Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (127)

Search Parameters:
Keywords = fringe pattern analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5371 KB  
Article
A Modified Dot-Pattern Moiré Fringe Topography Technique for Efficient Human Body Surface Analysis
by Muhammad Wasim, Syed Talha Ahsan, Lubaid Ahmed and Subhash Sagar
Sensors 2026, 26(3), 1063; https://doi.org/10.3390/s26031063 - 6 Feb 2026
Abstract
Raster-stereography and Moiré Fringe Topography are widely recognized as effective techniques for surface screening. Traditionally, these methods have been applied in various medical and clinical contexts, such as assessing human body symmetry, analyzing spinal deformities, evaluating scapular positioning, and predicting trunk-related abnormalities. Both [...] Read more.
Raster-stereography and Moiré Fringe Topography are widely recognized as effective techniques for surface screening. Traditionally, these methods have been applied in various medical and clinical contexts, such as assessing human body symmetry, analyzing spinal deformities, evaluating scapular positioning, and predicting trunk-related abnormalities. Both techniques have proven to be reliable tools for examining the human body surface and identifying health-related issues. However, in these techniques, line grids projected onto non-uniform surfaces often break or distort, complicating curvature detection. Capturing and digitizing these distortions through photographymeans further reducing accuracy due to low contrast between background and projected lines. In this paper, we present a modified, i.e., dotted-based, approach to Moiré Fringe Topography construction, offering a simpler, more accurate, and efficient method for recording human body surface curvatures. The proposed technique significantly reduces the complexity of the data acquisition process while maintaining precision in surface analysis. A Single-Photon Avalanche Diode (SPAD) image sensor was used to capture the Moiré patterns. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

20 pages, 8812 KB  
Article
Spatiotemporal Analysis of Thermal Environment and Land Use Change in Sonipat, Panipat, and Jhajjar Districts Under the Central Circle Forest Area of Haryana, India (1993–2023)
by Himanshi Sharma, Doyeli Sanyal, Rishikesh Singh and Santosh Pal Singh
Urban Sci. 2026, 10(2), 95; https://doi.org/10.3390/urbansci10020095 - 3 Feb 2026
Viewed by 157
Abstract
Changes in land use patterns due to urbanisation impact local weather patterns by influencing Land Surface Temperatures (LSTs). Despite rapid urbanisation in the Delhi-NCR (National Capital Region), the peri-urban fringes of Haryana, such as the Central Circle Forest (CCF) region, in the past [...] Read more.
Changes in land use patterns due to urbanisation impact local weather patterns by influencing Land Surface Temperatures (LSTs). Despite rapid urbanisation in the Delhi-NCR (National Capital Region), the peri-urban fringes of Haryana, such as the Central Circle Forest (CCF) region, in the past three decades, a comprehensive 30-year analysis that integrates LST, the Normalised Difference Vegetation Index (NDVI), the Normalised Difference Built-up Index (NDBI), and Land Use/Land Cover (LULC) is lacking. The current study on the decadal analysis covering the 1993 to 2023 time period shows an increase in built-up areas (14.6–38.4%), a decline in NDVI (−0.01 to −0.08), a 6 °C rise in summer LST, and weak correlations between LST and NDVI. A significant increase in summer mean LSTs was observed, with some regions reaching temperatures beyond 35 °C in the selected districts. The LST and LULC zonal statistics revealed that the open fields/agricultural land and floodplains of the Yamuna River have adversely affected the weather pattern with rising LST. The average NDVI declined from −0.01 in 1993 to −0.08 in 2023, indicating a loss of vegetative buffers. Meanwhile, NDBI trends from 2003 to 2023 showed that built-up areas have steadily grown, and LULC data highlighted 38.43% of the built-up area in 2023. Correlation analysis showed a weak negative relationship between LST and NDVI (r = −0.47), suggesting diminishing cooling effects of vegetation, while a weak positive correlation between LST and NDBI indicates that urban expansion is significantly contributing to the urban heat island effect. This study emphasises the need for green infrastructure, afforestation, and water conservation in urban planning frameworks to enhance climate resilience and ecological sustainability. Full article
Show Figures

Figure 1

29 pages, 20312 KB  
Article
Hybrid Rural Landscape Characterization and Typological Governance Strategies in Metropolitan Fringe Areas Based on Machine Learning: A Case Study of Baoshan District, Shanghai
by Dizi Liu, Song Liu, Zhaocheng Bai, Peiyu Shen and Yuxiang Dong
Land 2026, 15(2), 256; https://doi.org/10.3390/land15020256 - 2 Feb 2026
Viewed by 139
Abstract
Rapid urbanization and industrialization have significantly reshaped rural landscapes in metropolitan fringe areas, resulting in “hybridized” characteristics. This study establishes an analytical framework to systematically characterize hybrid rural landscapes, diagnose specific local issues, reveal their spatial differentiation patterns and driving mechanisms, and propose [...] Read more.
Rapid urbanization and industrialization have significantly reshaped rural landscapes in metropolitan fringe areas, resulting in “hybridized” characteristics. This study establishes an analytical framework to systematically characterize hybrid rural landscapes, diagnose specific local issues, reveal their spatial differentiation patterns and driving mechanisms, and propose targeted governance strategies. Taking 124 rural units in Baoshan District, Shanghai as a case, multi-source data from the latest available years (2020–2023) were compiled as a cross-sectional snapshot, and a comprehensive indicator system integrating landscape pattern (P), social function (F), and spatial vitality (V) was developed. Utilizing multi-source geospatial data—including land-use maps, points of interest, and mobile signaling data—Gaussian Mixture Models were applied to classify typical hybrid landscape types. Spatial evolution processes and underlying driving forces were further interpreted through remote sensing imagery analysis, field investigations, and policy document reviews. Eleven distinctive hybrid rural landscape types (HTs) were characterized, forming a spatial gradient from urban to rural, encompassing “high-density urbanized” → “ecologically embedded” → “production–living integrated” → “traditional rural landscapes”. Additionally, five representative evolutionary patterns—“urban restructuring”, “ecological orientation”, “industrial-driven transition”, “transitional hybridization”, and “traditional preservation”—were identified, shaped by spatial configuration, planning policies, industrial investments, and demographic dynamics. The framework enhances understanding of the complexity and evolutionary dynamics of rural landscapes, providing theoretical insights and practical guidance for effective typological governance and targeted policy interventions. Full article
Show Figures

Figure 1

28 pages, 16155 KB  
Article
A Robust Skeletonization Method for High-Density Fringe Patterns in Holographic Interferometry Based on Parametric Modeling and Strip Integration
by Sergey Lychev and Alexander Digilov
J. Imaging 2026, 12(2), 54; https://doi.org/10.3390/jimaging12020054 - 24 Jan 2026
Viewed by 239
Abstract
Accurate displacement field measurement by holographic interferometry requires robust analysis of high-density fringe patterns, which is hindered by speckle noise inherent in any interferogram, no matter how perfect. Conventional skeletonization methods, such as edge detection algorithms and active contour models, often fail under [...] Read more.
Accurate displacement field measurement by holographic interferometry requires robust analysis of high-density fringe patterns, which is hindered by speckle noise inherent in any interferogram, no matter how perfect. Conventional skeletonization methods, such as edge detection algorithms and active contour models, often fail under these conditions, producing fragmented and unreliable fringe contours. This paper presents a novel skeletonization procedure that simultaneously addresses three fundamental challenges: (1) topology preservation—by representing the fringe family within a physics-informed, finite-dimensional parametric subspace (e.g., Fourier-based contours), ensuring global smoothness, connectivity, and correct nesting of each fringe; (2) extreme noise robustness—through a robust strip integration functional that replaces noisy point sampling with Gaussian-weighted intensity averaging across a narrow strip, effectively suppressing speckle while yielding a smooth objective function suitable for gradient-based optimization; and (3) sub-pixel accuracy without phase extraction—leveraging continuous bicubic interpolation within a recursive quasi-optimization framework that exploits fringe similarity for precise and stable contour localization. The method’s performance is quantitatively validated on synthetic interferograms with controlled noise, demonstrating significantly lower error compared to baseline techniques. Practical utility is confirmed by successful processing of a real interferogram of a bent plate containing over 100 fringes, enabling precise displacement field reconstruction that closely matches independent theoretical modeling. The proposed procedure provides a reliable tool for processing challenging interferograms where traditional methods fail to deliver satisfactory results. Full article
(This article belongs to the Special Issue Image Segmentation: Trends and Challenges)
Show Figures

Figure 1

15 pages, 12198 KB  
Article
Automated Local Measurement of Wall Shear Stress with AI-Assisted Oil Film Interferometry
by Mohammad Mehdizadeh Youshanlouei, Lorenzo Lazzarini, Alessandro Talamelli, Gabriele Bellani and Massimiliano Rossi
Sensors 2026, 26(2), 701; https://doi.org/10.3390/s26020701 - 21 Jan 2026
Viewed by 170
Abstract
Accurate measurement of wall shear stress (WSS) is essential for both fundamental and applied fluid dynamics, where it governs boundary-layer behavior, drag generation, and the performance of flow-control systems. Yet, existing WSS sensing methods remain limited by low spatial resolution, complex instrumentation, or [...] Read more.
Accurate measurement of wall shear stress (WSS) is essential for both fundamental and applied fluid dynamics, where it governs boundary-layer behavior, drag generation, and the performance of flow-control systems. Yet, existing WSS sensing methods remain limited by low spatial resolution, complex instrumentation, or the need for user-dependent calibration. This work introduces a method based on artificial intelligence (AI) and Oil-Film Interferometry, referred to as AI-OFI, that transforms a classical optical technique into an automated and sensor-like platform for local WSS detection. The method combines the non-intrusive precision of Oil-Film Interferometry with modern deep-learning tools to achieve fast and fully autonomous data interpretation. Interference patterns generated by a thinning oil film are first segmented in real time using a YOLO-based object detection network and subsequently analyzed through a modified VGG16 regression model to estimate the local film thickness and the corresponding WSS. A smart interrogation-window selection algorithm, based on 2D Fourier analysis, ensures robust fringe detection under varying illumination and oil distribution conditions. The AI-OFI system was validated in the high-Reynolds-number Long Pipe Facility at the Centre for International Cooperation in Long Pipe Experiments (CICLoPE), showing excellent agreement with reference pressure-drop measurements and conventional OFI, with an average deviation below 5%. The proposed framework enables reliable, real-time, and operator-independent wall shear stress sensing, representing a significant step toward next-generation optical sensors for aerodynamic and industrial flow applications. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

18 pages, 3670 KB  
Article
Tree Ring Width of Styphnolobium japonicum Reveals Summer Maximum Temperature Variations in Northwestern Yan Mountains over the Past 433 Years
by Shengxiang Mao, Long Ma, Bolin Sun, Qiang Zhang, Xing Huang, Chang Lu, Ziyue Zhang and Jiamei Yuan
Atmosphere 2025, 16(12), 1390; https://doi.org/10.3390/atmos16121390 - 9 Dec 2025
Viewed by 329
Abstract
In the context of global warming, hydroclimatic conditions in the monsoon marginal zone are governed by two primary drivers: the East Asian monsoon and the westerly winds. As a sensitive indicator of climatic change, this region experiences disproportionately amplified adverse effects of climate [...] Read more.
In the context of global warming, hydroclimatic conditions in the monsoon marginal zone are governed by two primary drivers: the East Asian monsoon and the westerly winds. As a sensitive indicator of climatic change, this region experiences disproportionately amplified adverse effects of climate change are markedly amplified, positioning it as a focal area for climatological research. However, the limited temporal coverage of instrumental records poses significant challenges for understanding historical hydroclimatic variability and its underlying mechanisms. To address this limitation, tree-ring width indices derived from 73 cores of Styphnolobium japonicum ((L.) Schott (1830)) are hereby employed to reconstruct summer maximum temperatures over a 433-year period in the central monsoon fringe zone—specifically, the northwestern Yan Mountains. Results confirm a strong correlation between the tree-ring width index of Styphnolobium japonicum and local summer maximum temperatures (r = 0.770, p < 0.01). Compared to the 19th century, the frequency of temperature fluctuations has increased substantially, with four abrupt regime shifts identified in the reconstructed series (1707, 1817, 1878, and 1994). Spectral analysis reveals cyclical patterns at interannual (2–7 years), decadal (10–30 years), and multidecadal (50 years) timescales. These oscillations align closely with known climate modes, including the EI Niño–Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the Atlantic Multidecadal Oscillation (AMO). Among them, the AMO presents particularly strong coherence with the reconstructed temperature variability. These outcomes improve insights into long-term temperature dynamics in the region and highlight the value of dendroclimatic proxies in reconstructing past climate conditions. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

21 pages, 5733 KB  
Article
Salinity Distribution as a Hydrogeological Limit in a Karstic Watershed in Yucatan
by Iris Neri-Flores, Ojilve Ramón Medrano-Pérez, Flor Arcega-Cabrera, Ismael Mariño-Tapia, César Canul-Macario and Pedro Agustín Robledo-Ardila
J. Mar. Sci. Eng. 2025, 13(12), 2317; https://doi.org/10.3390/jmse13122317 - 6 Dec 2025
Viewed by 586
Abstract
In coastal regions, the interaction between freshwater and seawater creates a dynamic system in which the spatial distribution of salinity critically constrains the use of freshwater for human consumption. Although saline intrusion is a globally widespread phenomenon, its inland extent varies significantly with [...] Read more.
In coastal regions, the interaction between freshwater and seawater creates a dynamic system in which the spatial distribution of salinity critically constrains the use of freshwater for human consumption. Although saline intrusion is a globally widespread phenomenon, its inland extent varies significantly with hydrological conditions, posing a persistent threat to groundwater quality and sustainability. This study aimed to characterize salinity distribution using an integrated karst-watershed approach, thereby enabling the identification of both lateral and vertical salinity gradients. The study area is in the northwestern Yucatan Peninsula. Available hydrogeological data were analyzed to determine aquifer type, soil texture, evidence of saline intrusion, seawater fraction, vadose zone thickness, and field measurements. These included sampling from 42 groundwater sites (open sinkholes and dug wells), which indicated a fringe zone approximately 5 km in size influenced by seawater interaction, in mangrove areas and in three key zones of salinity patterns: west of Mérida (Celestun and Chunchumil), and northern Yucatan (Sierra Papacal, Motul, San Felipe). Vertical Electrical Sounding (VES) and conductivity profiling in two piezometers indicated an apparent seawater influence. The interface was detected at a depth of 28 m in Celestun and 18 m in Chunchumil. These depths may serve as hydrogeological thresholds for freshwater abstraction. Results indicate that saltwater can extend several kilometers inland, a factor to consider when evaluating freshwater availability. This issue is particularly critical within the first 20 km from the coastline, where increasing tourism exerts substantial pressure on groundwater reserves. A coastal-to-inland salinity was identified, and an empirical equation was proposed to estimate the seawater fraction (fsea%) as a function of distance from the shoreline in the Cenote Ring trajectory. Vertically, a four-layer model was identified in this study through VES in the western watershed: an unsaturated zone approximately 2.6 m thick, a confined layer in the coastal Celestun profile about 9 m thick, a freshwater lens floating above a brackish layer between 8 and 25 m, and a saline interface at 37 m depth. The novelty of this study, in analyzing all karstic water surfaces together as a system, including the vadose zone and the aquifer, and considering the interactions with the surface, is highlighted by the strength of this approach. This analysis provides a better understanding and more precise insight into the integrated system than analyzing each component separately. These findings have significant implications for water resource management in karst regions such as Yucatan, underscoring the urgent need for sustainable groundwater management practices to address seawater intrusion. Full article
(This article belongs to the Special Issue Marine Karst Systems: Hydrogeology and Marine Environmental Dynamics)
Show Figures

Graphical abstract

32 pages, 11840 KB  
Article
Long-Term Spatiotemporal Relationship of Urban–Rural Gradient Between Land Surface Temperature and Nighttime Light in Representative Cities Across China’s Climate Zones
by Juanzhu Liang, Wenfang Li, Yuke Zhou, Xueyang Han and Daqing Li
Remote Sens. 2025, 17(21), 3585; https://doi.org/10.3390/rs17213585 - 30 Oct 2025
Viewed by 1015
Abstract
In the context of rapid urbanization, human activities have profoundly transformed urban thermal environments. However, most existing studies have focused on single cities or relatively uniform climatic contexts, and the long-term dynamics between land surface temperature (LST) and nighttime light (NTL) across urban–rural [...] Read more.
In the context of rapid urbanization, human activities have profoundly transformed urban thermal environments. However, most existing studies have focused on single cities or relatively uniform climatic contexts, and the long-term dynamics between land surface temperature (LST) and nighttime light (NTL) across urban–rural gradients in diverse climates remain insufficiently explored. This gap limits a systematic understanding of how human activities and thermal environments co-evolve under varying regional conditions. To address this gap, we selected ten representative cities spanning multiple climate zones in China. Using MODIS LST and NTL datasets from 2000 to 2020, we developed an urban–rural gradient analysis framework to systematically assess the spatiotemporal response patterns and coupling mechanisms between LST and NTL. Our findings reveal the following: (1) From 2000 to 2020, NTL exhibited a pronounced upward trend across all climate zones, most notably in the marginal tropical humid region, while LST changes were relatively moderate. (2) LST and NTL displayed power-law distributions along urban–rural transects, marked by steep declines in monocentric cities and gradual transitions in polycentric cities, with sharper thermal gradients in northern and inland areas and more gradual transitions in southern and coastal regions. (3) The long-term increase in NTL was most evident in suburban areas (0.94 nW/cm2/sr/a), surpassing that in urban cores (0.68 nW/cm2/sr/a) and rural zones (0.60 nW/cm2/sr/a), with inland cities (0.84 nW/cm2/sr/a) outpacing their coastal counterparts. Although LST changes were modest, suburban warming (0.16 ± 0.08 °C/a) was over twice that of urban and rural areas. Notably, the synergistic escalation of light and heat was most pronounced in tropical and subtropical cities. (4) Eastern coastal cities exhibited strongly synchronized rises in NTL and LST, whereas cities in the plateau, temperate semi-arid, and mid-temperate arid regions showed clear decoupling. Along urban–rural gradients, NTL–LST correlations generally weakened from urban centers to peripheries, yet coupling coordination peaked in fringe areas (mean = 0.63), underscoring pronounced spatial heterogeneity. This study advances our understanding of the spatiotemporal coupling of urban light and heat under varying climatic and urbanization contexts, offering critical insights into managing urban thermal environments. Full article
Show Figures

Figure 1

20 pages, 5341 KB  
Article
The Relationship Between Urban Perceptions and Bike-Sharing Equity in 15-Minute Metro Station Catchments: A Shenzhen Case Study
by Fengliang Tang, Lei Wang, Longhao Zhang, Yaolong Wang, Hao Gao, Weixing Xu and Yingning Shen
Buildings 2025, 15(21), 3874; https://doi.org/10.3390/buildings15213874 - 27 Oct 2025
Viewed by 779
Abstract
As cities worldwide strive to promote healthy and sustainable non-motorized transport, the equity of dockless bike-sharing has become a central issue in urban transport planning. This study investigates the relationship between human-scale urban environmental perceptions and the equity of bike-sharing usage within 15-minute [...] Read more.
As cities worldwide strive to promote healthy and sustainable non-motorized transport, the equity of dockless bike-sharing has become a central issue in urban transport planning. This study investigates the relationship between human-scale urban environmental perceptions and the equity of bike-sharing usage within 15-minute cycling catchments of metro stations. Using Shenzhen, China, as a case study, we integrated bike-share trip records from August 2021 (around 43 million trips), population grid data, and Baidu Street View images analyzed with deep learning models. The study first quantified the spatial inequality of bike-sharing usage within each metro catchment area using a per capita trip Gini coefficient. Subsequently, we assessed the correlation between these equity metrics and human-scale urban qualities quantified from street-level imagery. The findings reveal significant intra-catchment usage disparities, with some central urban station areas showing relatively equitable bike-sharing distribution (Gini as low as 0.37), while others, particularly on the urban fringe, exhibit highly inequitable patterns (Gini as high as 0.93). Spearman correlation analysis showed that catchments perceived as “livelier” and more “interesting” had significantly lower Gini coefficients, whereas other perceptual factors such as safety, beauty and wealth showed no significant linear relationship with equity. A Random Forest model further indicated that “liveliness” and “lack of boredom” are the strongest predictors of usage equity, highlighting the critical role of vibrant street environments in promoting equitable access. These findings bridge the fields of transportation equity and urban governance, suggesting that improving the human-scale environment around transit hubs, thereby making streets more engaging, safe, and pleasant, could foster more inclusive and equitable use of bike-sharing. Full article
(This article belongs to the Special Issue New Trends in Built Environment and Mobility)
Show Figures

Figure 1

48 pages, 9622 KB  
Review
Fringe-Based Structured-Light 3D Reconstruction: Principles, Projection Technologies, and Deep Learning Integration
by Zhongyuan Zhang, Hao Wang, Yiming Li, Zinan Li, Weihua Gui, Xiaohao Wang, Chaobo Zhang, Xiaojun Liang and Xinghui Li
Sensors 2025, 25(20), 6296; https://doi.org/10.3390/s25206296 - 11 Oct 2025
Cited by 4 | Viewed by 5090
Abstract
Structured-light 3D reconstruction is an active measurement technique that extracts spatial geometric information of objects by projecting fringe patterns and analyzing their distortions. It has been widely applied in industrial inspection, cultural heritage digitization, virtual reality, and other related fields. This review presents [...] Read more.
Structured-light 3D reconstruction is an active measurement technique that extracts spatial geometric information of objects by projecting fringe patterns and analyzing their distortions. It has been widely applied in industrial inspection, cultural heritage digitization, virtual reality, and other related fields. This review presents a comprehensive analysis of mainstream fringe-based reconstruction methods, including Fringe Projection Profilometry (FPP) for diffuse surfaces and Phase Measuring Deflectometry (PMD) for specular surfaces. While existing reviews typically focus on individual techniques or specific applications, they often lack a systematic comparison between these two major approaches. In particular, the influence of different projection schemes such as Digital Light Processing (DLP) and MEMS scanning mirror–based laser scanning on system performance has not yet been fully clarified. To fill this gap, the review analyzes and compares FPP and PMD with respect to measurement principles, system implementation, calibration and modeling strategies, error control mechanisms, and integration with deep learning methods. Special focus is placed on the potential of MEMS projection technology in achieving lightweight and high-dynamic-range measurement scenarios, as well as the emerging role of deep learning in enhancing phase retrieval and 3D reconstruction accuracy. This review concludes by identifying key technical challenges and offering insights into future research directions in system modeling, intelligent reconstruction, and comprehensive performance evaluation. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

36 pages, 5641 KB  
Article
Experimental Analysis of Fractured Human Bones: Brief Review and New Approaches
by Ioan Száva, Iosif Șamotă, Teofil-Florin Gălățanu, Dániel-Tamás Száva and Ildikó-Renáta Száva
Prosthesis 2025, 7(5), 126; https://doi.org/10.3390/prosthesis7050126 - 9 Oct 2025
Viewed by 658
Abstract
Long bone fractures are breaks or cracks in a long bone of the body typically caused by trauma like a fall, sport injury, accidents etc. This study investigates the effectiveness of experimental methods for fast and safe healing of long bone fractures in [...] Read more.
Long bone fractures are breaks or cracks in a long bone of the body typically caused by trauma like a fall, sport injury, accidents etc. This study investigates the effectiveness of experimental methods for fast and safe healing of long bone fractures in humans, highlighting both their advantages and disadvantages, respectively finding the most effective and safe methods for evaluating the types of fixators that can be used in the consolidation of fractured long bones. As for the preliminary data, numerical methods and applied mathematics were used to address this problem. After collecting of preliminary data there were performed a series of experimental analysis as follows: Electrical Strain Gauges (ESGs); the Moiré Fringes method; Photo-Elasticity, with the particular technique thereof, the so-called Photo-Stress method; Holographic Interferometry (HI); Speckle Pattern Interferometry (ESPI) and Shearography; and Video Image Correlation (VIC), which is also called Digital Image Correlation (DIC). By analyzing different methods, the following two methods resulted to be widely applicable, namely, ESG and DIC/VIC. The findings highlight the net advantages regarding the objective choice of these types of fixators, thereby contributing to a possible extension of these approaches for the benefit of medical surgical practice Full article
Show Figures

Figure 1

19 pages, 11819 KB  
Article
Spatiotemporal Dynamics and Multi-Scale Equity Evaluation of Urban Rail Accessibility: Evidence from Hangzhou
by Jiasheng Zhu and Xiaoping Rui
ISPRS Int. J. Geo-Inf. 2025, 14(9), 361; https://doi.org/10.3390/ijgi14090361 - 18 Sep 2025
Cited by 2 | Viewed by 1338
Abstract
In recent years, the rapid expansion of urban rail transit has significantly improved travel efficiency, yet it has also exacerbated spatial inequality in service coverage. Accessibility, as a fundamental metric for evaluating the equity of service distribution, remains limited by three major shortcomings [...] Read more.
In recent years, the rapid expansion of urban rail transit has significantly improved travel efficiency, yet it has also exacerbated spatial inequality in service coverage. Accessibility, as a fundamental metric for evaluating the equity of service distribution, remains limited by three major shortcomings in current assessment methods: the neglect of actual road network characteristics, reliance on a single static scale, and the absence of quantitative mechanisms to assess accessibility equity. These deficiencies hinder a comprehensive understanding of how equity evolves with the spatiotemporal dynamics of rail systems. To address the aforementioned issues, this study proposes an innovative spatiotemporally dynamic and multi-scale analytical framework for evaluating urban rail accessibility and its equity implications. Specifically, we develop a network-based buffer decay model to refine service population estimation by incorporating realistic walking paths, capturing both distance decay and road network constraints. The framework integrates multiple spatial analytical techniques, including the Gini coefficient, Lorenz curve, global and local spatial autocorrelation, center-of-gravity shift, and standard deviation ellipse, to quantitatively assess the equity and evolutionary patterns of accessibility across multiple spatial scales. Taking the central urban area of Hangzhou as a case study, this research investigates the spatiotemporal patterns and equity changes in metro station accessibility in 2019 and 2023. The results indicate that the expansion of the metro network has partially improved overall accessibility equity: the Gini coefficient at the TAZ (Traffic Analysis Zone) scale decreased from 0.56 to 0.425. Nevertheless, significant inequality remains at finer spatial resolutions (grid-level Gini coefficient = 0.404). In terms of spatial pattern, the core area (e.g., Wulin Square) forms a ‘high-high’ accessibility agglomeration area, while the urban fringe area (e.g., northern Yuhang) presents a ‘low-low’ agglomeration, and the problem of local ‘accessibility depression’ still exists. Additionally, the accessibility centroid has consistently shifted northwestward, and the long axis of the standard deviation ellipse has rotated from an east–west to a northwest-southeast orientation, indicating a growing spatial polarization between core and peripheral zones. The findings suggest that improving equity in urban rail accessibility cannot rely solely on expanding network size; rather, it requires coordinated strategies involving network structure optimization, branch line development, multimodal integration, and the construction of efficient transfer systems to promote more balanced and equitable spatial distribution of rail transit resources citywide. Full article
(This article belongs to the Special Issue Spatial Data Science and Knowledge Discovery)
Show Figures

Figure 1

25 pages, 1028 KB  
Article
Characterizing User Archetypes and Discussions on Social Hypernetworks
by Andrea Failla, Salvatore Citraro, Giulio Rossetti and Francesco Cauteruccio
Big Data Cogn. Comput. 2025, 9(9), 236; https://doi.org/10.3390/bdcc9090236 - 16 Sep 2025
Viewed by 813
Abstract
In recent years, the proliferation of social platforms has drastically transformed how individuals interact, organize, and share information. In this scenario, there has been an unprecedented increase in the scale and complexity of interactions and, at the same time, little to no research [...] Read more.
In recent years, the proliferation of social platforms has drastically transformed how individuals interact, organize, and share information. In this scenario, there has been an unprecedented increase in the scale and complexity of interactions and, at the same time, little to no research about certain fringe social platforms. In this paper, we present a multi-dimensional framework for characterizing nodes and hyperedges in social hypernetworks, with a focus on the understudied alt-right platform Scored.co. Our approach integrates the possibility of studying higher-order interactions, thanks to the hypernetwork representation, and various node features such as user activity, sentiment, and toxicity, with the aim of defining distinct user archetypes and understanding their roles within the network. Utilizing a comprehensive dataset from Scored.co, consisting of more than 4.4 M posts and 36.9 M comments, we analyze the dynamics of these archetypes over time and explore their interactions and influence within the community. We identify eight archetypes, with the largest group comprising over 15,000 users, and observe that 44% of interactions involve at least five participants, highlighting the importance of higher-order modeling. Furthermore, we find significant archetype transitions and stable yet locally dense interaction patterns, with users exposed to roughly 1000 unique peers on average. The framework’s versatility allows for detailed analysis of both individual user behaviors and broader social structures. Our findings highlight the importance of higher-order interactions and node features in understanding social dynamics, and offer new insights into the roles and behaviors that emerge in complex online environments. Full article
Show Figures

Figure 1

32 pages, 2548 KB  
Review
Interference Field Control for High-Uniformity Nanopatterning: A Review
by Jingwen Li and Xinghui Li
Sensors 2025, 25(18), 5719; https://doi.org/10.3390/s25185719 - 13 Sep 2025
Cited by 2 | Viewed by 2026
Abstract
Interference lithography (IL) offers high throughput, excellent uniformity, and maskless patterning capabilities. Compared to other methods, IL enables large-area, cost-effective fabrication of periodic structures with subwavelength resolution, which is particularly valuable for sensing applications, enabling the development of more sensitive, high-resolution, and reliable [...] Read more.
Interference lithography (IL) offers high throughput, excellent uniformity, and maskless patterning capabilities. Compared to other methods, IL enables large-area, cost-effective fabrication of periodic structures with subwavelength resolution, which is particularly valuable for sensing applications, enabling the development of more sensitive, high-resolution, and reliable sensors. This review provides a comprehensive analysis of IL from the perspective of optical field control. We first introduce the principles of interference field formation and summarize key system architectures, including Mach–Zehnder and Lloyd’s mirror configurations, as well as advanced schemes such as multi-beam interference and multi-step exposure for complex pattern generation. We then examine how wavefront engineering, polarization modulation, and phase stabilization influence pattern morphology, contrast, and large-area uniformity. To address dynamic drifts caused by environmental perturbations, both passive vibration isolation and active fringe-locking techniques are discussed. For fringe-locking systems, we review methods for drift monitoring, control algorithms, and feedback implementation. These developments enhance the capability of IL systems to deliver nanoscale accuracy under dynamic conditions, which is essential for stable and high-performance sensing. Looking ahead, IL is evolving into a versatile platform for sensor-oriented nanofabrication. By integrating physical modeling, precision optics, and real-time control, IL provides a robust foundation for advancing next-generation sensing technologies with higher sensitivity, resolution, and reliability. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

16 pages, 12711 KB  
Article
Self-Learning-Based Fringe Domain Conversion for 3D Surface Measurement of Translucent Objects at the Mesoscopic Scale
by Wenqing Su, Tao Zou, Huankun Chen, Haipeng Niu, Zhaoshui He, Yumei Zhao, Zhuyun Chen and Ji Tan
Photonics 2025, 12(9), 898; https://doi.org/10.3390/photonics12090898 - 7 Sep 2025
Cited by 1 | Viewed by 933
Abstract
Three-dimensional measurement of translucent objects using structured light techniques remained fundamentally challenging due to severe degradation of fringe patterns caused by subsurface scattering, which inevitably introduced phase errors and compromised measurement accuracy. Although deep learning had emerged as a powerful tool for fringe [...] Read more.
Three-dimensional measurement of translucent objects using structured light techniques remained fundamentally challenging due to severe degradation of fringe patterns caused by subsurface scattering, which inevitably introduced phase errors and compromised measurement accuracy. Although deep learning had emerged as a powerful tool for fringe analysis, its practical implementation was hindered by the impractical requirement for large-scale labeled datasets, particularly in scattering-dominant measurement scenarios. To overcome these limitations, we developed a self-learning-based fringe domain conversion method inspired by image style transfer principles, where degraded and ideal fringe patterns were treated as distinct domains for cyclic translation. The proposed framework employed dual generators and discriminators to establish cycle-consistency constraints while incorporating both numerical intensity-based and physical phase-derived optimization targets, effectively suppressing phase errors and improving fringe modulation without requiring paired training data. Experimental validation demonstrated superior performance in reconstructing high-fidelity 3D morphology of translucent objects, establishing this approach as a robust solution for precision metrology of complex scattering media. Full article
(This article belongs to the Special Issue Advancements in Optical Metrology and Imaging)
Show Figures

Figure 1

Back to TopTop