energies-logo

Journal Browser

Journal Browser

Development of Distributed Energy Systems Based on Renewable Energy Sources—Current Status and Development Prospects

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "A: Sustainable Energy".

Deadline for manuscript submissions: 10 November 2025 | Viewed by 7619

Special Issue Editors


E-Mail Website
Guest Editor
Department of Renewable Energy Engineering and Technical Systems, Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
Interests: renewable energy installations; PV; heat pump; small wind turbines; small water turbines; energy efficiency; hybrid RES installations
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Power Electronics and Energy Control Systems, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Interests: building and home automation; building energy management systems; smart grid; electrical and electronics engineering; energy efficiency in buildings; renewable energy technologies; communication protocols; automotive software and hardware in the loop

E-Mail Website
Guest Editor
Institute of Energy, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
Interests: heat transfer; thermal energy storage systems; boiling; condensation; fluid; convection; thermal engineering; fluid mechanics; engineering thermodynamics; heat exchangers; refrigeration and air conditioning; thermal conductivity; thermal management; bubble dynamics; thermography; waste heat recovery; energy saving; renewable energy technologies; object-oriented calculation; image data analysis

Special Issue Information

Dear Colleagues,

This Special Issue discusses the current status as well as the potential and development prospects of distributed energy systems based on renewable energy sources. Ultimately, distributed energy can supplement energy supplies in less urbanized areas and guarantee sustainable development in areas planning to increase energy independence where energy networks are missing, or their construction and maintenance are too expensive. The main reason for the development of distributed energy is technological progress contributing to a decrease in the costs of energy production from renewable sources, as well as the desire to use locally available energy resources, e.g., in the form of waste energy in residential systems, in sewage treatment plants or in industry. The development of distributed energy must take into account the security of supplies and stability in the national and regional power systems. A key element of the development of distributed energy is the maximum use of locally available energy resources. This depends on various locally available raw materials in the form of solar or wind energy and biomass energy (biogas). To balance energy in such systems, electricity and heat storage facilities are necessary. Heat storage can effectively cooperate with heat pumps on a micro-scale (single-family houses) and even on an industrial scale (residential buildings, public buildings, small companies, etc.). Taking into account the electrification of residential and industrial systems, it is necessary to integrate hybrid systems of photovoltaics, heat pumps and electromobility. The basis for the proper management of energy resources in distributed systems is therefore the development of modern energy management systems and platforms at different levels of contemporary energy systems and smart power grids.

All kinds of manuscripts presenting research, including case studies as well as state-of-the-art reviews, can be submitted to this Special Issue. The scope of this Special Issue covers but is not limited to the following topics:

  • Energy transformation in less urbanized areas;
  • Possibilities of developing renewable energy in distributed energy systems;
  • Biomass and biogas technology;
  • Wind energy technology;
  • Water energy technology;
  • Photovoltaic technology;
  • Heat pump technology and thermal energy storage technologies;
  • Hybrid systems for renewable energy;
  • Energy cooperatives and energy clusters for distributed energy;
  • Energy management in buildings and homes;
  • Integration of renewable energy sources and storage;
  • Distributed generation with smart control and monitoring functions;
  • IoT applications and artificial intelligence for renewable energy

Dr. Adam Mroziński
Dr. Jakub Grela
Dr. Rafał Andrzejczyk
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • renewable energy sources
  • distributed energy
  • hybrid systems
  • photovoltaic
  • heat pump
  • small wind turbine
  • small water turbine
  • small biogas installation
  • building energy management systems
  • demand side management and response
  • IoT applications and artificial intelligence

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

32 pages, 5466 KiB  
Article
Comprehensive Energy and Economic Analysis of Selected Variants of a Large-Scale Photovoltaic Power Plant in a Temperate Climate
by Dennis Thom, Artur Bugała, Dorota Bugała and Wojciech Czekała
Energies 2025, 18(15), 4198; https://doi.org/10.3390/en18154198 - 7 Aug 2025
Viewed by 464
Abstract
In recent years, solar energy has emerged as one of the most advanced renewable energy sources, with its production capacity steadily growing. To maximize output and efficiency, choosing the right configuration for a specific location for these installations is crucial. This study uniquely [...] Read more.
In recent years, solar energy has emerged as one of the most advanced renewable energy sources, with its production capacity steadily growing. To maximize output and efficiency, choosing the right configuration for a specific location for these installations is crucial. This study uniquely integrates detailed multi-variant fixed-tilt PV system simulations with comprehensive economic evaluation under temperate climate conditions, addressing site-specific spatial constraints and grid integration considerations that have rarely been combined in previous works. In this paper, an energy and economic efficiency analysis for a photovoltaic power plant, located in central Poland, designed in eight variants (10°, 15°, 20°, 25°, 30° PV module inclination angle for a south orientation and 10°, 20°, 30° for an east–west orientation) for a limited building area of approximately 300,000 m2 was conducted. In PVSyst computer simulations, PVGIS-SARAH2 solar radiation data were used together with the most common data for describing the Polish local solar climate, called Typical Meteorological Year data (TMY). The most energy-efficient variants were found to be 20° S and 30° S, configurations with the highest surface production coefficient (249.49 and 272.68 kWh/m2) and unit production efficiency values (1123 and 1132 kWh/kW, respectively). These findings highlight potential efficiency gains of up to approximately 9% in surface production coefficient and financial returns exceeding 450% ROI, demonstrating significant economic benefits. In economic terms, the 15° S variant achieved the highest values of financial parameters, such as the return on investment (ROI) (453.2%), the value of the average annual share of profits in total revenues (56.93%), the shortest expected payback period (8.7 years), the value of the levelized cost of energy production (LCOE) (0.1 EUR/kWh), and one of the lowest costs of building 1 MWp of a photovoltaic farm (664,272.7 EUR/MWp). Among the tested variants of photovoltaic farms with an east–west geographical orientation, the most advantageous choice is the 10° EW arrangement. The results provide valuable insights for policymakers and investors aiming to optimize photovoltaic deployment in temperate climates, supporting the broader transition to renewable energy and alignment with national energy policy goals. Full article
Show Figures

Figure 1

22 pages, 3283 KiB  
Article
Optimal Configuration of Distributed Pumped Storage Capacity with Clean Energy
by Yongjia Wang, Hao Zhong, Xun Li, Wenzhuo Hu and Zhenhui Ouyang
Energies 2025, 18(15), 3896; https://doi.org/10.3390/en18153896 - 22 Jul 2025
Viewed by 279
Abstract
Aiming at the economic problems of industrial users with wind power, photovoltaic, and small hydropower resources in clean energy consumption and trading with superior power grids, this paper proposes a distributed pumped storage capacity optimization configuration method considering clean energy systems. First, considering [...] Read more.
Aiming at the economic problems of industrial users with wind power, photovoltaic, and small hydropower resources in clean energy consumption and trading with superior power grids, this paper proposes a distributed pumped storage capacity optimization configuration method considering clean energy systems. First, considering the maximization of the investment benefit of distributed pumped storage as the upper goal, a configuration scheme of the installed capacity is formulated. Second, under the two-part electricity price mechanism, combined with the basin hydraulic coupling relationship model, the operation strategy optimization of distributed pumped storage power stations and small hydropower stations is carried out with the minimum operation cost of the clean energy system as the lower optimization objective. Finally, the bi-level optimization model is solved by combining the alternating direction multiplier method and CPLEX solver. This study demonstrates that distributed pumped storage implementation enhances seasonal operational performance, improving clean energy utilization while reducing industrial electricity costs. A post-implementation analysis revealed monthly operating cost reductions of 2.36, 1.72, and 2.13 million RMB for wet, dry, and normal periods, respectively. Coordinated dispatch strategies significantly decreased hydropower station water wastage by 82,000, 28,000, and 52,000 cubic meters during corresponding periods, confirming simultaneous economic and resource efficiency improvements. Full article
Show Figures

Figure 1

15 pages, 4556 KiB  
Article
Vibration Suppression Algorithm for Electromechanical Equipment in Distributed Energy Supply Systems
by Huan Wang, Fangxu Han, Bo Zhang and Guilin Zhao
Energies 2025, 18(14), 3757; https://doi.org/10.3390/en18143757 - 16 Jul 2025
Cited by 1 | Viewed by 257
Abstract
In recent years, distributed energy power supply systems have been widely used in remote areas and extreme environments. However, the intermittent and uncertain output power may cause power grid fluctuations, leading to higher harmonics in electromechanical equipment, especially motors. For permanent magnet synchronous [...] Read more.
In recent years, distributed energy power supply systems have been widely used in remote areas and extreme environments. However, the intermittent and uncertain output power may cause power grid fluctuations, leading to higher harmonics in electromechanical equipment, especially motors. For permanent magnet synchronous motor (PMSM) systems, an electromagnetic (EM) vibration can cause problems such as energy loss and mechanical wear. Therefore, it is necessary to design control algorithms that can effectively suppress EM vibration. To this end, a vibration suppression algorithm for fractional-slot permanent magnet synchronous motors based on a d-axis current injection is proposed in this paper. Firstly, this paper analyzes the radial electromagnetic force of the fractional-slot PMSM to identify the main source of EM vibration in fractional-slot PMSMs. Based on this, the intrinsic relationship between the EM vibration of fractional-slot PMSMs and the d-axis and q-axis currents is explored, and a method for calculating the d-axis current to suppress the vibration is proposed. Experimental verification shows that the proposed algorithm can effectively suppress EM vibration. Full article
Show Figures

Figure 1

20 pages, 3691 KiB  
Article
Distributed Voltage Optimal Control Method for Energy Storage Systems in Active Distribution Network
by Yang Liu, Wenbin Liu, Ying Wu and Haidong Yu
Energies 2025, 18(14), 3670; https://doi.org/10.3390/en18143670 - 11 Jul 2025
Viewed by 327
Abstract
High permeability distributed photovoltaic (PV) access to the distribution network makes it easy to cause frequent overvoltage of the system. However, the traditional centralized optimization scheduling method is difficult to meet the real-time voltage regulation requirements due to high communication costs. In this [...] Read more.
High permeability distributed photovoltaic (PV) access to the distribution network makes it easy to cause frequent overvoltage of the system. However, the traditional centralized optimization scheduling method is difficult to meet the real-time voltage regulation requirements due to high communication costs. In this regard, this paper proposes a distributed fast voltage regulation method for energy storage systems (ESSs) in distribution networks. Firstly, to reduce the communication burden, the distribution network cluster is divided according to the electrical distance modularity index. Secondly, the distributed control model of active distribution network with the goal of voltage recovery and ESS power balance is established, and a distributed controller is designed. The feedback-control gains are optimized to improve the convergence rate. Finally, the IEEE33 bus system and IEEE69 bus system are applied for simulation. The results show that the proposed distributed optimal control method can effectively improve the voltage level of the distribution network under the condition of ensuring the ESS power balance. Full article
Show Figures

Figure 1

24 pages, 2609 KiB  
Article
Evaluation of the Possibility of Using a Home Wind Installation as Part of the Operation of Hybrid Systems—A Selected Case Study of Investment Profitability Analysis
by Wojciech Lewicki, Mariusz Niekurzak and Adam Koniuszy
Energies 2025, 18(8), 2016; https://doi.org/10.3390/en18082016 - 14 Apr 2025
Viewed by 640
Abstract
The renewable energy sector is becoming key to the energy transformation processes of modern economies. The energy policy of one of the European countries specifies that by 2030, about 7% of energy production will come from wind sources. Because wind turbines are becoming [...] Read more.
The renewable energy sector is becoming key to the energy transformation processes of modern economies. The energy policy of one of the European countries specifies that by 2030, about 7% of energy production will come from wind sources. Because wind turbines are becoming more and more efficient, innovative projects are being created to expand their potential by integrating them with the energy systems of existing residential buildings. The analysis of the profitability of such investments may be important for the implementation of such an ambitious plan. In particular, this argument may be crucial for the growth of the potential and development prospects of distributed energy systems based on renewable energy sources. The article outlines the challenges related to forecasting generation from this energy source. The article aims to present the methodology, energy potential and forecasting results of energy generation from wind sources for two selected locations in one of the European Union countries, Poland. The NPV-Net Present Value and IRR-Internal Rate of Return methods were used for the study. These methods allowed the authors to calculate the market value of the investment with the assumed boundary criteria and determine the economic efficiency of the investment. The research was carried out in the period December 2023–November 2024 on test wind installations in households. In addition, the article indicates the challenges related to the variability of atmospheric factors and the self-consumption of the wind turbine, which is often difficult to predict due to the lack of turbine efficiency analysis. The presented models showed that the project in their implementation is fully economically justified and will allow investors to make a rational investment decision. These models can be effectively used in other countries and can also be a starting point for discussions on the direction of the development of energy systems based on renewable energy sources. Full article
Show Figures

Figure 1

29 pages, 5904 KiB  
Article
Advanced Genetic Algorithms for Optimal Battery Siting: A Practical Methodology for Distribution System Operators
by Edward Alejandro Ortiz, Josimar Tello-Maita, David Celeita and Agustin Marulanda Guerra
Energies 2025, 18(1), 109; https://doi.org/10.3390/en18010109 - 30 Dec 2024
Cited by 1 | Viewed by 1168
Abstract
The growing integration of renewable energy sources and the electrification of multiple sectors have heightened the need for optimized planning and operation of modern electrical distribution systems. A critical challenge for distribution network operators is enhancing the resilience and reliability of their grids [...] Read more.
The growing integration of renewable energy sources and the electrification of multiple sectors have heightened the need for optimized planning and operation of modern electrical distribution systems. A critical challenge for distribution network operators is enhancing the resilience and reliability of their grids by identifying effective solutions. One promising approach to achieving this is through the deployment of battery energy storage systems, which can rapidly inject power to mitigate the impacts of network disturbances or outages. This study investigates the use of advanced genetic algorithms as a practical methodology for the optimal siting of batteries in modern distribution networks. By incorporating historical data on demand and network failures, the algorithm generates statistical models that inform the optimization process. The model integrates both the technical and economic aspects of battery systems to identify locations that minimize reliability indices such as SAIDI and SAIFI, while also reducing investment costs. Tested on a real distribution system comprising 1837 nodes, the proposed approach demonstrates the ability of genetic optimization to deliver efficient solutions compared with traditional methods, providing a high likelihood of identifying strategic battery locations that respond to variable demand, system failures, and technical constraints. Full article
Show Figures

Figure 1

14 pages, 975 KiB  
Article
Distributed Low-Carbon Energy Management of Urban Campus for Renewable Energy Consumption
by Kan Yu, Qiang Wei, Chuanzi Xu, Xinyu Xiang and Heyang Yu
Energies 2024, 17(23), 6182; https://doi.org/10.3390/en17236182 - 8 Dec 2024
Cited by 1 | Viewed by 933
Abstract
In order to solve the mismatch between renewable energy and load in urban building microgrids, that is, the problem of renewable energy consumption in building microgrid clusters, while preserving the privacy of each user, this paper proposes a distributed low-carbon energy management method [...] Read more.
In order to solve the mismatch between renewable energy and load in urban building microgrids, that is, the problem of renewable energy consumption in building microgrid clusters, while preserving the privacy of each user, this paper proposes a distributed low-carbon energy management method for urban building microgrid clusters. First, a low-carbon energy management method for the urban building microgrid is proposed in order to coordinate the power sharing of various subjects to minimize the total economic cost, unleash the consumption potential of low-carbon building clusters for renewable energy, and reduce carbon emissions on the spatial and time scale. Second, an ADMM-based distributed optimal energy management method is proposed to meet user energy needs while preserving local privacy; this includes energy storage systems, renewable energy generation, and the loads within each urban building microgrid. Finally, simulation experiments are conducted based on actual data from a certain area in Hangzhou, China, and the results verify the effectiveness of the model. Full article
Show Figures

Figure 1

36 pages, 22665 KiB  
Article
Analysis of the Year-Round Operation of Enhanced Natural Ventilation Systems under Transient Weather Conditions in Europe
by Rafał Andrzejczyk
Energies 2024, 17(15), 3795; https://doi.org/10.3390/en17153795 - 1 Aug 2024
Cited by 2 | Viewed by 1306
Abstract
This study presents the potential of using a natural ventilation system integrated with different combinations of enhancement techniques. The focus was on the perspective of using such configurations of passive ventilation systems (PVSs) in buildings located in different European cities. This work presents [...] Read more.
This study presents the potential of using a natural ventilation system integrated with different combinations of enhancement techniques. The focus was on the perspective of using such configurations of passive ventilation systems (PVSs) in buildings located in different European cities. This work presents the results of obtaining the level of volumetric air flow rate for considering natural ventilation systems. Furthermore, the influences of local weather conditions (temperature, solar radiation, wind speed) were analyzed. Moreover, the year-round operation of all systems was presented. Also noted was the limitation of using PVSs based on the natural draft effect, additionally assisted by wind turbine ventilators in all European localizations. However, for the cities located in the northern part of Europe, it was confirmed that such a system can still meet minimum hygienic recommendations. It was also noted that a system additionally supported by a solar chimney is a much better solution. The best system was a PVS supported by a wind turbine ventilator and solar chimney integrated with PCM accumulation mass. The system should be additionally supported by waste heat from low-temperature sources. In the presented study, a high potential to reduce CO2 emission from building stock by the recommended system is additionally highlighted. However, there is still a need to analyze the proposed solutions by additional field tests and experimental investigations. Full article
Show Figures

Figure 1

Review

Jump to: Research

35 pages, 3995 KiB  
Review
Recent Advancements in Latent Thermal Energy Storage and Their Applications for HVAC Systems in Commercial and Residential Buildings in Europe—Analysis of Different EU Countries’ Scenarios
by Belayneh Semahegn Ayalew and Rafał Andrzejczyk
Energies 2025, 18(15), 4000; https://doi.org/10.3390/en18154000 - 27 Jul 2025
Viewed by 746
Abstract
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) [...] Read more.
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) has emerged as a promising strategy to enhance HVAC efficiency. This review systematically examines the role of latent thermal energy storage using phase change materials (PCMs) in optimizing HVAC performance to align with EU climate targets, including the Energy Performance of Buildings Directive (EPBD) and the Energy Efficiency Directive (EED). By analyzing advancements in PCM-enhanced HVAC systems across residential and commercial sectors, this study identifies critical pathways for reducing energy demand, enhancing grid flexibility, and accelerating the transition to nearly zero-energy buildings (NZEBs). The review categorizes PCM technologies into organic, inorganic, and eutectic systems, evaluating their integration into thermal storage tanks, airside free cooling units, heat pumps, and building envelopes. Empirical data from case studies demonstrate consistent energy savings of 10–30% and peak load reductions of 20–50%, with Mediterranean climates achieving superior cooling load management through paraffin-based PCMs (melting range: 18–28 °C) compared to continental regions. Policy-driven initiatives, such as Germany’s renewable integration mandates for public buildings, are shown to amplify PCM adoption rates by 40% compared to regions lacking regulatory incentives. Despite these benefits, barriers persist, including fragmented EU standards, life cycle cost uncertainties, and insufficient training. This work bridges critical gaps between PCM research and EU policy implementation, offering a roadmap for scalable deployment. By contextualizing technical improvement within regulatory and economic landscapes, the review provides strategic recommendations to achieve the EU’s 2030 emissions reduction targets and 2050 climate neutrality goals. Full article
Show Figures

Figure 1

Back to TopTop