CFD Analysis of a Falling Film Evaporator Using the Low-GWP Refrigerant R1336mzz(Z) in High-Temperature Heat Pump Applications
Abstract
1. Introduction
2. MATLAB-Based Design Framework
2.1. Design Specifications and Operating Conditions
2.2. Numerical Methodology
2.3. Preliminary Design Results
3. CFD Modeling
3.1. Computational Domain
3.2. Mesh Generation
3.3. Grid Independence Study
3.4. Governing Equations
3.4.1. VOF Model
3.4.2. Continuum Surface Model (CSF)
3.4.3. Evaporation and Condensation Model
3.5. Solver Setting
3.6. CFD Model Validation
4. Results and Discussion
5. Conclusions
- A MATLAB-based preliminary design estimated that 324 tubes, each 2 m long, are needed to achieve a total heat duty of 2.2 MW with an overall heat transfer coefficient of 7000 W/m2 K.
- CFD analysis revealed key film flow regions, including low-flow dry-out at 0.4 s, high heat flux dry-out at 5 s, and wave formation at 0.7 s. These regions displayed distinct flow behaviors influenced by gravity, surface tension, and viscous forces.
- Simulations showed that the lower tube sections significantly contributed to vapor formation due to reduced temperature gradients, gravity-driven film thinning, and local vortices enhancing heat transfer.
- Comparing MATLAB-based and CFD-predicted heat transfer coefficients, the upper tube showed 2000–7000 W/m2 K (vs. 5433 W/m2 K from MATLAB), and the lower tube 1000–4000 W/m2 K (vs. 2735 W/m2 K). CFD captured critical local non-uniformities, especially in the lower rows, which are missed by simplified models, underscoring the value of CFD in improving thermal design accuracy.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, H.Y.; Muneeshwaran, M.; Yang, C.M.; Nawaz, K.; Wang, C.C. On falling film evaporator—A review of mechanisms and critical assessment of correlation on a horizontal tube bundle with updated development. Int. Commun. Heat Mass Transf. 2024, 150, 107165. [Google Scholar] [CrossRef]
- Jige, D.; Miyata, H.; Inoue, N. Falling film evaporation of R1234ze(E) and R245fa on a horizontal smooth tube. Exp. Therm. Fluid Sci. 2019, 105, 58–66. [Google Scholar] [CrossRef]
- Chien, L.H.; Cheng, C.H. A predictive model of falling film evaporation with bubble nucleation on horizontal tubes. HVAC R Res. 2006, 12, 69–87. [Google Scholar] [CrossRef]
- Chyu, M.-C.; Bergles, A.E. An Analytical and Experimental Study of Falling-Film Evaporation on a Horizontal Tube. J. Heat Transfer. 1987, 109, 983–990. Available online: http://heattransfer.asmedigitalcollection.asme.org/ (accessed on 13 March 2025). [CrossRef]
- Chien, L.H.; Tsai, Y.L. An experimental study of pool boiling and falling film vaporization on horizontal tubes in R-245fa. Appl. Therm. Eng. 2011, 31, 4044–4054. [Google Scholar] [CrossRef]
- Alhusseini, A.A.; Tuzla, K.; Chens, J.C. Falling film evaporation of single component liquids. Int. J. Heat Mass Transf. 1998, 41, 1623–1632. [Google Scholar] [CrossRef]
- Shah, M.M. A general correlation for heat transfer during evaporation of falling films on single horizontal plain tubes. Int. J. Refrig. 2021, 130, 424–433. [Google Scholar] [CrossRef]
- Shah, M.M. Prediction of dryout in evaporation of falling films on horizontal plain tubes. Chem. Eng. Res. Des. 2022, 179, 527–534. [Google Scholar] [CrossRef]
- Chien, L.H.; Chen, R.H. An experimental study of falling film evaporation on horizontal tubes using R-134a. J. Mech. 2012, 28, 319–327. [Google Scholar] [CrossRef]
- Christians, M.; Thome, J.R. Falling film evaporation on enhanced tubes, part 1: Experimental results for pool boiling, onset-of-dryout and falling film evaporation. Int. J. Refrig. 2012, 35, 300–312. [Google Scholar] [CrossRef]
- Ubara, T.; Asano, H.; Sugimoto, K. Falling film evaporation and pool boiling heat transfer of R1233zd(E) on thermal spray coated tube. Appl. Therm. Eng. 2021, 196, 117329. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Qi, D.; Ji, W.T.; Jin, P.H.; Tao, W.Q. A comprehensive review on computational studies of falling film hydrodynamics and heat transfer on the horizontal tube and tube bundle. Appl. Therm. Eng. 2022, 202, 117869. [Google Scholar] [CrossRef]
- Onan, C.; Ozkan, D.B.; Erdem, S. CFD and experimental analysis of a falling film outside smooth and helically grooved tubes. Adv. Mech. Eng. 2014, 6, 915034. [Google Scholar] [CrossRef]
- Hassan, I.A.; Sadikin, A.; Isa, N.M. Numerical simulation of falling film thickness flowing over horizontal tubes. ARPN J. Eng. Appl. Sci. 2017, 12, 3046–3053. Available online: www.arpnjournals.com (accessed on 14 April 2025).
- Baru, P.A.; Hassan, I.A.; Sadikin, A.; Isa, N.M. The Computational Modeling of Falling Film Thickness Flowing Over Evaporator Tubes. J. Adv. Res. Fluid Mech. Therm. Sci. 2015, 14, 24–37. [Google Scholar]
- Tahir, F.; Nasser, A.; Mabrouk, A.; Mabrouk, A.; Koç, M. CFD Investigation of Falling Film Flow over Horizontal Tube. Available online: https://www.researchgate.net/publication/348909761 (accessed on 1 March 2025).
- Zhao, C.Y.; Ji, W.T.; Jin, P.H.; Li, A.G.; Fan, J.F.; Yoshioka, S.; Tao, W.Q. Falling film evaporation in a triangular tube bundle under the influence of cross vapor stream. Int. J. Refrig. 2020, 112, 44–55. [Google Scholar] [CrossRef]
- Liu, F.; Wang, D.; Wang, Q.; Ga, J. The optimum design of falling-film evaporator and numerical simulation of distributor. Procedia Eng. 2017, 205, 3867–3872. [Google Scholar] [CrossRef]
- Jin, P.H.; Zhang, Z.; Mostafa, I.; Zhao, C.Y.; Ji, W.T.; Tao, W.Q. Heat transfer correlations of refrigerant falling film evaporation on a single horizontal smooth tube. Int. J. Heat Mass Transf. 2019, 133, 96–106. [Google Scholar] [CrossRef]
- Kim, W.; Kim, H.S.; Kim, J.; Kim, D.H. An Experimental Study on The Themal Performance Measurement and Flow Visualization of Falling Film Evaporator Using R-1233ZD(E) Refrigerant. Korean J. Air-Cond. Refrig. Eng. 2024, 36, 9–17. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018. [Google Scholar]
- Ullah, N.; Ishaque, S.; Kim, M.H.; Choi, S. Modeling and Optimization of a Micro-Channel Gas Cooler for a Transcritical CO2 Mobile Air-Conditioning System. Machines 2022, 10, 1177. [Google Scholar] [CrossRef]
- Mascarenhas, N.; Mudawar, I. Study of the influence of interfacial waves on heat transfer in turbulent falling films. Int. J. Heat Mass Transf. 2013, 67, 1106–1121. [Google Scholar] [CrossRef]
- Sun, D.; Xu, J.; Chen, Q. Modeling of the evaporation and condensation phase-change problems with fluent. Numer. Heat Transf. Part B 2014, 66, 326–342. [Google Scholar] [CrossRef]
- Kim, D.G.; Jeon, C.H.; Park, I.S. Comparison of numerical phase-change models through Stefan vaporizing problem. Int. Commun. Heat Mass Transf. 2017, 87, 228–236. [Google Scholar] [CrossRef]
Description | Shell Side | Unit |
---|---|---|
Shell side fluid | Refrigerant R1336mzz(Z) | - |
Tube-side fluid | Water | - |
Refrigerant inlet temperature | 78.12 | °C |
Refrigerant Inlet pressure | 420 | kPa |
Refrigerant saturation temperature | 79.12 | °C |
Refrigerant mass flow rate | 26.34 | kg/s |
Refrigerant inlet quality | 0 (subcooled) | - |
Water inlet temperature | 90 | °C |
Water inlet pressure | 300 | kPa |
Water mass flow rate | 112.3 | kg/s |
Description | Value | Unit |
---|---|---|
Number of tubes | 324 | - |
Total heat transfer area required | 37.83 | m2 |
Heat transfer area per tube | 0.1197 | m2 |
Log mean temperature difference (LMTD) | 8.13 | °C |
Total heat transfer rate (Q) | 2.2 | MW |
Estimated shell diameter | 500 | mm |
Transverse tube pitch | 25 | mm |
Longitudinal tube pitch | 25 | mm |
Tube length | 2000 | mm |
Tube outer diameter | 19.05 | mm |
Tube inner diameter | 17.05 | mm |
Tube material | Copper | - |
Property | Liquid Phase | Vapor Phase | Unit |
---|---|---|---|
Density (ρ) | 1209.9 | 27.29 | kg/m3 |
Specific heat capacity (Cp) | 1.3437 | 1.0441 | kJ/kg·K |
Thermal conductivity (k) | 61.33 | 15.71 | mW/m·K |
Dynamic viscosity (μ) | 198.7 | 12.03 | μPa·s |
Heat of vaporization (i_fg) | - | 140.57 | kJ/kg |
Parameter | Input Data/Setting |
---|---|
Flow regime | Turbulent |
Turbulence model | k-ω SST (Shear Stress Transport) |
Surface tension modeling | CSF model |
Volume fraction cut-off | 10−6 |
Courant number | ≤0.25 |
Transient formulation | First-order implicit |
Pressure-velocity coupling | Coupled algorithm |
Pressure interpolation scheme | PRESTO algorithm |
Discretization | Second-order upwind (momentum and energy) |
Surface tracking/volume fraction | Geo-reconstruct |
Evaporation model | Lee model |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishaque, S.; Saeed, M.; Ali, Q.S.; Ullah, N.; Junio, J.C.; Kim, M.-H. CFD Analysis of a Falling Film Evaporator Using the Low-GWP Refrigerant R1336mzz(Z) in High-Temperature Heat Pump Applications. Processes 2025, 13, 2398. https://doi.org/10.3390/pr13082398
Ishaque S, Saeed M, Ali QS, Ullah N, Junio JC, Kim M-H. CFD Analysis of a Falling Film Evaporator Using the Low-GWP Refrigerant R1336mzz(Z) in High-Temperature Heat Pump Applications. Processes. 2025; 13(8):2398. https://doi.org/10.3390/pr13082398
Chicago/Turabian StyleIshaque, Shehryar, Muhammad Saeed, Qazi Shahzad Ali, Naveed Ullah, Jedd C. Junio, and Man-Hoe Kim. 2025. "CFD Analysis of a Falling Film Evaporator Using the Low-GWP Refrigerant R1336mzz(Z) in High-Temperature Heat Pump Applications" Processes 13, no. 8: 2398. https://doi.org/10.3390/pr13082398
APA StyleIshaque, S., Saeed, M., Ali, Q. S., Ullah, N., Junio, J. C., & Kim, M.-H. (2025). CFD Analysis of a Falling Film Evaporator Using the Low-GWP Refrigerant R1336mzz(Z) in High-Temperature Heat Pump Applications. Processes, 13(8), 2398. https://doi.org/10.3390/pr13082398