20%. While electricity use increased modestly during winter due to the electrification of heating systems, gas consumption dropped sharply by 63%, indicating a shift in energy source and improved efficiency. The building’s airtightness also improved significantly, with a reduction in the air change rate. The project further addressed unique challenges associated with continuously operated public facilities, such as insulating the fire apparatus garage and executing phased construction to avoid operational disruption. This study contributes valuable insights into green remodeling strategies for mission-critical public buildings, emphasizing the importance of integrating technical upgrades with operational constraints to achieve verified energy performance improvements. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 3084 KiB  
Article
CFD Analysis of a Falling Film Evaporator Using the Low-GWP Refrigerant R1336mzz(Z) in High-Temperature Heat Pump Applications
by Shehryar Ishaque, Muhammad Saeed, Qazi Shahzad Ali, Naveed Ullah, Jedd C. Junio and Man-Hoe Kim
Processes 2025, 13(8), 2398; https://doi.org/10.3390/pr13082398 - 28 Jul 2025
Viewed by 327
Abstract
High-temperature heat pump systems are essential for industrial processes that usually require high-temperature and high-pressure steam. An efficient design of these systems is critical for minimizing fossil fuel consumption, thereby contributing to a significant reduction in carbon emissions. One of the key components [...] Read more.
High-temperature heat pump systems are essential for industrial processes that usually require high-temperature and high-pressure steam. An efficient design of these systems is critical for minimizing fossil fuel consumption, thereby contributing to a significant reduction in carbon emissions. One of the key components of these systems is the horizontal falling film evaporator, which is commonly employed due to its high thermal efficiency and low refrigerant charge. This study presents a preliminary design of a falling film evaporator to meet the target of the heat duty value of 2.2 MW. The phase-change dynamics inherent to the falling film evaporation process were critically analyzed using ANSYS Fluent (2024 R2). The low-global warming potential refrigerant R1336mzz(Z) was incorporated as a refrigerant on the shell side, while hot water was used in the tubes. The study identified key regions of film flow to maximize vapor production and design optimizations. The discussed performance parameters and operational mechanisms of the evaporator are prevailing features, particularly with the adoption of environmental regulations. Overall, the simulation results offer valuable insights into heat transfer mechanisms and evaporator effectiveness for advancing heat pump technologies in industrial applications. Full article
(This article belongs to the Special Issue Application of Refrigeration and Heat Pump Technology)
Show Figures

Figure 1

21 pages, 1558 KiB  
Article
Total Performance in Practice: Energy Efficiency in Modern Developer-Built Housing
by Wiktor Sitek, Michał Kosakiewicz, Karolina Krysińska, Magdalena Daria Vaverková and Anna Podlasek
Energies 2025, 18(15), 4003; https://doi.org/10.3390/en18154003 - 28 Jul 2025
Viewed by 233
Abstract
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building [...] Read more.
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building is designed with integrated systems that minimize energy consumption while maintaining resident comfort. The building is equipped with an air-to-water heat pump, underfloor heating, mechanical ventilation with heat recovery, and automatic temperature control systems. Energy efficiency was assessed using ArCADia–TERMOCAD 8.0 software in accordance with Polish Technical Specifications (TS) and verified by monitoring real-time electricity consumption during the heating season. The results show a PED from non-renewable sources of 54.05 kWh/(m2·year), representing a 23% reduction compared to the Polish regulatory limit of 70 kWh/(m2·year). Real-time monitoring conducted from December 2024 to April 2025 confirmed these results, indicating an actual energy demand of approximately 1771 kWh/year. Domestic hot water (DHW) preparation accounted for the largest share of energy consumption. Despite its dependence on grid electricity, the building has the infrastructure to enable future photovoltaic (PV) installation, offering further potential for emissions reduction. The results confirm that Total Performance strategies are not only compliant with applicable standards, but also economically and environmentally viable. They represent a scalable model for sustainable residential construction, in line with the European Union’s (EU’s) decarbonization policy and the goals of the European Green Deal. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

35 pages, 3995 KiB  
Review
Recent Advancements in Latent Thermal Energy Storage and Their Applications for HVAC Systems in Commercial and Residential Buildings in Europe—Analysis of Different EU Countries’ Scenarios
by Belayneh Semahegn Ayalew and Rafał Andrzejczyk
Energies 2025, 18(15), 4000; https://doi.org/10.3390/en18154000 - 27 Jul 2025
Viewed by 626
Abstract
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) [...] Read more.
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) has emerged as a promising strategy to enhance HVAC efficiency. This review systematically examines the role of latent thermal energy storage using phase change materials (PCMs) in optimizing HVAC performance to align with EU climate targets, including the Energy Performance of Buildings Directive (EPBD) and the Energy Efficiency Directive (EED). By analyzing advancements in PCM-enhanced HVAC systems across residential and commercial sectors, this study identifies critical pathways for reducing energy demand, enhancing grid flexibility, and accelerating the transition to nearly zero-energy buildings (NZEBs). The review categorizes PCM technologies into organic, inorganic, and eutectic systems, evaluating their integration into thermal storage tanks, airside free cooling units, heat pumps, and building envelopes. Empirical data from case studies demonstrate consistent energy savings of 10–30% and peak load reductions of 20–50%, with Mediterranean climates achieving superior cooling load management through paraffin-based PCMs (melting range: 18–28 °C) compared to continental regions. Policy-driven initiatives, such as Germany’s renewable integration mandates for public buildings, are shown to amplify PCM adoption rates by 40% compared to regions lacking regulatory incentives. Despite these benefits, barriers persist, including fragmented EU standards, life cycle cost uncertainties, and insufficient training. This work bridges critical gaps between PCM research and EU policy implementation, offering a roadmap for scalable deployment. By contextualizing technical improvement within regulatory and economic landscapes, the review provides strategic recommendations to achieve the EU’s 2030 emissions reduction targets and 2050 climate neutrality goals. Full article
Show Figures

Figure 1

16 pages, 3470 KiB  
Article
Performance Analysis of Multi-Source Heat Pumps: A Regression-Based Approach to Energy Performance Estimation
by Reza Alijani and Fabrizio Leonforte
Sustainability 2025, 17(15), 6804; https://doi.org/10.3390/su17156804 - 26 Jul 2025
Viewed by 313
Abstract
The growing demand for energy-efficient heating, ventilation, and air conditioning (HVAC) systems has increased interest in multi-source heat pumps as a sustainable solution. While extensive research has been conducted on heat pump performance prediction, there is still a lack of practical tools for [...] Read more.
The growing demand for energy-efficient heating, ventilation, and air conditioning (HVAC) systems has increased interest in multi-source heat pumps as a sustainable solution. While extensive research has been conducted on heat pump performance prediction, there is still a lack of practical tools for early-stage system evaluation. This study addresses that gap by developing regression-based models to estimate the performance of various heat pump configurations, including air-source, ground-source, and dual-source systems. A simplified performance estimation model was created, capable of delivering results with accuracy levels comparable to TRNSYS simulation outputs, making it a valuable and accessible tool for system evaluation. The analysis was conducted across nine climatic zones in Italy, considering key environmental factors such as air temperature, ground temperature, and solar irradiance. Among the tested configurations, hybrid systems like Solar-Assisted Ground-Source Heat Pumps (SAGSHP) achieved the highest performance, with SCOP values up to 4.68 in Palermo and SEER values up to 5.33 in Milan. Regression analysis confirmed strong predictive accuracy (R2 = 0.80–0.95) and statistical significance (p < 0.05), emphasizing the models’ reliability across different configurations and climatic conditions. By offering easy-to-use regression formulas, this study enables engineers and policymakers to estimate heat pump performance without relying on complex simulations. Full article
(This article belongs to the Special Issue Sustainability and Energy Performance of Buildings)
Show Figures

Figure 1

16 pages, 2583 KiB  
Article
Burst-Mode Operation of End-Pumped, Passively Q-Switched (Er/Yb):Glass Lasers
by Stephen R. Chinn, Lew Goldberg and A. D. Hays
Photonics 2025, 12(8), 750; https://doi.org/10.3390/photonics12080750 - 25 Jul 2025
Viewed by 174
Abstract
We describe the output characteristics of a compact, passively Q-switched, diode-end-pumped (Er/Yb):Glass laser operating in a multi-pulse burst mode. Such operation enables much higher optical efficiency and larger output of total energy than possible with conventional solitary pulse emissions. The laser generated a [...] Read more.
We describe the output characteristics of a compact, passively Q-switched, diode-end-pumped (Er/Yb):Glass laser operating in a multi-pulse burst mode. Such operation enables much higher optical efficiency and larger output of total energy than possible with conventional solitary pulse emissions. The laser generated a 15-pulse burst of pulses at 1.5 μm with a combined energy of 5.8 mJ. Measurements of pulse energies, spatial mode characteristics, output beam divergence, and impact of thermal effects in the (Er/Yb):Glass are described. These results are compared to predictions of a numerical simulation using a finite-difference beam propagation method (FD-BPM) that incorporates thermal effects caused by distributed local heating in the glass. We show good agreement between the measured and simulated laser output characteristics. Full article
(This article belongs to the Special Issue Laser Technology and Applications)
Show Figures

Figure 1

19 pages, 8482 KiB  
Article
Waste Heat Recovery in the Energy-Saving Technology of Stretch Film Production
by Krzysztof Górnicki, Paweł Obstawski and Krzysztof Tomczuk
Energies 2025, 18(15), 3957; https://doi.org/10.3390/en18153957 - 24 Jul 2025
Viewed by 348
Abstract
The stretch film production is highly energy intensive. The components of the technological line are powered by electrical energy, and the heat is used to change the physical state of the raw material (granules). The raw material is poured into FCR (the first [...] Read more.
The stretch film production is highly energy intensive. The components of the technological line are powered by electrical energy, and the heat is used to change the physical state of the raw material (granules). The raw material is poured into FCR (the first calender roller). To solidify the liquid raw material, the calendar must be cooled. The low-temperature heat, treated as waste heat, has dissipated in the atmosphere. Technological innovations were proposed: (a) the raw material comprises raw material (primary) and up to 80% recyclate (waste originating mainly from agriculture), (b) the use of low-temperature waste heat (the cooling of FCR in the process of foil stretch production). A heat recovery line based on two compressor heat pumps (HP, hydraulically coupled) was designed. The waste heat (by low-temperature HP) was transformed into high-temperature heat (by high-temperature HP) and used to prepare the raw material. The proposed technological line enables the management of difficult-to-manage post-production waste (i.e., agriculture and other economic sectors). It reduces energy consumption and raw materials from non-renewable sources (CO2 and other greenhouse gas emissions are reducing). It implements a closed-loop economy based on renewable energy sources (according to the European Green Deal). Full article
(This article belongs to the Special Issue Challenges and Research Trends of Energy Management)
Show Figures

Figure 1

25 pages, 1696 KiB  
Article
Dual-Level Electric Submersible Pump (ESP) Failure Classification: A Novel Comprehensive Classification Bridging Failure Modes and Root Cause Analysis
by Mostafa A. Sobhy, Gehad M. Hegazy and Ahmed H. El-Banbi
Energies 2025, 18(15), 3943; https://doi.org/10.3390/en18153943 - 24 Jul 2025
Viewed by 324
Abstract
Electric submersible pumps (ESPs) are critical for artificial lift operations; however, they are prone to frequent failures, often resulting in high operational costs and production downtime. Traditional ESP failure classifications are limited by lack of standardization and the conflation of failure modes with [...] Read more.
Electric submersible pumps (ESPs) are critical for artificial lift operations; however, they are prone to frequent failures, often resulting in high operational costs and production downtime. Traditional ESP failure classifications are limited by lack of standardization and the conflation of failure modes with root causes. To address these limitations, this study proposes a new two-step integrated failure modes and root cause (IFMRC) classification system. The new framework clearly distinguishes between failure modes and root causes, providing a systematic, structured approach that enhances fault diagnosis and failure analysis and can lead to better failure prevention strategies. This methodology was validated using a case study of over 4000 ESP installations. The data came from Egypt’s Western Desert, covering a decade of operational data. The sources included ESP databases, workover records, and detailed failure investigation (DIFA) reports. The failure modes were categorized into electrical, mechanical, hydraulic, chemical, and operational types, while root causes were linked to environmental, design, operational, and equipment factors. Statistical analysis, in this case study, revealed that motor short circuits, low flow conditions, and cable short circuits were the most frequent failure modes, with excessive heat, scale deposition, and electrical grounding faults being the dominant root causes. This study underscores the importance of accurate root cause failure classification, robust data acquisition, and expanded failure diagnostics to improve ESP reliability. The proposed IFMRC framework addresses limitations in conventional taxonomies and facilitates ongoing enhancement of ESP design, operation, and maintenance in complex field conditions. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

17 pages, 1816 KiB  
Article
Physical Aspects, Phytochemical Profiles, and Nutritional Properties of Lemon (Citrus limon) Slices Under Different Drying Technologies
by Zhirong Wang, Qingqing Fu, Guijie Hao, Yuanwei Gu, Tianqi Sun, Lu Gao, Bo Wang, Shuai Wang, Xiangfeng Zheng, Zhenquan Yang and Shengqi Rao
Foods 2025, 14(15), 2586; https://doi.org/10.3390/foods14152586 - 23 Jul 2025
Viewed by 169
Abstract
Dried lemon slices (LSs) have become increasingly popular as a healthful beverage when infused in hot water. This study examined the effects of freeze drying (FD), hot air drying (HAD), heat pump drying (HPD), and far-infrared drying (FID) on the quality of dried [...] Read more.
Dried lemon slices (LSs) have become increasingly popular as a healthful beverage when infused in hot water. This study examined the effects of freeze drying (FD), hot air drying (HAD), heat pump drying (HPD), and far-infrared drying (FID) on the quality of dried LSs and their brewed beverages. The results show that FD-LSs and their corresponding beverages have the most appealing appearance and maximum levels of ascorbic acid (2.47 and 0.80 mg/g, respectively), synephrine (8.15 and 0.94 mg/g, respectively), and the overwhelming majority of natural and available phenolic compounds, as well as the strongest antioxidant activity, although numerous volatile compounds in FD-LSs were in the lowest abundances. HPD-LSs exhibited similar trends to FD-LSs but contained the peak concentrations of limonene (2258.87 μg/g), γ-terpinene (704.19 μg/g), β-pinene (502.92 μg/g), and α-pinene (188.91 μg/g), which were the four most abundant volatile compounds in dried LSs. Additionally, active ingredients in HPD-LSs generally featured relative high levels of available amounts. In contrast, HAD- and FID-LSs typically displayed unfavorable coloration and low retention levels of natural and available active ingredients. Consequently, FD and HPD demonstrate superior suitability for the commercial-scale production of dried LSs. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

23 pages, 2347 KiB  
Review
Heat Pump Technology in the Field of Fruit and Vegetable Drying: A Review
by Lichun Zhu, Xinyu Ji, Hao Yang, Xinze Cao, Wenchao Wang, Mengke Liang, Jiapin Li, Qian Zhang, Xuhai Yang and Zhihua Geng
Foods 2025, 14(15), 2569; https://doi.org/10.3390/foods14152569 - 22 Jul 2025
Viewed by 309
Abstract
Single or combined heat pump technologies are generally used to dry fruits and vegetables, with combined heat pump technologies offering superior performance. This review summarizes the applications of single and combined heat pump drying technologies for fruits and vegetables in China and globally, [...] Read more.
Single or combined heat pump technologies are generally used to dry fruits and vegetables, with combined heat pump technologies offering superior performance. This review summarizes the applications of single and combined heat pump drying technologies for fruits and vegetables in China and globally, discusses their current advantages and disadvantages, and outlines future development directions for heat pump-based drying methods. Future research should focus on improving combined heat pump technologies and enhancing the performance of single heat pump drying systems to enhance the effectiveness and feasibility of these technologies for drying fruits and vegetables. Improved technologies would also help meet the increasing demand for high-quality food and social development. Moreover, changes in the mechanisms of key indicators, such as mechanical and thermodynamic properties, should be continuously monitored while drying various fruits and vegetables. Future research into combined heat pump technologies should focus on determining the conversion methods between pairs of drying technologies and identifying the most effective drying technology combinations. Future research into single heat pump technologies should focus on improving the performance levels of core components, such as compressors and drying media. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

16 pages, 5647 KiB  
Article
Performance Degradation of Ground Source Heat Pump Systems Under Ground Temperature Disturbance: A TRNSYS-Based Simulation Study
by Yeqi Huang, Zhongchao Zhao and Mengke Sun
Energies 2025, 18(15), 3909; https://doi.org/10.3390/en18153909 - 22 Jul 2025
Viewed by 199
Abstract
Ground temperature (GT) variation significantly affects the energy performance of ground source heat pump (GSHP) systems. Both long-term thermal accumulation and short-term dynamic responses contribute to the degradation of the coefficient of performance (COP), especially under cooling-dominated conditions. This study develops a mechanism-based [...] Read more.
Ground temperature (GT) variation significantly affects the energy performance of ground source heat pump (GSHP) systems. Both long-term thermal accumulation and short-term dynamic responses contribute to the degradation of the coefficient of performance (COP), especially under cooling-dominated conditions. This study develops a mechanism-based TRNSYS simulation that integrates building loads, subsurface heat transfer, and dynamic heat pump operation. A 20-year case study in Shanghai reveals long-term performance degradation driven by thermal boundary shifts. Results show that GT increases by over 12 °C during the simulation period, accompanied by a progressive increase in ΔT by approximately 0.20 K and a consistent decline in COP. A near-linear inverse relationship is observed, with COP decreasing by approximately 0.038 for every 1 °C increase in GT. In addition, ΔT is identified as a key intermediary linking subsurface thermal disturbance to efficiency loss. A multi-scale response framework is established to capture both annual degradation and daily operational shifts along the Load–GT–ΔT–COP pathway. This study provides a quantitative explanation of the thermal degradation process and offers theoretical guidance for performance forecasting, operational threshold design, and thermal regulation in GSHP systems. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

20 pages, 6510 KiB  
Article
Research on the Operating Performance of a Combined Heat and Power System Integrated with Solar PV/T and Air-Source Heat Pump in Residential Buildings
by Haoran Ning, Fu Liang, Huaxin Wu, Zeguo Qiu, Zhipeng Fan and Bingxin Xu
Buildings 2025, 15(14), 2564; https://doi.org/10.3390/buildings15142564 - 20 Jul 2025
Viewed by 365
Abstract
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power [...] Read more.
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power generation in a real residential building. The back panel of the PV/T component featured a novel polygonal Freon circulation channel design. A prototype of the combined heating and power supply system was constructed and tested in Fuzhou City, China. The results indicate that the average coefficient of performance (COP) of the system is 4.66 when the ASHP operates independently. When the PV/T component is integrated with the ASHP, the average COP increases to 5.37. On sunny days, the daily average thermal output of 32 PV/T components reaches 24 kW, while the daily average electricity generation is 64 kW·h. On cloudy days, the average daily power generation is 15.6 kW·h; however, the residual power stored in the battery from the previous day could be utilized to ensure the energy demand in the system. Compared to conventional photovoltaic (PV) systems, the overall energy utilization efficiency improves from 5.68% to 17.76%. The hot water temperature stored in the tank can reach 46.8 °C, satisfying typical household hot water requirements. In comparison to standard PV modules, the system achieves an average cooling efficiency of 45.02%. The variation rate of the system’s thermal loss coefficient is relatively low at 5.07%. The optimal water tank capacity for the system is determined to be 450 L. This system demonstrates significant potential for providing efficient combined heat and power supply for buildings, offering considerable economic and environmental benefits, thereby serving as a reference for the future development of low-carbon and energy-saving building technologies. Full article
Show Figures

Figure 1

Back to TopTop