Tree Selection of Vernicia montana in a Representative Orchard Cluster Within Southern Hunan Province, China: A Comprehensive Evaluation Approach
Abstract
1. Introduction
2. Results
2.1. The Selection of Phenotypic Traits for Vernicia montana
2.2. Selection of Fruit Quality of Vernicia montana
2.3. Cluster Analysis of Screened Superior Vernicia montana Trees
3. Discussion
4. Materials and Methods
4.1. Overview of the Experimental Site
4.2. Materials
4.3. The Selection of Superior Trees
4.4. Sample Collection and Determination of Traits
4.5. Statistics and Analysis of Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A global assessment: Can renewable energy replace fossil fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Rahman, A.; Farrok, O.; Haque, M.M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279. [Google Scholar] [CrossRef]
- Bhuiyan, M.R.A. Overcome the future environmental challenges through sustainable and renewable energy resources. Micro Nano Lett. 2022, 17, 402. [Google Scholar] [CrossRef]
- Yi, S.; Raza Abbasi, K.; Hussain, K.; Albaker, A.; Alvarado, R. Environmental concerns in the United States: Can renewable energy, fossil fuel energy, and natural resources depletion help? Gondwana Res. 2023, 117, 41–55. [Google Scholar] [CrossRef]
- Encinar, J.M.; González, J.F.; Rodríguez-Reinares, A. Biodiesel from used frying oil variables affecting the yields and characteristics of the biodiesel. Ind. Eng. Chem. Res. 2005, 44, 5491–5499. [Google Scholar] [CrossRef]
- Dunn, R.O. Effect of oxidation under accelerated conditions on fuel properties of methyl soyate (biodiesel). J. Am. Oil Chem. Soc. 2002, 79, 915–920. [Google Scholar] [CrossRef]
- Ying, S. Literature review of researches on cultivation, utilization and basic application of tung oil tree. Nonwood For. Res. 2007, 2, 84–87. [Google Scholar]
- Sherwood, J. The significance of biomass in a circular economy. Bioresour. Technol. 2020, 300, 122755. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Sarsaiya, S.; Patel, A.; Juneja, A.; Singh, R.P.; Yan, B.; Awasthi, S.K.; Jain, A.; Liu, T.; Duan, Y. Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy—ScienceDirect. Renew. Sustain. Energy Rev. 2022, 127, 109876. [Google Scholar] [CrossRef]
- Klemeš, J.J.; Varbanov, P.S.; Walmsley, T.G.; Foley, A. Process integration and circular economy for renewable and sustainable energy systems. Renew. Sustain. Energy Rev. 2019, 116, 109435. [Google Scholar] [CrossRef]
- Zhou, H.; Lu, H.; Liang, B. Solubility of multicomponent systems in the biodiesel production by transesterification of Jatropha curcas L. oil with methanol. J. Chem. Eng. Data 2006, 55, 1460. [Google Scholar] [CrossRef]
- Shang, Q.; Jiang, W.; Lu, H.; Liang, B. Properties of Tung oil biodiesel and its blends with 0# diesel. Bioresour. Technol. 2010, 101, 826–828. [Google Scholar] [CrossRef]
- Sarma, A.K.; Konwer, D.; Bordoloi, P.K. A comprehensive analysis of fuel properties of biodiesel from koroch seed oil. Energ. Fuel 2005, 19, 656–657. [Google Scholar] [CrossRef]
- Knothe, G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol. 2005, 86, 1059–1070. [Google Scholar] [CrossRef]
- Singh, A.; Singh, I.S. Chemical evaluation of mahua (Madhuca indica) seed. Food Chem. 1991, 40, 221–228. [Google Scholar] [CrossRef]
- Pastor, S. Determining Biological Roles of Four Unique Vernicia fordii Acyl-CoA Binding Proteins. Master’s Thesis, University of New Orleans, New Orleans, LO, USA, 2011; p. 1337. [Google Scholar]
- Xing, Q.; He, H.; Wang, Z.; Li, Y.; Didar, X.; Zhou, T. Genome-wide characterization of FAD gene family in Xanthoceras sorbifolium Bunge and germplasm assessment. PLoS ONE 2025, 20, e0318900. [Google Scholar] [CrossRef]
- Ye, C.; He, Z.; Peng, J.; Wang, R.; Wang, X.; Fu, M.; Zhang, Y.; Wang, A.; Liu, Z.; Jia, G. Genomic and genetic advances of oiltea-camellia (Camellia oleifera). Front. Plant Sci. 2023, 14, 1101766. [Google Scholar] [CrossRef]
- Hao, J.; Hou, D.; Yu, W.; Zhang, H.; Guo, Q.; Zhang, H.; Xiong, H.; Li, Y. Metabolomic and transcriptomic analysis of the synthesis process of unsaturated fatty acids in Korean pine seed kernels. Food Chem. 2025, 481, 143895. [Google Scholar] [CrossRef]
- Clews, A.C.; Whitehead, P.S.; Zhang, L.; Shockey, J.M.; Chapman, K.D.; Dyer, J.M.; Xu, Y.; Mullen, R.T. Identification and characterization of lipid droplet-associated protein (LDAP) Isoforms from tung tree (Vernicia fordii). Plants 2025, 14, 814. [Google Scholar] [CrossRef]
- Li, W.; Dong, X.; Zhang, X.; Cao, J.; Liu, M.; Zhou, X.; Long, H.; Cao, H.; Lin, H.; Zhang, L. Genome assembly and resequencing shed light on evolution, population selection, and sex identification in Vernicia montana. Hortic. Res. 2024, 141, uhae141. [Google Scholar] [CrossRef]
- Li, W.Y.; Liu, M.L.; Zhang, L.; Tan, X.F.; Zhang, F.H.; Wang, Z.Z. Study of major economic traits in 4 superior families of Vernicia fordii. Econ. For. Res. 2018, 36, 6. [Google Scholar]
- Zhu, J.; Huang, Y.; Luo, K. Survey of Chongqing Vernicia montana resources and screening of superior plants. Econ. For. Res. 2013, 31, 6. [Google Scholar]
- Haung, R.; Tan, X.; Wang, C.; Long, H.; Li, P.; Fang, W. Preliminary study on comparison genetic resources center in Vernicia fordii. J. Cent. South Univ. For. Technol. 2011, 31, 38–41. [Google Scholar]
- Xu, Y.; Zhou, X.; Luo, Z.; Zhang, C.; Wu, D.M.; Zheng, X. Canonical correlation analysis used in optimal selection of Vernicia fordii. Hubei Agric. Sci. 2011, 50, 4. [Google Scholar]
- Singh, S.P.; Singh, D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renew. Sustain. Energy Rev. 2010, 14, 200–216. [Google Scholar] [CrossRef]
- Zhou, Y.; Deng, G.; Luo, G.; Wang, H.; Li, T.; Zhou, P.; Li, S. Selection and evaluation of superior Aleurites montana trees in Hunan. Non-Wood For. Res. 2016, 34, 7. [Google Scholar]
- Ye, H.; Wang, L. A comprehensive selection superior individual of wild Camellia saluenensis with multiple indices. J. Cent. South Univ. For. 2016, 36, 66–69. [Google Scholar]
- Fu, R.; Xie, L.; Zou, R.; Wei, X.; Chai, S. Selection of superior individual plants of Camellia nitidissima Chi. Seed 2018, 37, 104–107. [Google Scholar]
- Liu, G.; Shen, H.; Guo, W.; Jia, H.; Ma, Y. Study on criterion for selecting Betula alnoides superior trees. For. Res. 2012, 25, 438–441. [Google Scholar]
- Xu, L.; Liu, Y.; Yang, L.; Tian, J.; Li, J.; Ma, H.; Li, E.; Wang, D. Plus tree selection of fresh Docynia delavayi ( Franch.) Schneid. J. Plant Genet. Resour. 2023, 24, 903–910. [Google Scholar]
- Zhao, B. Grafting propagation technology of Vernicia montana. Seed Sci. Res. 2005, 8, 118–120. [Google Scholar]
- Tan, X. Status and suggestion on development of Vernicia fordii. Non-Wood For. Res. 2006, 24, 3. [Google Scholar]
- Lv, D. Rehabilitation techniques for low-yield forests of Vernicia fordii. Mod. Agric. Sci. Technol. 2009, 17, 205. [Google Scholar]
- Feng, C. The present situation and the development trends of non-timber forest products in the world. World For. Res. 2002, 15, 10. [Google Scholar]
- Li, Y.; Wei, Y.; Zhou, D.; Huang, X. The value of Vernicia fordii and their development pathways. Mod. Agric. Sci. Technol. 2008, 16, 113. [Google Scholar]
- Lin, J. China’s tung oil development strategy and countermeasures. Yangtze River Basin Resour. Environ. 1998, 7, 2. [Google Scholar]
- Wang, J.; Fang, J.; Liu, X.; Run, Y.; Wu, C. Breeding of high-yielding clones of woodoil tree and their extension. For. Res. 1988, 1, 32–40. [Google Scholar]
- Pan, Y.; Fan, Y.; Chen, C.; Lin, H. Does soil nutrient heterogeneity affect the competition and adaptation of Vernicia montana? For. Ecol. Manag. 2024, 561, 13. [Google Scholar] [CrossRef]
- Jia, H.; Chen, J.; Zhang, L.; Zhang, L. The first report on transgenic hairy root induction from the stem of Tung tree (Vernicia fordii). Plants 2022, 11, 1315. [Google Scholar] [CrossRef]
- Li, W.; Chen, J.; Dong, X.; Liu, M.; Wang, G.; Zhang, L. Flower development and sexual dimorphism in Vernicia montana. Hortic. Plant J. 2023, 10, 586–600. [Google Scholar] [CrossRef]
- Murúa, M.; Espíndola, A.; Pérez, F. Self-compatibility not associated with morphological or genetic diversity reduction in oil-rewarding calceolaria species. Plants 2020, 9, 1377. [Google Scholar] [CrossRef] [PubMed]
- Benelli, V.G.; Allen, F.L.; Wang, M.L. Variability in seed oil content and fatty acid composition, phenotypic traits and self-incompatibility among selected niger germplasm accessions. Plant Genet. Resour. 2016, 15, 348–354. [Google Scholar] [CrossRef]
- Raimondeau, P.; Ksouda, S.; Marande, W.; Fuchs, A.; Gryta, H.; Theron, A.; Puyoou, A.; Dupin, J.; Cheptou, P.; Vautrin, S.; et al. A hemizygous supergene controls homomorphic and heteromorphic self-incompatibility systems in Oleaceae. Curr. Biol. 2024, 34, 1977–1986. [Google Scholar] [CrossRef]
- Venkatesha, K.T.; Gupta, A.; Rai, A.N.; Jambhulkar, S.J.; Bisht, R.; Padalia, R.C. Recent developments, challenges, and opportunities in genetic improvement of essential oil-bearing rose (Rosa damascena): A review. Ind. Crops Prod. 2022, 11, 984. [Google Scholar] [CrossRef]
- Zhu, Y.; Huo, D.; Zhang, M.; Wang, G.; Xiao, F.; Xu, J.; Li, F.; Zeng, Q.; Wei, Y.; Xu, J. Integrated transcriptome and endogenous hormone analyses reveal the factors affecting the yield of Camellia oleifera. BMC Genom. 2024, 25, 1. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Li, J.; Fan, C.; Zhai, Y.; Han, W. Selection and breeding of three excellent family lines of Vernicia fordii Yutong 1 and others. Non-Wood For. Res. 1996, 1, 45–47. [Google Scholar]
- Wang, C.; Song, J. Study on the selection and breeding of excellent family lines of Vernicia fordii in Hunan Province. Non-Wood For. Res. 1992, 7, 29–34. [Google Scholar]
- Zheng, Y.; Feng, M.; Li, X.; Huang, X.; Chen, G.; Bai, W.; Xu, X.; Li, J.; Li, X.; Leng, B. Phenotypic variation analysis and excellent clone selection of alnus cremastogyne from different provenances. Plants 2023, 12, 2223–7747. [Google Scholar] [CrossRef]
- Azam, M.G.; Hossain, M.A.; Sarker, U.; Alam, A.K.M.M.; Nair, R.M.; Roychowdhury, R.; Ercisli, S.; Golokhvast, K.S. Genetic Analyses of Mungbean [Vigna radiata (L.) Wilczek] Breeding Traits for Selecting Superior Genotype(s) Using Multivariate and Multi-Traits Indexing Approaches. Plants 2023, 12, 1984. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, C.; Li, J.; Miao, Y.; Cui, K. Phenotypic Diversity Analysis and Superior Family Selection of Industrial Raw Material Forest Species-Pinus yunnanensis Franch. Forests 2022, 13, 618. [Google Scholar] [CrossRef]
- Qi, G.H.; Wu, J.C.; Zheng, Y.X.; Peng, X.M.; Zhang, T.K.; Zhang, M.W.; Yu, K.; Zhang, Y.P. Plus tree selection of Moringa oleifera based on comprehensive scoring method. Mol. Plant Breed. 2018, 16, 9. [Google Scholar]
- Cao, J.; Mi, X.Q.; Xiong, B.; Huang, H.M.; Xu, J.P.; Gao, L.; Zeng, C.S.; Chen, G. Screening and comprehensive evaluation of excellent germplasmresources of Aleurites montana. China Oils Fats 2024, 49, 105–112. [Google Scholar]
- Li, S.; Wu, D.; Liang, D.; Wang, K.; Wang, C.; Ren, F. Plus tree selection of Cornus walteri. J. Beijing For. Univ. 2014, 36, 6. [Google Scholar]
- Feng, F.; Lian, D.; Yu, Y.; Ning, D.; Zhou, X.; Wen, C.; Zhou, C. Study on the selection of superior trees for Cinnamomum longepaniculatum based on comprehensive scoring method. Chin. Wild Plant Resour. 2024, 43, 75–80. [Google Scholar]
- He, P.; Kong, D.; Wang, L.; Feng, Y. The preliminary study on selection of excellent trees of Lyciumbarbarum. Res. Arid. Areas 2021, 39, 178–183. [Google Scholar]
- Wang, L.; Liao, Y.; Liu, J.; Zhao, T.; Jia, L.; Chen, Z. Advances in understanding the graft healing mechanism: A review of factors and regulatory pathways. Hortic. Res. 2024, 175, uhae175. [Google Scholar] [CrossRef]
- Barbot, E.; Dufaÿ, M.; De Cauwer, I. Sex-specific selection patterns in a dioecious insect-pollinated plan. Evolution 2023, 7, 1578–1590. [Google Scholar] [CrossRef]
- Petit, R.J.; Larue, C. Confirmation that chestnuts are insect-pollinated. Bot. Lett. 2022, 169, 370–374. [Google Scholar] [CrossRef]
- Kamo, T.; Nikkeshi, A.; Inoue, H.; Yamamoto, S.; Sawamura, N.; Nakamura, S.; Kishi, S. Pollinators of Oriental persimmon in Japan. Appl. Entomol. Zool. 2022, 57, 237–248. [Google Scholar] [CrossRef]
- Li, W.; Liu, M.; Dong, X.; Cao, H.; Wu, Y.; Shang, H.; Huang, H.; Zhang, L. Flower biology and ontogeny of the tung tree (Vernicia fordii Hemsl.). Trees Struct. Funct. 2020, 34, 1363–1381. [Google Scholar] [CrossRef]
- Lin, J.; Xu, S.; Jiang, L. Current status of oil production process of oilseed crops and research progress of cold-pressing oil production. Soybean Sci. Technol. 2013, 1, 29–35. [Google Scholar]
- Fang, M.; Ding, X.; Li, P.; Zhang, Z.; Chen, X.; Jiang, J.; Zhang, W.; Gan, D. Modification of oilseeds soxhlet extraction for determination of oil content. Chin. J. Oil Crop Sci. 2012, 34, 5. [Google Scholar]
Phenotypic Trait | Mean | Standard Deviation | Range | Base Value |
---|---|---|---|---|
The no. of fruit per plant (count) | 587 | 282 | 1346 | 869 |
Fruit yield per plant (kg) | 14.87 | 6.85 | 35.66 | 21.72 |
The No. of Fruits per Plant | Fruit Yield per Plant | ||
---|---|---|---|
Base Value (Count) | Score | Base Value (kg) | Score |
196~330.6 | 1 | 3.89~7.46 | 1 |
330.6~465.2 | 2 | 7.46~11.02 | 2 |
465.2~599.8 | 3 | 11.02~14.59 | 3 |
599.8~734.4 | 4 | 14.59~18.15 | 4 |
734.4~869 | 5 | 18.15~21.72 | 5 |
869~1003.6 | 6 | 21.72~25.29 | 6 |
1003.6~1138.2 | 7 | 25.29~28.85 | 7 |
1138.2~1272.8 | 8 | 28.85~32.42 | 8 |
1272.8~1407.4 | 9 | 32.42~35.98 | 9 |
1407.4~1542 | 10 | 35.98~39.55 | 10 |
No. of the Candidate Tree | The No. of Fruits per Plant (Count) | Fruit Yield per Plant (kg) | Resistance to Pests and Diseases | Consistency of Fruit Ripeness | The No. of Fruits in Aggregation (Count) | Total Score |
---|---|---|---|---|---|---|
GS1 | 3 | 3 | 3 | 4 | 2 | 15 |
GS2 | 2 | 2 | 3 | 4 | 3 | 14 |
GS5 | 2 | 3 | 4 | 3 | 2 | 14 |
GS6 | 4 | 4 | 3 | 4 | 2 | 17 |
GS7 | 3 | 4 | 3 | 3 | 2 | 15 |
GS8 | 9 | 9 | 3 | 3 | 3 | 27 |
GS9 | 4 | 5 | 2 | 4 | 2 | 17 |
GS10 | 3 | 5 | 2 | 3 | 3 | 16 |
GS11 | 5 | 4 | 3 | 3 | 2 | 17 |
GS12 | 8 | 7 | 3 | 4 | 2 | 24 |
GS13 | 5 | 5 | 2 | 2 | 1 | 15 |
GS16 | 3 | 4 | 3 | 4 | 1 | 15 |
GS18 | 1 | 2 | 3 | 4 | 4 | 14 |
GS19 | 4 | 4 | 4 | 4 | 2 | 18 |
GS21 | 7 | 4 | 3 | 2 | 2 | 18 |
GS22 | 5 | 3 | 2 | 3 | 4 | 17 |
GS32 | 2 | 2 | 4 | 4 | 3 | 15 |
GS25 | 3 | 3 | 4 | 4 | 3 | 17 |
GS27 | 5 | 6 | 2 | 4 | 1 | 18 |
GS28 | 3 | 5 | 2 | 3 | 3 | 16 |
GS29 | 3 | 4 | 2 | 4 | 3 | 16 |
GS30 | 2 | 4 | 4 | 4 | 1 | 15 |
GS31 | 3 | 3 | 2 | 4 | 2 | 14 |
GS32 | 4 | 5 | 2 | 4 | 2 | 17 |
GS37 | 3 | 4 | 4 | 2 | 2 | 15 |
G382 | 4 | 4 | 3 | 4 | 1 | 16 |
GS40 | 10 | 10 | 3 | 4 | 2 | 29 |
GS41 | 4 | 6 | 2 | 3 | 1 | 16 |
GS42 | 4 | 5 | 4 | 3 | 2 | 18 |
GS43 | 5 | 5 | 1 | 2 | 4 | 17 |
GS44 | 8 | 8 | 4 | 4 | 3 | 27 |
GS45 | 6 | 6 | 1 | 1 | 4 | 18 |
GS46 | 4 | 4 | 2 | 3 | 3 | 16 |
GS47 | 4 | 4 | 2 | 4 | 2 | 16 |
GS56 | 6 | 4 | 3 | 2 | 2 | 17 |
GS59 | 3 | 3 | 4 | 2 | 3 | 15 |
Phenotypic Trait | Mean | Standard Deviation | Range | Base Value |
---|---|---|---|---|
Fresh fruit mass (g) | 34.22 | 8.88 | 30.39 | 43.10 |
Seed yield of fresh fruit (%) | 35.92 | 7.78 | 34.17 | 43.70 |
Kernel yield of dry seed (%) | 51.82 | 8.93 | 42.38 | 60.75 |
Oil yield from the kernels (%) | 53.50 | 7.15 | 36.22 | 60.65 |
Fresh Fruit Mass | Seed Yield of Fresh Fruit | Kernel Yield of Dry Seed | Oil Yield from the Kernels | ||||
---|---|---|---|---|---|---|---|
Base Value (g) | Score | Base Value (%) | Score | Base Value (g) | Score | Base Value (%) | Score |
18.78~21.82 | 1 | 23.19~26.65 | 1 | 31.08~35.32 | 1 | 35.29~38.92 | 1 |
21.82~24.86 | 2 | 26.65~30.03 | 2 | 35.32~39.56 | 2 | 38.92~42.54 | 2 |
24.86~27.90 | 3 | 30.03~33.45 | 3 | 39.56~43.80 | 3 | 42.54~46.16 | 3 |
27.90~30.94 | 4 | 33.45~36.87 | 4 | 43.80~48.04 | 4 | 46.16~49.78 | 4 |
30.94~33.98 | 5 | 36.87~40.28 | 5 | 48.04~52.27 | 5 | 49.78~53.41 | 5 |
33.98~37.02 | 6 | 40.28~43.70 | 6 | 52.27~56.51 | 6 | 53.41~57.03 | 6 |
37.02~40.06 | 7 | 43.70~47.12 | 7 | 56.51~60.75 | 7 | 57.03~60.65 | 7 |
40.06~43.1 | 8 | 47.12~50.54 | 8 | 60.75~64.99 | 8 | 60.65~64.27 | 8 |
43.1~46.13 | 9 | 50.54~53.95 | 9 | 64.99~69.23 | 9 | 64.27~67.89 | 9 |
46.13~49.19 | 10 | 53.95~57.37 | 10 | 69.23~73.46 | 10 | 67.89~71.52 | 10 |
No. of the Selected Tree | Score of Fresh Fruit Mass | Score of Seed Yield of Fresh Fruit | Score of Kernel Yield of Dry Seed | Score of Oil Yield from the Kernels | Total Score |
---|---|---|---|---|---|
GS1 | 3 | 6 | 4 | 8 | 21 |
GS2 | 1 | 7 | 7 | 7 | 22 |
GS7 | 7 | 5 | 7 | 7 | 26 |
GS8 | 9 | 3 | 8 | 7 | 27 |
GS9 | 10 | 5 | 7 | 5 | 27 |
GS10 | 8 | 4 | 6 | 6 | 24 |
GS11 | 7 | 4 | 6 | 6 | 23 |
GS12 | 3 | 6 | 7 | 5 | 21 |
GS13 | 6 | 6 | 6 | 4 | 22 |
GS16 | 9 | 6 | 2 | 5 | 22 |
GS19 | 4 | 10 | 9 | 8 | 31 |
GS21 | 9 | 5 | 3 | 5 | 22 |
GS22 | 2 | 9 | 8 | 5 | 24 |
GS30 | 3 | 7 | 7 | 9 | 26 |
GS32 | 3 | 7 | 10 | 6 | 26 |
GS40 | 8 | 2 | 7 | 8 | 25 |
GS41 | 9 | 1 | 6 | 7 | 23 |
GS42 | 10 | 5 | 5 | 6 | 26 |
GS43 | 8 | 4 | 5 | 6 | 23 |
GS44 | 3 | 2 | 5 | 10 | 20 |
Selected Phenotypic Trait | Characteristic | Score | Characteristic | Score | Characteristic | Score | Characteristic | Score |
---|---|---|---|---|---|---|---|---|
Resistance to pests and diseases | no obvious pests and diseases | 4 | mild pests and diseases | 3 | moderate pests and diseases | 2 | serious pests and diseases | 1 |
Consistency of fruit ripeness | 80% or more | 4 | 60–80% | 3 | 60–40% | 2 | 40% or less | 1 |
The no. of fruits in aggregation | 7 or more | 4 | 5–7 | 3 | 3–4 | 2 | 1–2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Yu, Z.; Li, X.; Zhou, L.; Wang, R.; Zhang, W. Tree Selection of Vernicia montana in a Representative Orchard Cluster Within Southern Hunan Province, China: A Comprehensive Evaluation Approach. Plants 2025, 14, 2351. https://doi.org/10.3390/plants14152351
Liu J, Yu Z, Li X, Zhou L, Wang R, Zhang W. Tree Selection of Vernicia montana in a Representative Orchard Cluster Within Southern Hunan Province, China: A Comprehensive Evaluation Approach. Plants. 2025; 14(15):2351. https://doi.org/10.3390/plants14152351
Chicago/Turabian StyleLiu, Juntao, Zhexiu Yu, Xihui Li, Ling Zhou, Ruihui Wang, and Weihua Zhang. 2025. "Tree Selection of Vernicia montana in a Representative Orchard Cluster Within Southern Hunan Province, China: A Comprehensive Evaluation Approach" Plants 14, no. 15: 2351. https://doi.org/10.3390/plants14152351
APA StyleLiu, J., Yu, Z., Li, X., Zhou, L., Wang, R., & Zhang, W. (2025). Tree Selection of Vernicia montana in a Representative Orchard Cluster Within Southern Hunan Province, China: A Comprehensive Evaluation Approach. Plants, 14(15), 2351. https://doi.org/10.3390/plants14152351