Postharvest Diseases in Horticultural Crops and Their Management

A special issue of Horticulturae (ISSN 2311-7524). This special issue belongs to the section "Postharvest Biology, Quality, Safety, and Technology".

Deadline for manuscript submissions: 10 November 2025 | Viewed by 847

Special Issue Editor


E-Mail Website
Guest Editor
División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Avenida Tecnológico 2595, Col. Lagos del Country, Tepic 63175, Mexico
Interests: edible coatings; films; biopolymer characterization; biological control agents; fungi control; fruits; quality; alternative man-agement of fruits diseases; natural compounds
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Horticultural crops are essential in global food security, nutrition, and economic development. However, these crops are highly susceptible to various diseases caused by fungi, bacteria, and viruses, which can significantly impact yield, quality, and marketability. Postharvest diseases, in particular, pose a major challenge, leading to substantial losses during storage, transportation, and commercialization.

The presence of pathogens not only reduces the visual and nutritional quality of horticultural products but also increases food waste and economic losses for producers and distributors. Additionally, some phytopathogens produce mycotoxins that can pose serious health risks to consumers.

Effective disease management is crucial in ensuring safety, quality, and availability in horticultural products. Strategies such as biological control, the use of GRAS compounds, antimicrobial agents of plant origin, and innovative postharvest technologies offer sustainable alternatives to chemical fungicides, helping to reduce environmental and health risks.

Understanding and addressing the impact of diseases on horticultural products is key in improving food security, reducing economic losses, and promoting sustainable agricultural practices. 

This Special Issue will showcase the latest research and advancements in postharvest disease management. We welcome original research articles, reviews, and short communications on topics including, but not limited to, the following:

  • GRAS compounds and their role in disease control;
  • Biological control agents and their applications;
  • Plant-derived antimicrobial compounds;
  • Edible coatings and films for disease prevention;
  • Emerging and innovative technologies for postharvest disease management.

We encourage researchers, scientists, and industry professionals to share exciting new findings and contribute to the advancement of knowledge in this crucial field.

We look forward to receiving your valuable submissions.

Dr. Ramsés Ramón González-Estrada
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Horticulturae is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fruits
  • vegetables
  • herbs
  • ornamental plants
  • disease control
  • management
  • quality
  • safe alternatives
  • pathogens
  • eco-friendly

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 3023 KiB  
Article
Application of Atmospheric Non-Thermal Plasmas to Control Rhizopus stolonifer Causing Soft Rot Disease in Strawberry
by Dheerawan Boonyawan, Hans Jørgen Lyngs Jørgensen and Salit Supakitthanakorn
Horticulturae 2025, 11(7), 818; https://doi.org/10.3390/horticulturae11070818 - 9 Jul 2025
Viewed by 205
Abstract
Rhizopus stolonifer causes soft rot disease in strawberry and is considered one of the most destructive pathogens affecting strawberries worldwide. This study investigated the efficacy of three atmospheric non-thermal plasmas (NTPs) consisting of gliding arc (GA), Tesla coil (TC) and dielectric barrier discharge [...] Read more.
Rhizopus stolonifer causes soft rot disease in strawberry and is considered one of the most destructive pathogens affecting strawberries worldwide. This study investigated the efficacy of three atmospheric non-thermal plasmas (NTPs) consisting of gliding arc (GA), Tesla coil (TC) and dielectric barrier discharge (DBD) for controlling R. stolonifer infection. Fungal mycelial discs were exposed to these plasmas for 10, 15 or 20 min, whereas conidial suspensions were treated for 1, 3, 5 or 7 min. Morphological alterations following non-thermal plasma exposure were studied using scanning electron microscopy (SEM). Exposure to GA and DBD plasmas for 20 min completely inhibited mycelial growth. SEM analysis revealed significant structural damage to the mycelium, sporangia and sporangiospores of treated samples compared to untreated controls. Complete inhibition of sporangiospore germination was achieved with treatments for at least 3 min for all NTPs. Pathogenicity assays on strawberry fruit showed that 15 min exposure to any of the tested NTPs completely prevented the development of soft rot disease. Importantly, NTP treatments did not adversely affect the external or internal characteristics of treated strawberries. These findings suggest that atmospheric non-thermal plasmas offer an effective approach for controlling R. stolonifer infection in strawberries, potentially providing a non-chemical alternative for post-harvest disease management. Full article
(This article belongs to the Special Issue Postharvest Diseases in Horticultural Crops and Their Management)
Show Figures

Graphical abstract

18 pages, 4005 KiB  
Article
Colletotrichum capsici-Induced Disease Development in Postharvest Pepper Associated with Cell Wall Metabolism and Phenylpropanoid Metabolism
by Yunfen Liu, Qian Song, Feilong Yin, Yuanli Liang, Mubo Song, Meiying He and Liang Shuai
Horticulturae 2025, 11(7), 794; https://doi.org/10.3390/horticulturae11070794 - 4 Jul 2025
Viewed by 157
Abstract
Colletotrichum capsici is an important pathogen causing anthracnose in postharvest peppers in parts of Asia, seriously compromising quality and storage life. Unveiling the pathogenic mechanism can better prevent postharvest disease in pepper. This study investigated the impacts of C. capsici infection on cell [...] Read more.
Colletotrichum capsici is an important pathogen causing anthracnose in postharvest peppers in parts of Asia, seriously compromising quality and storage life. Unveiling the pathogenic mechanism can better prevent postharvest disease in pepper. This study investigated the impacts of C. capsici infection on cell wall and phenylpropanoid metabolism in postharvest pepper. Compared to the non-inoculated peppers, C. capsici infection notably increased the disease index, damaged visual quality, and reduced the firmness. Morphological observations showed that C. capsici infection contributed to the collapse of epidermal cell structure. During the early stage, C. capsici triggered pepper’s defensive responses, including lignin deposition around the wounds, increased cellulose and hemicellulose content, and boosted disease-resistance enzymes, including phenylalanine ammonia-lyase (PAL), cinnamic acid 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), laccase (LAC), β-1,3-glucanase (β-1,3-Glu), and chitinase (CHI), alongside elevated total phenolics and flavonoids. However, as storage time progressed, the activities of carboxymethy cellulase (Cx), polygalacturonase (PG), pectin methylesterase (PME), and β-glucosidase (β-Glu) remained at a high level, leading to a reduction in cell wall components, a decline in the activities of disease-resistance enzymes, and a decrease in phenylpropanoid metabolite, resulting from disease progression in pepper. These insights highlight the need for early intervention strategies to mitigate postharvest losses by targeting pathogen-induced stress responses and cell wall integrity preservation. Full article
(This article belongs to the Special Issue Postharvest Diseases in Horticultural Crops and Their Management)
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 2000 KiB  
Review
Bionanocomposite Coating Film Technologies for Disease Management in Fruits and Vegetables
by Jonathan M. Sánchez-Silva, Ulises M. López-García, Porfirio Gutierrez-Martinez, Ana Yareli Flores-Ramírez, Surelys Ramos-Bell, Cristina Moreno-Hernández, Tomás Rivas-García and Ramsés Ramón González-Estrada
Horticulturae 2025, 11(7), 832; https://doi.org/10.3390/horticulturae11070832 - 14 Jul 2025
Viewed by 288
Abstract
Fruit and vegetable production is often impacted by microbial pathogens that compromise the quality of produce and lead to significant economic losses at the postharvest stages. Due to their efficacy, agrochemicals are widely applied in disease management; nevertheless, this practice has led to [...] Read more.
Fruit and vegetable production is often impacted by microbial pathogens that compromise the quality of produce and lead to significant economic losses at the postharvest stages. Due to their efficacy, agrochemicals are widely applied in disease management; nevertheless, this practice has led to the appearance of microbial strains resistant to these types of agrochemicals. Additionally, there is growing concern among consumers about the presence of these chemical residues in fruits and the negative impacts they cause on multiple ecosystems. In response, there is a growing need for safe, effective, green, and sustainable disease control technologies. Bionanocomposites, with their unique ability to combine nanomaterials and biopolymers that have attractive properties, represents a promising alternative for postharvest disease control. These technologies allow for the development of functional coatings and films with antimicrobial, antioxidant, and barrier properties, which are critical for extending shelf life and preserving fruit quality. Recent advances have demonstrated that integrating nanoparticles, such as ZnO, TiO2, Ag, and chitosan-based nanosystems, into biopolymeric matrices, like alginate, pectin, starch, or cellulose, can enhance mechanical strength, regulate gas exchange, and control the release of active agents. This review presents systematized information that is focused on the creation of coatings and films based on bionanocomposites for the management of disease in fruits and vegetables. It also discusses the use of diverse biopolymers and nanomaterials and their impact on the quality and shelf life of fruits and vegetables. Full article
(This article belongs to the Special Issue Postharvest Diseases in Horticultural Crops and Their Management)
Show Figures

Figure 1

Back to TopTop