Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,668)

Search Parameters:
Keywords = fresh produce

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3010 KiB  
Article
Species-Specific Real-Time PCR Assay for Rapid Identification of Zeugodacus cucurbitae Coquillet (Diptera: Tephritidae) from Other Closely Related Fruit Fly Species
by Rebijith Kayattukandy Balan, Sherly George, Gur Pines, Dongmei Li, Disna Gunawardana and Sathish Puthigae
Insects 2025, 16(8), 818; https://doi.org/10.3390/insects16080818 - 7 Aug 2025
Abstract
Fruit flies that belong to the genus Zeugodacus (Diptera: Tephritidae) pose significant threats as invasive pests of agricultural crops in Asia and sub-Saharan Africa. The intensification of transboundary trade in fresh horticultural produce has increased the risk of introducing invasive species such as [...] Read more.
Fruit flies that belong to the genus Zeugodacus (Diptera: Tephritidae) pose significant threats as invasive pests of agricultural crops in Asia and sub-Saharan Africa. The intensification of transboundary trade in fresh horticultural produce has increased the risk of introducing invasive species such as fruit flies, more so through the inadvertent transport of their immature developmental stages. Such immature stages of fruit flies belonging to the Tephritidae family are frequently intercepted at the international borders worldwide and are unable to be identified to the species level using morphological characteristics. Molecular identification using mitochondrial Cytochrome Oxidase I (COI) gene has proven to be quite useful, as they are not constrained by developmental stages, sex, or colour morphs of the pest species in question. Also, real-time PCR-based species-specific assays offer quicker turnaround time since they do not require any post-PCR procedures. This study evaluated the utility of a real-time PCR assay based on the COI gene region to identify Zeugodacus cucurbitae from other Tephritid species. The developed real-time PCR assay provides a swift and precise way of discriminating between these highly invasive pest species during an interception event for rapid decision making. High specificity, having no cross-reactions with closely related Tephritids, and sensitivity of the developed assay will be extremely useful in discriminating Z. cucurbitae from other closely related fruit fly species. Z. cucurbitae-specific real-time PCR developed in this study is appropriate for organizations that carry out routine diagnostics to facilitate fresh produce imports and exports. Our assay is fully optimized for rapid deployment at international borders, offering reliable detection of the target species regardless of developmental stage, sex, or geographic origins. Full article
Show Figures

Figure 1

17 pages, 2649 KiB  
Article
Four-Dimensional Hyperspectral Imaging for Fruit and Vegetable Grading
by Laraib Haider Naqvi, Badrinath Balasubramaniam, Jiaqiong Li, Lingling Liu and Beiwen Li
Agriculture 2025, 15(15), 1702; https://doi.org/10.3390/agriculture15151702 (registering DOI) - 6 Aug 2025
Abstract
Reliable, non-destructive grading of fresh fruit requires simultaneous assessment of external morphology and hidden internal defects. Camera-based grading of fresh fruit using colorimetric (RGB) and near-infrared (NIR) imaging often misses subsurface bruising and cannot capture the fruit’s true shape, leading to inconsistent quality [...] Read more.
Reliable, non-destructive grading of fresh fruit requires simultaneous assessment of external morphology and hidden internal defects. Camera-based grading of fresh fruit using colorimetric (RGB) and near-infrared (NIR) imaging often misses subsurface bruising and cannot capture the fruit’s true shape, leading to inconsistent quality assessment and increased waste. To address this, we developed a 4D-grading pipeline that fuses visible and near-infrared (VNIR) and short-wave infrared (SWIR) hyperspectral imaging with structured-light 3D scanning to non-destructively evaluate both internal defects and external form. Our contributions are (1) flagging the defects in fruits based on the reflectance information, (2) accurate shape and defect measurement based on the 3D data of fruits, and (3) an interpretable, decision-tree framework that assigns USDA-style quality (Premium, Grade 1/2, Reject) and size (Small–Extra Large) labels. We demonstrate this approach through preliminary results, suggesting that 4D hyperspectral imaging may offer advantages over single-modality methods by providing clear, interpretable decision rules and the potential for adaptation to other produce types. Full article
Show Figures

Figure 1

18 pages, 1689 KiB  
Article
Effects of Culture Period and Plant Growth Regulators on In Vitro Biomass Production and Phenolic Compounds in Seven Species of Hypericum
by Doina Clapa, Monica Hârţa, Ana Maria Radomir, Adrian George Peticilă, Loredana Leopold, Floricuţa Ranga and Dorin Ioan Sumedrea
Plants 2025, 14(15), 2437; https://doi.org/10.3390/plants14152437 - 6 Aug 2025
Abstract
This study evaluated biomass accumulation and phenolic compound production in seven Hypericum species (H. androsaemum, H. calycinum, H. hirsutum, H. kalmianum, H. olympicum, H. perforatum, and H. triquetrifolium) cultivated in vitro under varying growth regulator [...] Read more.
This study evaluated biomass accumulation and phenolic compound production in seven Hypericum species (H. androsaemum, H. calycinum, H. hirsutum, H. kalmianum, H. olympicum, H. perforatum, and H. triquetrifolium) cultivated in vitro under varying growth regulator treatments and culture periods. Shoots were grown on Murashige and Skoog (MS) medium supplemented with benzyladenine (BA) or meta-topoline (mT) and analyzed after 40 and 60 days. MS medium supplemented with 0.2 mg/L BA was the most effective condition for promoting biomass across all species, with shoot fresh weight increasing significantly at 60 days, particularly in H. olympicum, H. perforatum, and H. triquetrifolium. High-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS) identified 13 phenolic compounds, including flavonols, hydroxycinnamic acids, anthocyanins, phloroglucinols, and naphthodianthrones. Phenolic profiles were species-specific and influenced by culture period. H. kalmianum accumulated the highest total phenolic content (37.6 mg/g DW), while H. olympicum was the top producer of hypericin and pseudohypericin. These results highlight the crucial role of culture conditions in regulating both biomass and phytochemical production and provide a promising approach for producing bioactive metabolites in Hypericum species through in vitro systems. Full article
(This article belongs to the Special Issue Plant Tissue Culture V)
Show Figures

Figure 1

21 pages, 22173 KiB  
Article
Nature Nano-Barrier: HPMC/MD-Based Lactobacillus plantarum Pickering Emulsion to Extend Cherry Tomato Shelf Life
by Youwei Yu, Tian Li, Shengwang Li, Silong Jia, Xinyu Yang, Yaxuan Cui, Hui Ma, Shuaishuai Yan and Shaoying Zhang
Foods 2025, 14(15), 2729; https://doi.org/10.3390/foods14152729 - 5 Aug 2025
Viewed by 153
Abstract
To improve the postharvest preservation of cherry tomatoes and combat pathogenic, both bacterial and fungal contamination (particularly Alternaria alternata), a novel biodegradable coating was developed based on a water-in-water (W/W) Pickering emulsion system. The emulsion was stabilized by L. plantarum (Lactobacillus [...] Read more.
To improve the postharvest preservation of cherry tomatoes and combat pathogenic, both bacterial and fungal contamination (particularly Alternaria alternata), a novel biodegradable coating was developed based on a water-in-water (W/W) Pickering emulsion system. The emulsion was stabilized by L. plantarum (Lactobacillus plantarum), with maltodextrin (MD) as the dispersed phase and hydroxypropyl methylcellulose (HPMC) as the continuous phase. Characterization of emulsions at varying concentrations revealed that the optimized W/W-PL^8 film exhibited superior stability, smooth morphology, and low water vapor permeability (WVP = 220.437 g/(m2·24 h)), making it a promising candidate for fruit and vegetable preservation. Furthermore, the coating demonstrated strong antioxidant activity, with scavenging rates of 58.99% (ABTS) and 94.23% (DPPH), along with potent antimicrobial effects, showing inhibition rates of 12.8% against Escherichia coli and 23.7% against Staphylococcus aureus. Applied to cherry tomatoes, the W/W-PL^8 coating significantly reduced respiration rates, minimized decay incidence, and maintained nutritional quality during storage. Remarkably, the coating successfully controlled Alternaria alternata contamination, enhancing the storage duration of cherry tomatoes. These findings highlight the potential of W/W-PL^8 as an eco-friendly and functional packaging material for fresh produce preservation. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

21 pages, 1369 KiB  
Article
Optimizing Cold Food Supply Chains for Enhanced Food Availability Under Climate Variability
by David Hernandez-Cuellar, Krystel K. Castillo-Villar and Fernando Rey Castillo-Villar
Foods 2025, 14(15), 2725; https://doi.org/10.3390/foods14152725 - 4 Aug 2025
Viewed by 217
Abstract
Produce supply chains play a critical role in ensuring fruits and vegetables reach consumers efficiently, affordably, and at optimal freshness. In recent decades, hub-and-spoke network models have emerged as valuable tools for optimizing sustainable cold food supply chains. Traditional optimization efforts typically focus [...] Read more.
Produce supply chains play a critical role in ensuring fruits and vegetables reach consumers efficiently, affordably, and at optimal freshness. In recent decades, hub-and-spoke network models have emerged as valuable tools for optimizing sustainable cold food supply chains. Traditional optimization efforts typically focus on removing inefficiencies, minimizing lead times, refining inventory management, strengthening supplier relationships, and leveraging technological advancements for better visibility and control. However, the majority of models rely on deterministic approaches that overlook the inherent uncertainties of crop yields, which are further intensified by climate variability. Rising atmospheric CO2 concentrations, along with shifting temperature patterns and extreme weather events, have a substantial effect on crop productivity and availability. Such uncertainties can prompt distributors to seek alternative sources, increasing costs due to supply chain reconfiguration. This research introduces a stochastic hub-and-spoke network optimization model specifically designed to minimize transportation expenses by determining optimal distribution routes that explicitly account for climate variability effects on crop yields. A use case involving a cold food supply chain (CFSC) was carried out using several weather scenarios based on climate models and real soil data for California. Strawberries were selected as a representative crop, given California’s leading role in strawberry production. Simulation results show that scenarios characterized by increased rainfall during growing seasons result in increased yields, allowing distributors to reduce transportation costs by sourcing from nearby farms. Conversely, scenarios with reduced rainfall and lower yields require sourcing from more distant locations, thereby increasing transportation costs. Nonetheless, supply chain configurations may vary depending on the choice of climate models or weather prediction sources, highlighting the importance of regularly updating scenario inputs to ensure robust planning. This tool aids decision-making by planning climate-resilient supply chains, enhancing preparedness and responsiveness to future climate-related disruptions. Full article
(This article belongs to the Special Issue Climate Change and Emerging Food Safety Challenges)
Show Figures

Figure 1

25 pages, 4247 KiB  
Article
Mechanical Behavior of Self-Compacting Concrete Incorporating Rubber and Recycled Aggregates for Non-Structural Applications: Optimization Using Response Surface Methodology
by Yaqoob Saif, Jihen Mallek, Bilel Hadrich and Atef Daoud
Buildings 2025, 15(15), 2736; https://doi.org/10.3390/buildings15152736 - 3 Aug 2025
Viewed by 242
Abstract
The accumulation of end-of-life tires and the rapid increase in demolition activities pose significant environmental and waste-management challenges. The redevelopment of construction materials incorporating this waste is a potentially promising strategy for minimizing environmental impact while promoting the principles of a circular economy. [...] Read more.
The accumulation of end-of-life tires and the rapid increase in demolition activities pose significant environmental and waste-management challenges. The redevelopment of construction materials incorporating this waste is a potentially promising strategy for minimizing environmental impact while promoting the principles of a circular economy. This study investigates the performance of self-compacting concrete (SCC) incorporating up to 20% rubber aggregates (sand and gravel) and 40% recycled concrete aggregate (RCA) for non-structural applications. A series of tests was conducted to assess fresh and hardened properties, including flowability, compressive strength, tensile strength, flexural strength, water absorption, and density. The results indicated that increasing RCA content reduced density and compressive strength, while tensile and flexural strengths were only moderately affected. Response surface methodology (RSM), utilizing a Box–Behnken design, was employed to optimize compressive, tensile, and flexural strength responses. Statistical analysis was used to identify the optimal mix proportions, which balance the mechanical performance and sustainability of SCC with recycled components. Mixtures incorporating moderate rubber content—specifically, 5–5.5% sand rubber and 0–6% coarse rubber—and 40% recycled-concrete aggregate (RCA) achieved the highest predicted performance, with compressive strength ranging from 20.00 to 28.26 MPa, tensile strength from 2.16 to 2.85 MPa, and flexural strength reaching 5.81 MPa, making them suitable for sidewalks and walkways. Conversely, mixtures containing higher rubber proportions (5.5–20% sand rubber and 20% coarse rubber) combined with the same RCA level (40%) showed the lowest mechanical performance, with compressive strength between 5.2 and 10.08 MPa, tensile strength of 1.05–1.41 MPa, and flexural strength from 2.18 to 3.54 MPa. These findings underscore the broad performance range achievable through targeted optimization. They confirm the viability of recycled materials for producing environmentally friendly SCC in non-structural applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 2280 KiB  
Article
A Swap-Integrated Procurement Model for Supply Chains: Coordinating with Long-Term Wholesale Contracts
by Min-Yeong Ryu and Pyung-Hoi Koo
Mathematics 2025, 13(15), 2495; https://doi.org/10.3390/math13152495 - 3 Aug 2025
Viewed by 212
Abstract
In today’s volatile supply chain environment, organizations require flexible and collaborative procurement strategies. Swap contracts, originally developed as financial instruments, have recently been adopted to address inventory imbalances—such as the 2021 COVID-19 vaccine swap between South Korea and Israel. Despite its increasing adoption [...] Read more.
In today’s volatile supply chain environment, organizations require flexible and collaborative procurement strategies. Swap contracts, originally developed as financial instruments, have recently been adopted to address inventory imbalances—such as the 2021 COVID-19 vaccine swap between South Korea and Israel. Despite its increasing adoption in the real world, theoretical studies on swap-based procurement remain limited. This study proposes an integrated model that combines buyer-to-buyer swap agreements with long-term wholesale contracts under demand uncertainty. The model quantifies the expected swap quantity between parties and embeds it into the profit function to derive optimal order quantities. Numerical experiments are conducted to compare the performance of the proposed strategy with that of a baseline wholesale contract. Sensitivity analyses are performed on key parameters, including demand asymmetry and swap prices. The numerical analysis indicates that the swap-integrated procurement strategy consistently outperforms procurement based on long-term wholesale contracts. Moreover, the results reveal that under the swap-integrated strategy, the optimal order quantity must be adjusted—either increased or decreased—depending on the demand scale of the counterpart and the specified swap price, deviating from the optimal quantity under traditional long-term contracts. These findings highlight the potential of swap-integrated procurement strategies as practical coordination mechanisms across both private and public sectors, offering strategic value in contexts such as vaccine distribution, fresh produce, and other critical products. Full article
(This article belongs to the Special Issue Theoretical and Applied Mathematics in Supply Chain Management)
Show Figures

Figure 1

16 pages, 3713 KiB  
Article
Synergistic Alleviation of Saline–Alkali Stress and Enhancement of Selenium Nutrition in Rice by ACC (1-Aminocyclopropane-1-Carboxylate) Deaminase-Producing Serratia liquefaciens and Biogenically Synthesized Nano-Selenium
by Nina Zhu, Xinpei Wei, Xingye Pan, Benkang Xie, Shuquan Xin and Kai Song
Plants 2025, 14(15), 2376; https://doi.org/10.3390/plants14152376 - 1 Aug 2025
Viewed by 179
Abstract
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of [...] Read more.
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of S. liquefaciens with high ACC deaminase activity was isolated and used to biosynthesize SeNPs with stable physicochemical properties. Pot experiments showed that application of the composite inoculant (S3: S. liquefaciens + 40 mmol/L SeNPs) significantly improved seedling biomass (fresh weight +53.8%, dry weight +60.6%), plant height (+31.6%), and root activity under saline–alkali conditions. S3 treatment also enhanced panicle weight, seed-setting rate, and grain Se content (234.13 μg/kg), meeting national Se-enriched rice standards. Moreover, it increased rhizosphere soil N, P, and K availability and improved microbial α-diversity. This is the first comprehensive demonstration that a synergistic bioformulation of ACC deaminase PGPR and biogenic SeNPs effectively mitigates saline–alkali stress, enhances soil fertility, and enables safe Se biofortification in rice. Full article
(This article belongs to the Special Issue Nanomaterials in Plant Growth and Stress Adaptation—2nd Edition)
Show Figures

Figure 1

43 pages, 1138 KiB  
Review
Emerging Trends in Active Packaging for Food: A Six-Year Review
by Mariana A. Andrade, Cássia H. Barbosa, Regiane Ribeiro-Santos, Sidney Tomé, Ana Luísa Fernando, Ana Sanches Silva and Fernanda Vilarinho
Foods 2025, 14(15), 2713; https://doi.org/10.3390/foods14152713 - 1 Aug 2025
Viewed by 147
Abstract
The development of active food packaging has evolved rapidly in recent years, offering innovative solutions to enhance food preservation and safety while addressing sustainability challenges. This review compiles and analyzes recent advancements (2019–2024) in release-type active packaging, focusing on essential oils, natural extracts, [...] Read more.
The development of active food packaging has evolved rapidly in recent years, offering innovative solutions to enhance food preservation and safety while addressing sustainability challenges. This review compiles and analyzes recent advancements (2019–2024) in release-type active packaging, focusing on essential oils, natural extracts, and phenolic compounds as active agents. Primarily plant-derived, these compounds exhibit significant antioxidant and antimicrobial activities, extending shelf life and enhancing food quality. Technological strategies such as encapsulation and polymer blending have been increasingly adopted to overcome challenges related to volatility, solubility, and sensory impact. Integrating bio-based polymers, including chitosan, starch, and polylactic acid, further supports the development of environmentally friendly packaging systems. This review also highlights trends in compound-specific research, release mechanisms, and commercial applications, including a detailed analysis of patents and case studies across various food matrices. These developments have already been translated into practical applications, such as antimicrobial sachets for meat and essential oil-based pads for fresh produce. Moreover, by promoting the valorization of agro-industrial by-products and the use of biodegradable materials, emission-type active packaging contributes to the principles of the circular economy. This comprehensive overview underscores the potential of natural bioactive compounds in advancing sustainable and functional food packaging technologies. Full article
Show Figures

Figure 1

58 pages, 1897 KiB  
Review
Fabrication and Application of Bio-Based Natural Polymer Coating/Film for Food Preservation: A Review
by Nosipho P. Mbonambi, Jerry O. Adeyemi, Faith Seke and Olaniyi A. Fawole
Processes 2025, 13(8), 2436; https://doi.org/10.3390/pr13082436 - 1 Aug 2025
Viewed by 489
Abstract
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to [...] Read more.
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to their synthetic counterparts, these polymers, such as chitosan, starch, cellulose, proteins, and alginate, are derived from renewable sources that are biodegradable, safe, and functional. Within this context, this review examines the various bio-based natural polymer coatings and films as biodegradable, edible alternatives to conventional packaging solutions. It examines the different fabrication methods, like solution casting, electrospinning, and spray coating, and incorporates antimicrobial agents to enhance performance. Emphasis is placed on their mechanical, barrier, and antimicrobial properties, their application in preserving fresh produce, how they promote food safety and environmental sustainability, and accompanying limitations. This review highlights the importance of bio-based natural polymer coatings and films as a promising, eco-friendly solution to enhancing food quality, safety, and shelf life while addressing global sustainability challenges. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

12 pages, 1161 KiB  
Article
Power Ultrasound and Organic Acid-Based Hurdle Technology to Reduce Listeria monocytogenes and Salmonella enterica on Fresh Produce
by Megan L. Fay, Priya Biswas, Xinyi Zhou, Bashayer A. Khouja, Diana S. Stewart, Catherine W. Y. Wong, Wei Zhang and Joelle K. Salazar
Microbiol. Res. 2025, 16(8), 172; https://doi.org/10.3390/microbiolres16080172 - 1 Aug 2025
Viewed by 161
Abstract
The increasing demand for fresh fruits and vegetables has been accompanied by a rise in foodborne illness outbreaks linked to fresh produce. Traditional antimicrobial washing treatments, such as chlorine and peroxyacetic acid, have limitations in efficacy and pose environmental and worker health concerns. [...] Read more.
The increasing demand for fresh fruits and vegetables has been accompanied by a rise in foodborne illness outbreaks linked to fresh produce. Traditional antimicrobial washing treatments, such as chlorine and peroxyacetic acid, have limitations in efficacy and pose environmental and worker health concerns. This study evaluated the effectiveness of organic acids (citric, malic, and lactic acid) and power ultrasound, individually and in combination, for the reduction in Salmonella enterica and Listeria monocytogenes on four fresh produce types: romaine lettuce, cucumber, tomato, and strawberry. Produce samples were inoculated with bacterial cocktails at 8–9 log CFU/unit and treated with organic acids at 2 or 5% for 2 or 5 min, with or without power ultrasound (40 kHz). Results showed that pathogen reductions varied based on the produce matrix with smoother surfaces such as tomato, exhibiting greater reductions than rougher surfaces (e.g., romaine lettuce and strawberry). Lactic and malic acids were the most effective treatments, with 5% lactic acid achieving a reduction of >5 log CFU/unit for S. enterica and 4.53 ± 0.71 log CFU/unit for L. monocytogenes on tomatoes. The combination of organic acids and power ultrasound demonstrated synergistic effects, further enhancing pathogen reduction by <1.87 log CFU/unit. For example, S. enterica on cucumbers was reduced by an additional 1.87 log CFU/unit when treated with 2% malic acid and power ultrasound for 2 min compared to malic acid alone. Similarly, L. monocytogenes on strawberries was further reduced by 1.84 log CFU/unit when treated with 5% malic acid and power ultrasound for 2 min. These findings suggest that organic acids, particularly malic and lactic acids, combined with power ultrasound, may serve as an effective hurdle technology for enhancing the microbial safety of fresh produce. Future research can include validating these treatments in an industrial processing environment. Full article
Show Figures

Figure 1

20 pages, 2990 KiB  
Article
Examination of Interrupted Lighting Schedule in Indoor Vertical Farms
by Dafni D. Avgoustaki, Vasilis Vevelakis, Katerina Akrivopoulou, Stavros Kalogeropoulos and Thomas Bartzanas
AgriEngineering 2025, 7(8), 242; https://doi.org/10.3390/agriengineering7080242 - 1 Aug 2025
Viewed by 198
Abstract
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial [...] Read more.
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial lighting systems to accelerate crop development and growth. This study investigates the growth rate and physiological development of cherry tomato plants cultivated in a pilot indoor vertical farm at the Agricultural University of Athens’ Laboratory of Farm Structures (AUA) under continuous and disruptive lighting. The leaf physiological traits from multiple photoperiodic stress treatments were analyzed and utilized to estimate the plant’s tolerance rate under varied illumination conditions. Four different photoperiodic treatments were examined and compared, firstly plants grew under 14 h of continuous light (C-14L10D/control), secondly plants grew under a normalized photoperiod of 14 h with intermittent light intervals of 10 min of light followed by 50 min of dark (NI-14L10D/stress), the third treatment where plants grew under 14 h of a load-shifted energy demand response intermittent lighting schedule (LSI-14L10D/stress) and finally plants grew under 13 h photoperiod following of a load-shifted energy demand response intermittent lighting schedule (LSI-13L11D/stress). Plants were subjected also under two different light spectra for all the treatments, specifically WHITE and Blue/Red/Far-red light composition. The aim was to develop flexible, energy-efficient lighting protocols that maintain crop productivity while reducing electricity consumption in indoor settings. Results indicated that short periods of disruptive light did not negatively impact physiological responses, and plants exhibited tolerance to abiotic stress induced by intermittent lighting. Post-harvest data indicated that intermittent lighting regimes maintained or enhanced growth compared to continuous lighting, with spectral composition further influencing productivity. Plants under LSI-14L10D and B/R/FR spectra produced up to 93 g fresh fruit per plant and 30.4 g dry mass, while consuming up to 16 kWh less energy than continuous lighting—highlighting the potential of flexible lighting strategies for improved energy-use efficiency. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

13 pages, 4134 KiB  
Communication
An Improved Agrobacterium-Mediated Transformation Method for an Important Fresh Fruit: Kiwifruit (Actinidia deliciosa)
by Chun-Lan Piao, Mengdou Ding, Yongbin Gao, Tao Song, Ying Zhu and Min-Long Cui
Plants 2025, 14(15), 2353; https://doi.org/10.3390/plants14152353 - 31 Jul 2025
Viewed by 288
Abstract
Genetic transformation is an essential tool for investigating gene function and editing genomes. Kiwifruit, recognized as a significant global fresh fruit crop, holds considerable economic and nutritional importance. However, current genetic transformation techniques for kiwifruit are impeded by low efficiency, lengthy culture durations [...] Read more.
Genetic transformation is an essential tool for investigating gene function and editing genomes. Kiwifruit, recognized as a significant global fresh fruit crop, holds considerable economic and nutritional importance. However, current genetic transformation techniques for kiwifruit are impeded by low efficiency, lengthy culture durations (a minimum of six months), and substantial labor requirements. In this research, we established an efficient system for shoot regeneration and the stable genetic transformation of the ‘Hayward’ cultivar, utilizing leaf explants in conjunction with two strains of Agrobacterium that harbor the expression vector pBI121-35S::GFP, which contains the green fluorescent protein (GFP) gene as a visible marker within the T-DNA region. Our results show that 93.3% of leaf explants responded positively to the regeneration medium, producing multiple independent adventitious shoots around the explants within a six-week period. Furthermore, over 71% of kanamycin-resistant plantlets exhibited robust GFP expression, and the entire transformation process was completed within four months of culture. Southern blot analysis confirmed the stable integration of GFP into the genome, while RT-PCR and fluorescence microscopy validated the sustained expression of GFP in mature plants. This efficient protocol for regeneration and transformation provides a solid foundation for micropropagation and the enhancement of desirable traits in kiwifruit through overexpression and gene silencing techniques. Full article
(This article belongs to the Special Issue Plant Transformation and Genome Editing)
Show Figures

Figure 1

19 pages, 618 KiB  
Article
Application of Microwaves to Reduce Checking in Low-Fat Biscuits: Impact on Sensory Characteristics and Energy Consumption
by Raquel Rodríguez, Xabier Murgui, Yolanda Rios, Eduardo Puértolas and Izaskun Pérez
Foods 2025, 14(15), 2693; https://doi.org/10.3390/foods14152693 - 30 Jul 2025
Viewed by 202
Abstract
The use of microwaves (MWs) has been proposed as an energy-efficient method for reducing checking. Along with understanding moisture distribution, it is essential to consider structural characteristics to explain how MWs reduce checking. The influence of MWs on these characteristics depends on the [...] Read more.
The use of microwaves (MWs) has been proposed as an energy-efficient method for reducing checking. Along with understanding moisture distribution, it is essential to consider structural characteristics to explain how MWs reduce checking. The influence of MWs on these characteristics depends on the food matrix’s dielectric and viscoelastic properties, which vary significantly between fresh and pre-baked dough. This study investigates the effects of MW treatment applied before (MW-O) or after conventional oven baking (O-MW) on low-fat biscuits that are prone to checking. Color (CIELab), thickness, moisture content and distribution, checking rate, texture, sensory properties, energy consumption and baking time were analyzed. The findings suggest that MWs reduce checking rate by eliminating internal moisture differences, while also changing structural properties, as evidenced by increased thickness and hardness. MW-O eliminated checking (control samples showed 100%) but negatively affected color, texture (increased hardness and breaking work), and sensory quality. The O-MW checking rate (3.41%) was slightly higher than in MW-O, probably due to the resulting different structural properties (less thickness, less hardness and breaking work). O-MW biscuits were the most preferred by consumers (54.76% ranked them first), with color and texture close to the control samples. MW-O reduced total energy consumption by 16.39% and baking time by 25.00%. For producers, these improvements could compensate for the lower biscuit quality. O-MW did not affect energy consumption but reduced baking time by 14.38%. The productivity improvement, along with the reduction in checking and the satisfactory sensory quality, indicates that O-MW could be beneficial for the bakery sector. Full article
(This article belongs to the Special Issue Cereal Processing and Quality Control Technology)
Show Figures

Figure 1

17 pages, 2601 KiB  
Article
Tree Selection of Vernicia montana in a Representative Orchard Cluster Within Southern Hunan Province, China: A Comprehensive Evaluation Approach
by Juntao Liu, Zhexiu Yu, Xihui Li, Ling Zhou, Ruihui Wang and Weihua Zhang
Plants 2025, 14(15), 2351; https://doi.org/10.3390/plants14152351 - 30 Jul 2025
Viewed by 332
Abstract
With the objective of identifying superior Vernicia montana trees grounded in phenotypic and agronomic traits, this study sought to develop and implement a comprehensive evaluation method which would provide a practical foundation for future clonal breeding initiatives. Using the Vernicia montana propagated from [...] Read more.
With the objective of identifying superior Vernicia montana trees grounded in phenotypic and agronomic traits, this study sought to develop and implement a comprehensive evaluation method which would provide a practical foundation for future clonal breeding initiatives. Using the Vernicia montana propagated from seedling forests grown in the Suxian District of Chenzhou City in southern Hunan Province, we conducted pre-selection, primary selection, and re-selection of Vernicia montana forest stands and took the nine trait indices of single-plant fruiting quantity, single-plant fruit yield, disease and pest resistance, fruit ripening consistency, fruit aggregation, fresh fruit single-fruit weight, fresh fruit seed rate, dry seed kernel rate, and seed kernel oil content rate as the optimal evaluation indexes and carried out cluster analysis and a comprehensive evaluation in order to establish a comprehensive evaluation system for superior Vernicia montana trees. The results demonstrated that a three-stage selection process—consisting of pre-selection, primary selection, and re-selection—was conducted using a comprehensive analytical approach. The pre-selection phase relied primarily on sensory evaluation criteria, including fruit count per plant, tree size, tree morphology, and fruit clustering characteristics. Through this rigorous screening process, 60 elite plants were selected. The primary selection was based on phenotypic traits, including single-plant fruit yield, pest and disease resistance, and uniformity of fruit ripening. From this stage, 36 plants were selected. Twenty plants were then selected for re-selection based on key performance indicators, such as fresh fruit weight, fresh fruit seed yield, dry seed kernel yield, and oil content of the seed kernel. Then the re-selected optimal trees were clustered and analyzed into three classes, with 10 plants in class I, 7 plants in class II, and 3 plants in class III. In class I, the top three superior plants exhibited outstanding performance across key traits: their fresh fruit weight per fruit, fresh fruit seed yield, dry seed yield, and seed kernel oil content reached 41.61 g, 42.80%, 62.42%, and 57.72%, respectively. Compared with other groups, these figures showed significant advantages: 1.17, 1.09, 1.12, and 1.02 times the average values of the 20 reselected superior trees; 1.22, 1.19, 1.20, and 1.08 times those of the 36 primary-selected superior trees; and 1.24, 1.25, 1.26, and 1.19 times those of the 60 pre-selected trees. Fruits counts per plant and the number of fruits produced per plant of the best three plants in class I were 885 and 23.38 kg, respectively, which were 1.13 and 1.18 times higher than the average of 20 re-selected superior trees, 1.25 and 1.30 times higher than the average of 36 first-selected superior trees, and 1.51 and 1.58 times higher than the average of 60 pre-selected superior trees. Class I superior trees, especially the top three genotypes, are suitable for use as mother trees for scion collection in grafting. The findings of this study provide a crucial foundation for developing superior clonal varieties of Vernicia montana through selective breeding. Full article
Show Figures

Figure 1

Back to TopTop