Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (483)

Search Parameters:
Keywords = gas barrier properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8662 KiB  
Article
Synergy of Fly Ash and Surfactant on Stabilizing CO2/N2 Foam for CCUS in Energy Applications
by Jabir Dubaish Raib, Fujian Zhou, Tianbo Liang, Anas A. Ahmed and Shuai Yuan
Energies 2025, 18(15), 4181; https://doi.org/10.3390/en18154181 - 6 Aug 2025
Abstract
The stability of nitrogen gas foam hinders its applicability in petroleum applications. Fly ash nanoparticles and clay improve the N2 foam stability, and flue gas foams provide a cost-effective solution for carbon capture, utilization, and storage (CCUS). This study examines the stability, [...] Read more.
The stability of nitrogen gas foam hinders its applicability in petroleum applications. Fly ash nanoparticles and clay improve the N2 foam stability, and flue gas foams provide a cost-effective solution for carbon capture, utilization, and storage (CCUS). This study examines the stability, volume, and bubble structure of foams formed using two anionic surfactants, sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS), along with the cationic surfactant cetyltrimethylammonium bromide (CTAB), selected for their comparable interfacial tension properties. Analysis of foam stability and volume and bubble structure was conducted under different CO2/N2 mixtures, with half-life and initial foam volume serving as the evaluation criteria. The impact of fly ash and clay on SDS-N2 foam was also evaluated. The results showed that foams created with CTAB, SDBS, and SDS exhibit the greatest stability in pure nitrogen, attributed to low solubility in water and limited gas diffusion. SDS showed the highest foam strength attributable to its comparatively low surface tension. The addition of fly ash and clay significantly improved foam stability by migrating to the gas–liquid interface, creating a protective barrier that reduced drainage. Both nano fly ash and clay improved the half-life of nitrogen foam by 11.25 times and increased the foam volume, with optimal concentrations identified as 5.0 wt% for fly ash and 3.0 wt% for clay. This research emphasizes the importance of fly ash nanoparticles in stabilizing foams, therefore optimizing a foam system for enhanced oil recovery (EOR). Full article
(This article belongs to the Special Issue Subsurface Energy and Environmental Protection 2024)
Show Figures

Figure 1

19 pages, 2474 KiB  
Article
Unraveling the Role of Aluminum in Boosting Lithium-Ionic Conductivity of LLZO
by Md Mozammal Raju, Yi Ding and Qifeng Zhang
Electrochem 2025, 6(3), 29; https://doi.org/10.3390/electrochem6030029 - 4 Aug 2025
Viewed by 215
Abstract
The development of high-performance solid electrolytes is critical to advancing solid-state lithium-ion batteries (SSBs), with lithium lanthanum zirconium oxide (LLZO) emerging as a leading candidate due to its chemical stability and wide electrochemical window. In this study, we systematically investigated the effects of [...] Read more.
The development of high-performance solid electrolytes is critical to advancing solid-state lithium-ion batteries (SSBs), with lithium lanthanum zirconium oxide (LLZO) emerging as a leading candidate due to its chemical stability and wide electrochemical window. In this study, we systematically investigated the effects of cation dopants, including aluminum (Al3+), tantalum (Ta5+), gallium (Ga3+), and rubidium (Rb+), on the structural, electronic, and ionic transport properties of LLZO using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. It appeared that, among all simulated results, Al-LLZO exhibits the highest ionic conductivity of 1.439 × 10−2 S/cm with reduced activation energy of 0.138 eV, driven by enhanced lithium vacancy concentrations and preserved cubic-phase stability. Ta-LLZO follows, with a conductivity of 7.12 × 10−3 S/cm, while Ga-LLZO and Rb-LLZO provide moderate conductivity of 3.73 × 10−3 S/cm and 3.32 × 10−3 S/cm, respectively. Charge density analysis reveals that Al and Ta dopants facilitate smoother lithium-ion migration by minimizing electrostatic barriers. Furthermore, Al-LLZO demonstrates low electronic conductivity (1.72 × 10−8 S/cm) and favorable binding energy, mitigating dendrite formation risks. Comparative evaluations of radial distribution functions (RDFs) and XRD patterns confirm the structural integrity of doped systems. Overall, Al emerges as the most effective and economically viable dopant, optimizing LLZO for scalable, durable, and high-conductivity solid-state batteries. Full article
Show Figures

Graphical abstract

20 pages, 3979 KiB  
Article
Theoretical Study of CO Oxidation on Pt Single-Atom Catalyst Decorated C3N Monolayers with Nitrogen Vacancies
by Suparada Kamchompoo, Yuwanda Injongkol, Nuttapon Yodsin, Rui-Qin Zhang, Manaschai Kunaseth and Siriporn Jungsuttiwong
Sci 2025, 7(3), 101; https://doi.org/10.3390/sci7030101 - 1 Aug 2025
Viewed by 257
Abstract
Carbon monoxide (CO) is a major toxic gas emitted from vehicle exhaust, industrial processes, and incomplete fuel combustion, posing serious environmental and health risks. Catalytic oxidation of CO into less harmful CO2 is an effective strategy to reduce these emissions. In this [...] Read more.
Carbon monoxide (CO) is a major toxic gas emitted from vehicle exhaust, industrial processes, and incomplete fuel combustion, posing serious environmental and health risks. Catalytic oxidation of CO into less harmful CO2 is an effective strategy to reduce these emissions. In this study, we investigated the catalytic performance of platinum (Pt) single atoms doped on C3N monolayers with various vacancy defects, including single carbon (CV) and nitrogen (NV) vacancies, using density functional theory (DFT) calculations. Our results demonstrate that Pt@NV-C3N exhibited the most favorable catalytic properties, with the highest O2 adsorption energy (−3.07 eV). This performance significantly outperforms Pt atoms doped at other vacancies. It can be attributed to the strong binding between Pt and nitrogen vacancies, which contributes to its excellent resistance to Pt aggregation. CO oxidation on Pt@NV-C3N proceeds via the Eley–Rideal (ER2) mechanism with a low activation barrier of 0.41 eV for the rate-determining step, indicating high catalytic efficiency at low temperatures. These findings suggest that Pt@NV-C3N is a promising candidate for CO oxidation, contributing to developing cost-effective and environmentally sustainable catalysts. The strong binding of Pt atoms to the nitrogen vacancies prevents aggregation, ensuring the stability and durability of the catalyst. The kinetic modeling further revealed that the ER2 mechanism offers the highest reaction rate constants over a wide temperature range (273–700 K). The low activation energy barrier also facilitates CO oxidation at lower temperatures, addressing critical challenges in automotive and industrial pollution control. This study provides valuable theoretical insights for designing advanced single-atom catalysts for environmental remediation applications. Full article
Show Figures

Graphical abstract

19 pages, 4441 KiB  
Article
In Silico and In Vivo Pharmacological Evaluation of Iridoid Compounds: Geniposide and Asperuloside Profile Study Through Molecular Docking Assay and in the Caenorhabditis elegans Model
by Mariana Uczay, Péterson Alves Santos, Pricila Pflüger, Gilsane von Poser, José Brea, Maria Isabel Loza, Patrícia Pereira and José Angel Fontenla
Biomolecules 2025, 15(8), 1105; https://doi.org/10.3390/biom15081105 - 31 Jul 2025
Viewed by 259
Abstract
Iridoids are compounds recognized for their neuroprotective properties and their potential application in the treatment of neurodegenerative diseases. Geniposide (GP) and asperuloside (ASP) are iridoids that have demonstrated some biological activities. In this study, the potential neuroprotective effects of these iridoids were evaluated [...] Read more.
Iridoids are compounds recognized for their neuroprotective properties and their potential application in the treatment of neurodegenerative diseases. Geniposide (GP) and asperuloside (ASP) are iridoids that have demonstrated some biological activities. In this study, the potential neuroprotective effects of these iridoids were evaluated through in silico and in vivo assays, using Caenorhabditis elegans (C. elegans) strains CF1553 (sod-3::GFP), GA800 (cat::GFP), and CL2166 (gst-4::GFP). The results suggested that neither compound appears to have good passive permeability through the blood–brain barrier (BBB). However, an active transport mechanism involving the glucose transporter GLUT-1 may be present, as both compounds contain glucose in their molecular structure. In addition, they can inhibit the activity of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). GP at 1 and 2 mM reversed the H2O2-induced increase in sod-3 expression, while ASP at 1 and 2 mM reversed the increase in gst-4 expression. Worm survival was more adversely affected by higher concentrations of GP than ASP, although both similarly reduced acetylcholinesterase activity. These findings suggest that GP and ASP exhibit very low toxicity both in silico and in vivo in C. elegans, and positively modulate key enzymes involved in antioxidant pathways, highlighting their potential for neuroprotective applications. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

21 pages, 1652 KiB  
Article
Antimicrobial and Physicochemical Properties of Hemicellulose-Based Films Incorporating Carvacrol
by Syed Ammar Hussain, Brajendra K. Sharma, Phoebe X. Qi, Madhav P. Yadav and Tony Z. Jin
Polymers 2025, 17(15), 2073; https://doi.org/10.3390/polym17152073 - 29 Jul 2025
Viewed by 333
Abstract
Antimicrobial food packaging with natural antimicrobials and biodegradable polymers presents an innovative solution to mitigate microbial contamination, prolong freshness, reduce food waste, and alleviate environmental burden. This study developed antimicrobial hemicellulose-based films by incorporating carvacrol (1% and 2%) as a natural antimicrobial agent [...] Read more.
Antimicrobial food packaging with natural antimicrobials and biodegradable polymers presents an innovative solution to mitigate microbial contamination, prolong freshness, reduce food waste, and alleviate environmental burden. This study developed antimicrobial hemicellulose-based films by incorporating carvacrol (1% and 2%) as a natural antimicrobial agent through micro-emulsification produced by high-pressure homogenization (M-films). For comparison, films with the same formula were constructed using coarse emulsions (C-films) without high-pressure homogenization. These films were investigated for their antimicrobial efficacy, mechanical and barrier properties, and physicochemical attributes to explore their potential as sustainable antimicrobial packaging solutions. The M-films demonstrated superior antimicrobial activity, achieving reductions exceeding 4 Log CFU/mL against Listeria monocytogenes, Escherichia coli, and Salmonella enterica, compared to the C-films. High-pressure homogenization significantly reduced the emulsion’s particle size, from 11.59 to 2.55 μm, and considerably enhanced the M-film’s uniformity, hydrophobicity, and structural quality. Most importantly, the M-films exhibited lower oxygen transmission (35.14 cc/m2/day) and water vapor transmission rates (52.12 g/m2/day) than the C-films at 45.1 and 65.5 cc/m2/day, respectively, indicating superior protection against gas and moisture diffusion. Markedly improved mechanical properties, including foldability, toughness, and bubble-free surfaces, were also observed, making the M-films suitable for practical applications. This study highlights the potential of high-pressure homogenization as a method for enhancing the functional properties of hemicellulose-based films (i.e., M-films). The fabricated films offer a viable alternative to conventional plastic packaging, paving the way for safer and greener solutions tailored to modern industry needs. Full article
(This article belongs to the Special Issue Polymer-Based Coatings: Principles, Development and Applications)
Show Figures

Figure 1

13 pages, 2826 KiB  
Article
Design and Application of p-AlGaN Short Period Superlattice
by Yang Liu, Changhao Chen, Xiaowei Zhou, Peixian Li, Bo Yang, Yongfeng Zhang and Junchun Bai
Micromachines 2025, 16(8), 877; https://doi.org/10.3390/mi16080877 - 29 Jul 2025
Viewed by 262
Abstract
AlGaN-based high-electron-mobility transistors are critical for next-generation power electronics and radio-frequency applications, yet achieving stable enhancement-mode operation with a high threshold voltage remains a key challenge. In this work, we designed p-AlGaN superlattices with different structures and performed energy band structure simulations using [...] Read more.
AlGaN-based high-electron-mobility transistors are critical for next-generation power electronics and radio-frequency applications, yet achieving stable enhancement-mode operation with a high threshold voltage remains a key challenge. In this work, we designed p-AlGaN superlattices with different structures and performed energy band structure simulations using the device simulation software Silvaco. The results demonstrate that thin barrier structures lead to reduced acceptor incorporation, thereby decreasing the number of ionized acceptors, while facilitating vertical hole transport. Superlattice samples with varying periodic thicknesses were grown via metal-organic chemical vapor deposition, and their crystalline quality and electrical properties were characterized. The findings reveal that although gradient-thickness barriers contribute to enhancing hole concentration, the presence of thick barrier layers restricts hole tunneling and induces stronger scattering, ultimately increasing resistivity. In addition, we simulated the structure of the enhancement-mode HEMT with p-AlGaN as the under-gate material. Analysis of its energy band structure and channel carrier concentration indicates that adopting p-AlGaN superlattices as the under-gate material facilitates achieving a higher threshold voltage in enhancement-mode HEMT devices, which is crucial for improving device reliability and reducing power loss in practical applications such as electric vehicles. Full article
(This article belongs to the Special Issue III–V Compound Semiconductors and Devices, 2nd Edition)
Show Figures

Figure 1

21 pages, 2902 KiB  
Article
Research on Thermochemical and Gas Emissions Analysis for the Sustainable Co-Combustion of Petroleum Oily Sludge and High-Alkali Lignite
by Yang Guo, Jie Zheng, Demian Wang, Pengtu Zhang, Yixin Zhang, Meng Lin and Shiling Yuan
Sustainability 2025, 17(15), 6703; https://doi.org/10.3390/su17156703 - 23 Jul 2025
Viewed by 297
Abstract
Petroleum oily sludge (OLS), a hazardous by-product of the petroleum industry, and high-alkali lignite (HAL), an underutilized low-rank coal, pose significant challenges to sustainable waste management and resource efficiency. This study systematically investigated the combustion behavior, reaction pathways, and gaseous-pollutant-release mechanisms across varying [...] Read more.
Petroleum oily sludge (OLS), a hazardous by-product of the petroleum industry, and high-alkali lignite (HAL), an underutilized low-rank coal, pose significant challenges to sustainable waste management and resource efficiency. This study systematically investigated the combustion behavior, reaction pathways, and gaseous-pollutant-release mechanisms across varying blend ratios, utilizing integrated thermogravimetric-mass spectrometry analysis (TG-MS), interaction analysis, and kinetic modeling. The key findings reveal that co-combustion significantly enhances the combustion performance compared to individual fuels. This is evidenced by reduced ignition and burnout temperatures, as well as an improved comprehensive combustion index. Notably, an interaction analysis revealed coexisting synergistic and antagonistic effects, with the synergistic effect peaking at a blending ratio of 50% OLS due to the complementary properties of the fuels. The activation energy was found to be at its minimum value of 32.5 kJ/mol at this ratio, indicating lower reaction barriers. Regarding gas emissions, co-combustion at a 50% OLS blending ratio reduces incomplete combustion products while increasing CO2, indicating a more complete reaction. Crucially, sulfur-containing pollutants (SO2, H2S) are suppressed, whereas nitrogen-containing emissions (NH3, NO2) increase but remain controllable. This study provides novel insights into the synergistic mechanisms between OLS and HAL during co-combustion, offering foundational insights for the optimization of OLS-HAL combustion systems toward efficient energy recovery and sustainable industrial waste management. Full article
(This article belongs to the Special Issue Harmless Disposal and Valorisation of Solid Waste)
Show Figures

Figure 1

16 pages, 4299 KiB  
Article
Gas Barrier Properties of Organoclay-Reinforced Polyamide 6 Nanocomposite Liners for Type IV Hydrogen Storage Vessels
by Dávid István Kis, Pál Hansághy, Attila Bata, Nándor Nemestóthy, Péter Gerse, Ferenc Tajti and Eszter Kókai
Nanomaterials 2025, 15(14), 1101; https://doi.org/10.3390/nano15141101 - 16 Jul 2025
Viewed by 288
Abstract
This study investigates the hydrogen permeability of injection-molded polyamide 6 (PA6) nanocomposites reinforced with organo-modified montmorillonite (OMMT) at varying concentrations (1, 2.5, 5, and 10 wt. %) for potential use as Type IV composite-overwrapped pressure vessel (COPV) liners. While previous work examined their [...] Read more.
This study investigates the hydrogen permeability of injection-molded polyamide 6 (PA6) nanocomposites reinforced with organo-modified montmorillonite (OMMT) at varying concentrations (1, 2.5, 5, and 10 wt. %) for potential use as Type IV composite-overwrapped pressure vessel (COPV) liners. While previous work examined their mechanical properties, this study focuses on their crystallinity, morphology, and gas barrier performance. The precise inorganic content was determined using thermal gravimetry analysis (TGA), while differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and scanning electron microscopy (SEM) were used to characterize the structural and morphological changes induced by varying filler content. The results showed that generally higher OMMT concentrations promoted γ-phase formation but also led to increased agglomeration and reduced crystallinity. The PA6/OMMT-1 wt. % sample stood out with higher crystallinity, well-dispersed clay, and low hydrogen permeability. In contrast, the PA6/OMMT-2.5 and -5 wt. % samples showed increased permeability, which corresponded to WAXD and SEM evidence of agglomeration and DSC results indicating a lower degree of crystallinity. PA6/OMMT-10 wt. % showed the most-reduced hydrogen permeability compared to all other samples. This improvement, however, is attributed to a tortuous path effect created by the high filler loading rather than optimal crystallinity or dispersion. SEM images revealed significant OMMT agglomeration, and DSC analysis confirmed reduced crystallinity, indicating that despite the excellent barrier performance, the compromised microstructure may negatively impact mechanical reliability, showing PA6/OMMT-1 wt. % to be the most balanced candidate combining both mechanical integrity and hydrogen impermeability for Type IV COPV liners. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

55 pages, 1120 KiB  
Review
An Overview of Biodiesel Production via Heterogeneous Catalysts: Synthesis, Current Advances, and Challenges
by Maya Yaghi, Sandra Chidiac, Sary Awad, Youssef El Rayess and Nancy Zgheib
Clean Technol. 2025, 7(3), 62; https://doi.org/10.3390/cleantechnol7030062 - 15 Jul 2025
Viewed by 466
Abstract
Biodiesel, a renewable and environmentally friendly alternative to fossil fuels, has attracted significant attention due to its potential to reduce greenhouse gas emissions. However, high production costs and complex processing remain challenges. Heterogeneous catalysts have shown promise in overcoming these barriers by offering [...] Read more.
Biodiesel, a renewable and environmentally friendly alternative to fossil fuels, has attracted significant attention due to its potential to reduce greenhouse gas emissions. However, high production costs and complex processing remain challenges. Heterogeneous catalysts have shown promise in overcoming these barriers by offering benefits, such as easy separation, reusability, low-cost raw materials, and the ability to reduce reaction times and energy consumption. This review evaluates key classes of heterogeneous catalysts, such as metal oxides, ion exchange resins, and zeolites, and their performance in transesterification and esterification processes. It highlights the importance of catalyst preparation methods, textural properties, including surface area, pore volume, and pore size, activation techniques, and critical operational parameters, like the methanol-to-oil ratio, temperature, time, catalyst loading, and reusability. The analysis reveals that catalysts supported on high surface area materials often achieve higher biodiesel yields, while metal oxides derived from natural sources provide cost-effective and sustainable options. Challenges, such as catalyst deactivation, sensitivity to feedstock composition, and variability in performance, are discussed. Overall, the findings underscore the potential of heterogeneous catalysts to enhance biodiesel production efficiency, although further optimization and standardized evaluation protocols are necessary for their broader industrial application. Full article
Show Figures

Figure 1

21 pages, 875 KiB  
Review
Sustainable Utilisation of Mining Waste in Road Construction: A Review
by Nuha S. Mashaan, Sammy Kibutu, Chathurika Dassanayake and Ali Ghodrati
J. Exp. Theor. Anal. 2025, 3(3), 19; https://doi.org/10.3390/jeta3030019 - 15 Jul 2025
Viewed by 342
Abstract
Mining by-products present both an environmental challenge and a resource opportunity. This review investigates their potential application in road pavement construction, focusing on materials such as fly ash, slag, sulphur, red mud, tailings, and silica fume. Drawing from laboratory and field studies, the [...] Read more.
Mining by-products present both an environmental challenge and a resource opportunity. This review investigates their potential application in road pavement construction, focusing on materials such as fly ash, slag, sulphur, red mud, tailings, and silica fume. Drawing from laboratory and field studies, the review examines their roles across pavement layers—subgrade, base, subbase, asphalt mixtures, and rigid pavements—emphasising mechanical properties, durability, moisture resistance, and ageing performance. When properly processed or stabilised, many of these wastes meet or exceed conventional performance standards, contributing to reduced use of virgin materials and greenhouse gas emissions. However, issues such as variability in composition, leaching risks, and a lack of standardised design protocols remain barriers to adoption. This review aims to consolidate current research, evaluate practical feasibility, and identify directions for future studies that would enable the responsible and effective reuse of mining waste in transportation infrastructure. Full article
Show Figures

Figure 1

26 pages, 2000 KiB  
Review
Bionanocomposite Coating Film Technologies for Disease Management in Fruits and Vegetables
by Jonathan M. Sánchez-Silva, Ulises M. López-García, Porfirio Gutierrez-Martinez, Ana Yareli Flores-Ramírez, Surelys Ramos-Bell, Cristina Moreno-Hernández, Tomás Rivas-García and Ramsés Ramón González-Estrada
Horticulturae 2025, 11(7), 832; https://doi.org/10.3390/horticulturae11070832 - 14 Jul 2025
Viewed by 484
Abstract
Fruit and vegetable production is often impacted by microbial pathogens that compromise the quality of produce and lead to significant economic losses at the postharvest stages. Due to their efficacy, agrochemicals are widely applied in disease management; nevertheless, this practice has led to [...] Read more.
Fruit and vegetable production is often impacted by microbial pathogens that compromise the quality of produce and lead to significant economic losses at the postharvest stages. Due to their efficacy, agrochemicals are widely applied in disease management; nevertheless, this practice has led to the appearance of microbial strains resistant to these types of agrochemicals. Additionally, there is growing concern among consumers about the presence of these chemical residues in fruits and the negative impacts they cause on multiple ecosystems. In response, there is a growing need for safe, effective, green, and sustainable disease control technologies. Bionanocomposites, with their unique ability to combine nanomaterials and biopolymers that have attractive properties, represents a promising alternative for postharvest disease control. These technologies allow for the development of functional coatings and films with antimicrobial, antioxidant, and barrier properties, which are critical for extending shelf life and preserving fruit quality. Recent advances have demonstrated that integrating nanoparticles, such as ZnO, TiO2, Ag, and chitosan-based nanosystems, into biopolymeric matrices, like alginate, pectin, starch, or cellulose, can enhance mechanical strength, regulate gas exchange, and control the release of active agents. This review presents systematized information that is focused on the creation of coatings and films based on bionanocomposites for the management of disease in fruits and vegetables. It also discusses the use of diverse biopolymers and nanomaterials and their impact on the quality and shelf life of fruits and vegetables. Full article
(This article belongs to the Special Issue Postharvest Diseases in Horticultural Crops and Their Management)
Show Figures

Figure 1

17 pages, 3907 KiB  
Review
Polyamide 6 as a Liner Material for Type IV Hydrogen Storage Cylinders: Performance Challenges and Modification Strategies
by Wenyan Wang, Guanxi Zhao, Xiao Ma, Dengxun Ren, Min Nie and Rui Han
Polymers 2025, 17(13), 1848; https://doi.org/10.3390/polym17131848 - 1 Jul 2025
Viewed by 420
Abstract
Type IV hydrogen storage cylinders are pivotal for high-pressure hydrogen storage and transportation, offering advantages such as lightweight design, high hydrogen storage density, and cost efficiency. Polyamide 6 (PA6) has emerged as a promising liner material due to its excellent mechanical strength, chemical [...] Read more.
Type IV hydrogen storage cylinders are pivotal for high-pressure hydrogen storage and transportation, offering advantages such as lightweight design, high hydrogen storage density, and cost efficiency. Polyamide 6 (PA6) has emerged as a promising liner material due to its excellent mechanical strength, chemical resistance, and gas barrier properties. However, challenges remain, including high hydrogen permeability and insufficient mechanical performance under extreme temperature and pressure conditions. This review systematically summarizes recent advances in modification strategies to enhance PA6’s suitability for Type IV hydrogen storage cylinders. Incorporating nanofillers (e.g., graphene, montmorillonite, and carbon nanotubes) significantly reduces hydrogen permeability. In situ polymerization and polymer blending techniques improve toughness and interfacial adhesion (e.g., ternary blends achieve a special increase in impact strength). Multiscale structural design (e.g., biaxial stretching) and process optimization further enhance PA6’s overall performance. Future research should focus on interdisciplinary innovation, standardized testing protocols, and industry–academia collaboration to accelerate the commercialization of PA6-based composites for hydrogen storage applications. This review provides theoretical insights and engineering guidelines for developing high-performance liner materials. Full article
Show Figures

Figure 1

15 pages, 926 KiB  
Article
Electronic Transport Properties in a One-Dimensional Sequence of Laser-Dressed Modified Pöschl-Teller Potentials
by Carlos A. Dagua-Conda, John A. Gil-Corrales, Miguel E. Mora-Ramos, Alvaro L. Morales and Carlos A. Duque
Nanomaterials 2025, 15(13), 1009; https://doi.org/10.3390/nano15131009 - 30 Jun 2025
Viewed by 286
Abstract
Modifying the potential profiles in low-dimensional semiconductor heterostructures changes the confinement of particles, impacting the electronic transport properties. In this work, we study the electronic transport properties of a modified Pöschl-Teller double-barrier potential heterostructure of GaAs/AlGaAs, and for a similar double-barrier system including [...] Read more.
Modifying the potential profiles in low-dimensional semiconductor heterostructures changes the confinement of particles, impacting the electronic transport properties. In this work, we study the electronic transport properties of a modified Pöschl-Teller double-barrier potential heterostructure of GaAs/AlGaAs, and for a similar double-barrier system including a Pöschl-Teller well between the barriers. For these two configurations, we calculated the current density–bias voltage characteristics, varying barrier and well half-width, the separation between barriers, and the depth of the central well. Additionally, the application of a non-resonant intense laser field. Our results show a redshift in the electronic transmission with increasing barrier separation, and a decrease in the area under the electronic transmission curve with the increase in the half-width of the barriers for both models. The characteristic current density-bias voltage curves in both models exhibit negative differential resistance, with tunable peaks that can be varied through changes in structural parameters and the external laser field. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

17 pages, 3303 KiB  
Article
Research on High-Performance Underwater-Curing Polymer Composites for Offshore Oil Riser Pipes
by Xuan Zhao, Jun Wan, Xuefeng Qv, Yajun Yu and Huiyan Zhao
Polymers 2025, 17(13), 1827; https://doi.org/10.3390/polym17131827 - 30 Jun 2025
Viewed by 466
Abstract
In offshore oil and gas extraction, riser pipes serve as the first isolation barrier for wellbore integrity, playing a crucial role in ensuring operational safety. Protective coatings represent an effective measure for corrosion prevention in riser pipes. To address issues such as electrochemical [...] Read more.
In offshore oil and gas extraction, riser pipes serve as the first isolation barrier for wellbore integrity, playing a crucial role in ensuring operational safety. Protective coatings represent an effective measure for corrosion prevention in riser pipes. To address issues such as electrochemical corrosion and poor adhesion of existing coatings, this study developed an underwater-curing composite material based on a polyisobutylene (PIB) and butyl rubber (IIR) blend system. The material simultaneously exhibits high peel strength, low water absorption, and stability across a wide temperature range. First, the contradiction between material elasticity and strength was overcome through the synergistic effect of medium molecular weight PIB internal plasticization and IIR crosslinking networks. Second, stable peel strength across a wide temperature range (−45 °C to 80 °C) was achieved by utilizing the interfacial effects of nano-fillers. Subsequently, an innovative solvent-free two-component epoxy system was developed, combining medium molecular weight PIB internal plasticization, nano-silica hydrogen bond reinforcement, and latent curing agent regulation. This system achieves rapid surface drying within 30 min underwater and pull-off strength exceeding 3.5 MPa. Through systematic laboratory testing and field application experiments on offshore oil and gas well risers, the material’s fundamental properties and operational performance were determined. Results indicate that the material exhibits a peel strength of 5 N/cm on offshore oil risers, significantly extending the service life of the riser pipes. This research provides theoretical foundation and technical support for improving the efficiency and reliability of repair processes for offshore oil riser pipes. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Composites: 2nd Edition)
Show Figures

Figure 1

34 pages, 8870 KiB  
Review
Advances in Graphene-Based Flame-Retardant for Polystyrene Applications: Synthesis, Mechanisms, and Future Perspectives
by Mutawakkil Isah, Farrukh Shehzad and Mamdouh A. Al-Harthi
Polymers 2025, 17(13), 1811; https://doi.org/10.3390/polym17131811 - 29 Jun 2025
Viewed by 670
Abstract
The growing demand for fire-safe, sustainable materials has driven extensive research into advanced flame retardants particularly polystyrene (PS), a widely utilized yet inherently flammable polymer. Graphene-derived materials are considered effective flame retardants owing to their higher thermal stability, char-formation, and gas barrier properties. [...] Read more.
The growing demand for fire-safe, sustainable materials has driven extensive research into advanced flame retardants particularly polystyrene (PS), a widely utilized yet inherently flammable polymer. Graphene-derived materials are considered effective flame retardants owing to their higher thermal stability, char-formation, and gas barrier properties. However, despite these advantages, challenges such as agglomeration, high thermal conductivity, poor interfacial compatibility, and processing limitations hinder their full-scale adoption in building insulation and other applications. This review presents an in-depth analysis of recent progress in graphene-enhanced flame-retardant systems for polystyrene applications, focusing on synthesis methods, flame-retardant mechanisms, and material performance. It also discusses strategies to address these challenges, such as surface functionalization, hybrid flame-retardant formulations, optimized graphene loading, and improved dispersion techniques. Furthermore, future research directions are proposed to enhance the effectiveness and commercial viability of graphene-based flame-retardant polystyrene composites. Overcoming these challenges is essential for high-performance, eco-friendly, flame-retardant materials on a larger scale. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop