Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,173)

Search Parameters:
Keywords = flavor profiles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3036 KiB  
Article
Chemometric Approach for Discriminating the Volatile Profile of Cooked Glutinous and Normal-Amylose Rice Cultivars from Representative Japanese Production Areas Using GC × GC-TOFMS
by Takayoshi Tanaka, Junhan Zhang, Shuntaro Isoya, Tatsuro Maeda, Kazuya Hasegawa and Tetsuya Araki
Foods 2025, 14(15), 2751; https://doi.org/10.3390/foods14152751 - 6 Aug 2025
Abstract
Cooked-rice aroma strongly affects consumer choice, yet the chemical traits distinguishing glutinous rice from normal-amylose japonica rice remain underexplored because earlier studies targeted only a few dozen volatiles using one-dimensional gas chromatography–mass spectrometry (GC-MS). In this study, four glutinous and seven normal Japanese [...] Read more.
Cooked-rice aroma strongly affects consumer choice, yet the chemical traits distinguishing glutinous rice from normal-amylose japonica rice remain underexplored because earlier studies targeted only a few dozen volatiles using one-dimensional gas chromatography–mass spectrometry (GC-MS). In this study, four glutinous and seven normal Japanese cultivars were cooked under identical conditions, their headspace volatiles trapped with MonoTrap and qualitatively profiled by comprehensive GC × GC-TOFMS. The two-dimensional platform resolved 1924 peaks—about ten-fold previous coverage—and, together with hierarchical clustering, PCA, heatmap visualization and volcano plots, cleanly separated the starch classes (78.3% cumulative PCA variance; Euclidean distance >140). Volcano plots highlighted 277 compounds enriched in the glutinous cultivars and 295 in Koshihikari, including 270 compounds that were not previously documented in rice. Normal cultivars were dominated by ethers, aldehydes, amines and other nitrogenous volatiles associated with grainy, grassy and toasty notes. Glutinous cultivars showed abundant ketones, furans, carboxylic acids, thiols, steroids, nitro compounds, pyrroles and diverse hydrocarbons and aromatics, yielding sweeter, fruitier and floral accents. These results expand the volatile library for japonica rice, provide molecular markers for flavor-oriented breeding and demonstrate the power of GC × GC-TOFMS coupled with chemometrics for grain aroma research. Full article
19 pages, 1756 KiB  
Article
Addition of β-Cyclodextrin or Gelatin Ιmproves Organoleptic and Physicochemical Attributes of Aronia Juice
by Kalliopi Gkoutzina, Ioannis Mourtzinos and Dimitrios Gerasopoulos
Beverages 2025, 11(4), 115; https://doi.org/10.3390/beverages11040115 - 6 Aug 2025
Abstract
Aronia juice is well-known for its high nutritional and biological value, due to its polyphenol content, which has a powerful antioxidant effect. However, the high polyphenol content of aronia juice is associated with an astringent flavor, which diminishes consumer acceptance. To improve the [...] Read more.
Aronia juice is well-known for its high nutritional and biological value, due to its polyphenol content, which has a powerful antioxidant effect. However, the high polyphenol content of aronia juice is associated with an astringent flavor, which diminishes consumer acceptance. To improve the flavor of aronia juice, β-cyclodextrin (0–2% w/v) or gelatin (0–0.4 mg/L) were added before pasteurization. The juice samples were first examined organoleptically, and monitored for total phenolic compounds, antioxidant capacity, total flavonoids, total monomeric anthocyanins, polymeric color, pH, total soluble solids, and color. The organoleptic test demonstrated that both β-cyclodextrin and gelatin juice aroma reduced astringency and increased sweetness, whereas β-cyclodextrin also reduced juice aroma. β-cyclodextrin significantly increased polymeric color and total soluble solids (p < 0.05), whereas antioxidant activity, total flavonoids, and monomeric anthocyanins remained unchanged compared to the unpasteurized control. In contrast, the addition of gelatin dramatically reduced total phenolic compounds, antioxidant capacity, and total flavonoids, while enhancing polymeric color and maintaining monomeric anthocyanins with minor decreases relative to pre-pasteurization levels (p < 0.05). A consumer study was conducted with control juice and juices with 2% w/v β-cyclodextrin or 0.4 mg/L gelatin added. The results confirmed the change in flavor profile by masking or removing astringency and astringent aftertaste, as well as increasing sweetness, which significantly improved overall acceptability (p < 0.05). Full article
(This article belongs to the Section Quality, Nutrition, and Chemistry of Beverages)
Show Figures

Figure 1

16 pages, 1119 KiB  
Article
The Impact of Storage Time and Reheating Method on the Quality of a Precooked Lamb-Based Dish
by Zhihao Yang, Chenlei Wang, Ye Jin, Wenjia Le, Liang Zhang, Lifei Wang, Bo Zhang, Yueying Guo, Min Zhang and Lin Su
Foods 2025, 14(15), 2748; https://doi.org/10.3390/foods14152748 - 6 Aug 2025
Abstract
Ready-to-eat meat products face quality challenges during storage and reheating. This study aimed to (i) characterize the physicochemical/microbiological changes in stewed mutton during storage (4 °C/−18 °C, 0–28 days) and (ii) evaluate reheating methods (boiling vs. microwaving) on day-7 samples. The nutritional analysis [...] Read more.
Ready-to-eat meat products face quality challenges during storage and reheating. This study aimed to (i) characterize the physicochemical/microbiological changes in stewed mutton during storage (4 °C/−18 °C, 0–28 days) and (ii) evaluate reheating methods (boiling vs. microwaving) on day-7 samples. The nutritional analysis confirmed moisture reduction (57.32 vs. 72.12 g/100 g)-concentrated protein/fat levels. Storage at −18 °C suppressed microbial growth (the total plate count (TPC), 3.73 vs. 4.80 log CFU/g at 28 days; p < 0.05) and lipid oxidation (thiobarbituric acid reactive substances (TBARS): 0.14 vs. 0.19 mg/kg) more effectively than storage at 4 °C. The total volatile basic nitrogen (TVB-N) kinetics projected a shelf life ≥90 days (4 °C) and ≥120 days (−18 °C). Microwave reheating after frozen storage (−18 °C) maximized the yield (86.21% vs. 75.90% boiling; p < 0.05) and preserved volatile profiles closest to those in the fresh samples (gas chromatography–mass spectrometry (GC-MS)/electronic nose). The combination of freezing storage and subsequent microwave reheating has been demonstrated to be an effective method for preserving the quality of a precooked lamb dish, thereby ensuring its nutritional value. Full article
Show Figures

Graphical abstract

19 pages, 847 KiB  
Article
Characterization and Selection of Lycium barbarum Cultivars Based on Physicochemical, Bioactive, and Aromatic Properties
by Juan Carlos Solomando González, María José Rodríguez Gómez, María Ramos García, Noelia Nicolás Barroso and Patricia Calvo Magro
Horticulturae 2025, 11(8), 924; https://doi.org/10.3390/horticulturae11080924 (registering DOI) - 5 Aug 2025
Abstract
Goji berries (Lycium barbarum L.) are considered a functional food due to their high content of bioactive compounds with demonstrated health benefits. This study evaluated four cultivars (G3, G4, G5, and G7) grown under Mediterranean climate conditions, focusing on their physicochemical properties [...] Read more.
Goji berries (Lycium barbarum L.) are considered a functional food due to their high content of bioactive compounds with demonstrated health benefits. This study evaluated four cultivars (G3, G4, G5, and G7) grown under Mediterranean climate conditions, focusing on their physicochemical properties (total soluble solids, titratable acidity, and pH), bioactive compound (sugars and organic acids, total and individual phenolic and carotenoid compounds, and antioxidant activities (DPPH and CUPRAC assay)), and aromatic profiles (by GC-MS) to assess their suitability for fresh consumption or incorporation into food products. G4 exhibited the most favorable physicochemical characteristics, with the highest total soluble solids (20.2 °Brix) and sugar content (92.8 g 100 g−1 dw). G5 stood out for its lower titratable acidity (0.34%) and highest ripening index (54.8), indicating desirable flavor attributes. Concerning bioactive compounds, G3 and G4 showed the highest total phenolic content (17.9 and 19.1 mg GAE g−1 dw, respectively), with neochlorogenic acid being predominant. G4 was notable for its high carotenoid content, particularly zeaxanthin (1722.6 μg g−1 dw). These compounds significantly contributed to antioxidant activity. Volatile organic compound (VOC) profiles revealed alcohols and aldehydes as the dominant chemical families, with hexanal being the most abundant. G5 and G7 exhibited the highest total VOC concentrations. Principal component analysis grouped G3 and G4 based on their high sugar and phenolic content, while G5 and G7 were characterized by their complex aromatic profiles. Therefore, G3 and G4 are promising candidates for fresh consumption and potential functional applications, while G5 and G7 are particularly suitable for new product development due to their nutraceutical and aromatic value. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

26 pages, 449 KiB  
Review
The Science of Aging: Understanding Phenolic and Flavor Compounds and Their Influence on Alcoholic Beverages Aged with Alternative Woods
by Tainá Francisca Cordeiro de Souza, Bruna Melo Miranda, Julio Cesar Colivet Briceno, Joaquín Gómez-Estaca and Flávio Alves da Silva
Foods 2025, 14(15), 2739; https://doi.org/10.3390/foods14152739 - 5 Aug 2025
Abstract
Aging in wooden barrels is a proven technique that enhances the sensory complexity of alcoholic beverages by promoting the extraction of volatile and phenolic compounds. While oak has been traditionally used, there is a growing interest in exploring alternative wood species that can [...] Read more.
Aging in wooden barrels is a proven technique that enhances the sensory complexity of alcoholic beverages by promoting the extraction of volatile and phenolic compounds. While oak has been traditionally used, there is a growing interest in exploring alternative wood species that can impart distinct sensory characteristics and promote innovative maturation processes. This review examines the impact of alternative woods on the aging of beverages, such as wine, cachaça, tequila, and beer, focusing on their influence on aroma, flavor, color, and chemical composition. A bibliometric analysis highlights the increasing scientific attention toward wood diversification and emerging aging technologies, including ultrasound and micro-oxygenation, which accelerate maturation while preserving sensory complexity. The role of toasting techniques in modulating the release of phenolic and volatile compounds is also discussed, emphasizing their contribution to unique sensory profiles. Additionally, regulatory aspects and sustainability considerations are explored, suggesting that alternative woods can expand flavor possibilities while supporting environmentally sustainable practices. This review underscores the potential of non-traditional wood species to drive innovation in the aging of alcoholic beverages and provide new sensory experiences that align with evolving consumer preferences and market trends. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
15 pages, 647 KiB  
Article
Effects of Burdock Addition and Different Starters on the Quality and Flavor Improvement of Duck Sausages
by Li Cui, Xuan Zhao, Xingye Song, Wenjing Zhou, Tao Wang, Wuyang Huang and Yuxing Guo
Biology 2025, 14(8), 996; https://doi.org/10.3390/biology14080996 (registering DOI) - 4 Aug 2025
Abstract
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, [...] Read more.
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, and flavor profiles of duck sausages. Three bacterial strains, Lacticaseibacillus casei, L. helveticus, and L. plantarum, were selected based on sensory analysis, and their effects on sausage properties were evaluated through combined fermentation trials. The results demonstrated that duck sausages fermented with L. plantarum and L. helveticus and supplemented with 3% burdock powder (PHB group) exhibited > 1.5-fold higher antioxidant activity (ABTS at 85.2 μmol trolox/g and DPPH at 92.7 μmol trolox/g, respectively; p < 0.05) and 15% increase in total phenolic content (8.24 mg gallic acid/g) compared to non-fermented counterparts. The PHB formulation also enhanced color stability (lightness, redness, yellowness), textural characteristics (hardness, springiness, cohesiveness), and sensory acceptability. Volatile compound analysis revealed a reduction in off-odor aldehydes (hexanal, (E)-2-octenal, (E)-2-decenal, and (E,E)-2,4-decadienal) and increased production of desirable aromatic compounds like tetramethyl-pyrazine. These findings highlight the potential of combining lactic acid bacteria fermentation with burdock powder to develop functional duck sausages with improved nutritional and sensory properties. Full article
(This article belongs to the Special Issue Nutraceutical and Bioactive Compounds in Foods)
Show Figures

Figure 1

18 pages, 2769 KiB  
Article
Characterization of the Flavors and Organoleptic Attributes of Petit Manseng Noble Rot Wines from the Eastern Foothills of Helan Mountain in Ningxia, China
by Fuqi Li, Fan Yang, Quan Ji, Longxuan Huo, Chen Qiao and Lin Pan
Foods 2025, 14(15), 2723; https://doi.org/10.3390/foods14152723 - 4 Aug 2025
Viewed by 101
Abstract
To investigate the effect of Botrytis cinerea infection severity on the flavor characteristics of Petit Manseng noble rot wine, this study analyzed wines produced from Petit Manseng grapes grown in the eastern foothills of Helan Mountain, Ningxia, China. The grapes were categorized into [...] Read more.
To investigate the effect of Botrytis cinerea infection severity on the flavor characteristics of Petit Manseng noble rot wine, this study analyzed wines produced from Petit Manseng grapes grown in the eastern foothills of Helan Mountain, Ningxia, China. The grapes were categorized into three groups based on infection status: uninfected, mildly infected, and severely infected with Botrytis cinerea. Headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and an electronic nose were employed to detect and analyze the aroma components of wines under the three infection conditions. Additionally, trained sensory panelists conducted sensory evaluations of the wine aromas. The results revealed that wines made from severely infected grapes exhibited the richest and most complex aroma profiles. A total of 70 volatile compounds were identified, comprising 32 esters, 17 alcohols, 5 acids, 8 aldehydes and ketones, 4 terpenes, and 4 other compounds. Among these, esters and alcohols accounted for the highest contents. Key aroma-active compounds included isoamyl acetate, ethyl decanoate, phenethyl acetate, ethyl laurate, hexanoic acid, linalool, decanoic acid, citronellol, ethyl hexanoate, and methyl octanoate. Sensory evaluation indicated that the “floral aroma”, “pineapple/banana aroma”, “honey aroma”, and “overall aroma intensity” were most pronounced in the severely infected group. These findings provide theoretical support for the harvesting of severely Botrytis cinerea-infected Petit Manseng grapes and the production of high-quality noble rot wine in this region. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

21 pages, 1870 KiB  
Article
Characterization of Bimi® Broccoli as a Convenience Food: Nutritional Composition and Quality Traits Following Industrial Sous-Vide Processing
by Elisa Canazza, Christine Mayr Marangon, Dasha Mihaylova, Valerio Giaccone and Anna Lante
Molecules 2025, 30(15), 3255; https://doi.org/10.3390/molecules30153255 - 3 Aug 2025
Viewed by 233
Abstract
This study investigates Bimi® (Brassica oleracea Italica × Alboglabra), a hybrid between kailan and conventional broccoli, to evaluate its compositional, functional, and sensory properties in relation to industrial sous-vide processing and refrigerated storage. Proximate composition, amino acid and fatty acid profiles, [...] Read more.
This study investigates Bimi® (Brassica oleracea Italica × Alboglabra), a hybrid between kailan and conventional broccoli, to evaluate its compositional, functional, and sensory properties in relation to industrial sous-vide processing and refrigerated storage. Proximate composition, amino acid and fatty acid profiles, and mineral content were determined in raw samples. Color, chlorophyll content, total polyphenols, and antioxidant capacity (FRAP, ABTS, DPPH) were analyzed before and after sous-vide treatment and following 60 days of storage. Microbiological and physicochemical stability was monitored over 90 days under standard (4 °C) and mildly abusive (6–10 °C) storage conditions. Sensory profiling of Bimi® and conventional broccoli was performed on sous-vide samples. The results showed an increase in total polyphenols and antioxidant activity after processing, while chlorophylls decreased. Microbiological safety was maintained under all conditions, with stable water activity and only moderate acidification. Bimi® provided a valuable source of protein (4.32 g/100 g FW, 8.63% RDA), appreciable amounts of dietary fiber (2.96 g/100 g FW, 11.85% RDA), and essential minerals such as potassium (15.59% RDA), phosphorus (14.05% RDA), and calcium (8.09% RDA). Sensory evaluation revealed a milder flavor profile than that of conventional broccoli, accompanied by an asparagus-like aroma. These findings support the suitability of Bimi® for industrial sous-vide processing and its potential as a nutritious convenience food. Full article
(This article belongs to the Special Issue Bioactive Compounds in Food and Their Applications)
Show Figures

Graphical abstract

26 pages, 1165 KiB  
Review
Maillard Reaction in Flour Product Processing: Mechanism, Impact on Quality, and Mitigation Strategies of Harmful Products
by Yajing Qi, Wenjun Wang, Tianxiang Yang, Wangmin Ding and Bin Xu
Foods 2025, 14(15), 2721; https://doi.org/10.3390/foods14152721 - 3 Aug 2025
Viewed by 271
Abstract
The Maillard reaction refers to the reaction between carbonyl compounds with reducing properties and amino-containing compounds that undergo condensation and polymerization to produce melanoidins. In flour product processing, the Maillard reaction is a critical chemical reaction influencing color, flavor, nutrition, and safety. A [...] Read more.
The Maillard reaction refers to the reaction between carbonyl compounds with reducing properties and amino-containing compounds that undergo condensation and polymerization to produce melanoidins. In flour product processing, the Maillard reaction is a critical chemical reaction influencing color, flavor, nutrition, and safety. A moderate Maillard reaction contributes to desirable color and flavor profiles in flour products, whereas an excessive reaction leads to amino acid loss and the formation of harmful substances, posing potential health risks. This review summarizes the substrate sources, reaction stages, influencing factors, impact on quality, and mitigation strategies of harmful products, aiming to provide a reference for regulating the Maillard reaction in flour product processing. Currently, most existing mitigation strategies focus on inhibiting harmful products, while research on the synergistic optimization of color and flavor remains insufficient. Future research should focus on elucidating the molecular mechanisms of reaction pathways, understanding multi-factor synergistic effects, and developing composite regulation technologies to balance the sensory quality and safety of flour products. Full article
Show Figures

Figure 1

16 pages, 3158 KiB  
Article
Comparative Metabolomics Analysis of Four Pineapple (Ananas comosus L. Merr) Varieties with Different Fruit Quality
by Ping Zheng, Jiahao Wu, Denglin Li, Shiyu Xie, Xinkai Cai, Qiang Xiao, Jing Wang, Qinglong Yao, Shengzhen Chen, Ruoyu Liu, Yuqin Liang, Yangmei Zhang, Biao Deng, Yuan Qin and Xiaomei Wang
Plants 2025, 14(15), 2400; https://doi.org/10.3390/plants14152400 - 3 Aug 2025
Viewed by 161
Abstract
Understanding the metabolic characteristics of pineapple varieties is crucial for market expansion and diversity. This study performed comparative metabolomic analysis on the “Comte de Paris” (BL) and three Taiwan-introduced varieties: “Tainong No. 11” (XS), “Tainong No. 23” (MG), and “Tainong No. 13” (DM). [...] Read more.
Understanding the metabolic characteristics of pineapple varieties is crucial for market expansion and diversity. This study performed comparative metabolomic analysis on the “Comte de Paris” (BL) and three Taiwan-introduced varieties: “Tainong No. 11” (XS), “Tainong No. 23” (MG), and “Tainong No. 13” (DM). A total of 551 metabolites were identified across the four varieties, with 231 metabolites exhibiting no significant differences between all varieties. This included major sugars such as sucrose, glucose, and fructose, as well as key acids like citric, malic, and quinic acids, indicating that the in-season maturing fruits of different pineapple varieties can all achieve good sugar–acid accumulation under suitable conditions. The differentially accumulated metabolites (DAMs) that were identified among the four varieties all primarily belonged to several major subclasses, including phenolic acids, flavonoids, amino acids and derivatives, and alkaloids, but the preferentially accumulated metabolites in each variety varied greatly. Specifically, branched-chain amino acids (L-leucine, L-isoleucine, and L-valine) and many DAMs in the flavonoid, phenolic acid, lignan, and coumarin categories were most abundant in MG, which might contribute to its distinct and enriched flavor and nutritional value. XS, meanwhile, exhibited a notable accumulation of aromatic amino acids (L-phenylalanine, L-tryptophan), various phenolic acids, and many lignans and coumarins, which may be related to its unique flavor profile. In DM, the dominant accumulation of jasmonic acid might contribute to its greater adaptability to low temperatures during autumn and winter, allowing off-season fruits to maintain good quality. The main cultivar BL exhibited the highest accumulation of L-ascorbic acid and many relatively abundant flavonoids, making it a good choice for antioxidant benefits. These findings offer valuable insights for promoting different varieties and advancing metabolome-based pineapple improvement programs. Full article
Show Figures

Figure 1

14 pages, 2070 KiB  
Article
Carcass and Meat Quality Characteristics and Changes of Lean and Fat Pigs After the Growth Turning Point
by Tianci Liao, Mailin Gan, Yan Zhu, Yuhang Lei, Yiting Yang, Qianli Zheng, Lili Niu, Ye Zhao, Lei Chen, Yuanyuan Wu, Lixin Zhou, Jia Xue, Xiaofeng Zhou, Yan Wang, Linyuan Shen and Li Zhu
Foods 2025, 14(15), 2719; https://doi.org/10.3390/foods14152719 - 3 Aug 2025
Viewed by 278
Abstract
Pork is a major global source of animal protein, and improving both its production efficiency and meat quality is a central goal in modern animal agriculture and food systems. This study investigated post-inflection-point growth patterns in two genetically distinct pig breeds—the lean-type Yorkshire [...] Read more.
Pork is a major global source of animal protein, and improving both its production efficiency and meat quality is a central goal in modern animal agriculture and food systems. This study investigated post-inflection-point growth patterns in two genetically distinct pig breeds—the lean-type Yorkshire pig (YP) and the fatty-type Qingyu pig (QYP)—with the aim of elucidating breed-specific characteristics that influence pork quality and yield. Comprehensive evaluations of carcass traits, meat quality attributes, nutritional composition, and gene expression profiles were conducted. After the growth inflection point, carcass traits exhibited greater variability than meat quality traits in both breeds, though with distinct patterns. YPs displayed superior muscle development, with the longissimus muscle area (LMA) increasing rapidly before plateauing at ~130 kg, whereas QYPs maintained more gradual but sustained muscle growth. In contrast, intramuscular fat (IMF)—a key determinant of meat flavor and texture—accumulated faster in YPs post inflection but plateaued earlier in QYPs. Correlation and clustering analyses revealed more synchronized regulation of meat quality traits in QYPs, while YPs showed greater trait variability. Gene expression patterns aligned with these phenotypic trends, highlighting distinct regulatory mechanisms for muscle and fat development in each breed. In addition, based on the growth curves, we calculated the peak age at which the growth rate declined in lean-type and fat-type pigs, which was approximately 200 days for YPs and around 270 days for QYPs. This suggests that these ages may represent the optimal slaughter times for the respective breeds, balancing both economic efficiency and meat quality. These findings provide valuable insights for enhancing pork quality through precision management and offer theoretical guidance for developing breed-specific feeding strategies, slaughter timing, and value-added pork production tailored to consumer preferences in the modern food market. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

26 pages, 7094 KiB  
Article
Preliminary Study on the Geochemical Characterization of Viticis Fructus Cuticular Waxes: From Latitudinal Variation to Origin Authentication
by Yiqing Luo, Min Guo, Lei Hu, Jiaxin Yang, Junyu Xu, Muhammad Rafiq, Ying Wang, Chunsong Cheng and Shaohua Zeng
Int. J. Mol. Sci. 2025, 26(15), 7293; https://doi.org/10.3390/ijms26157293 - 28 Jul 2025
Viewed by 198
Abstract
Viticis Fructus (VF), a fruit known for its unique flavor profile and various health benefits, demonstrates substantial quality variations depending on its area of production. Traditional methods of production area verification based on internal compound analysis are hampered by a number of technical [...] Read more.
Viticis Fructus (VF), a fruit known for its unique flavor profile and various health benefits, demonstrates substantial quality variations depending on its area of production. Traditional methods of production area verification based on internal compound analysis are hampered by a number of technical limitations. This investigation systematically characterized the cuticular wax composition of VF sample from a diverse variety of production areas. Quantitative analyses were conducted to evaluate the spatial distribution patterns of the wax constituents. Significant regional variations were observed: Anhui sample exhibited the highest total wax content (21.39 μg/cm2), with n-alkanes dominating at 76.67%. High-latitude regions showed elevated triterpenoid acid levels, with maslinic acid (0.53 μg/cm2) and ursolic acid (0.34 μg/cm2) concentrations exceeding those of their low-latitude counterparts by four- and three-fold, respectively. Altitudinal influence manifested in long-chain alcohol accumulation, as triacontanol reached 0.87 μg/cm2 in high-altitude sample. Five key biomarkers demonstrated direct quality correlations: eicosanoic acid, n-triacontane, dotriacontanol, β-amyrin, and α-amyrin. This study established three novel origin identification protocols: single-component quantification, multi-component wax profiling, and wax ratio analysis. This work not only reveals the latitudinal dependence of VF wax composition, but also provides a scientific framework for geographical authentication. Our findings advance wax-based quality evaluation methodologies for fruit products, offering practical solutions for production area verification challenges in food raw materials. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

27 pages, 1518 KiB  
Review
Application of Microbial Fermentation in Caffeine Degradation and Flavor Modulation of Coffee Beans
by Lu-Xia Ran, Xiang-Ying Wei, Er-Fang Ren, Jian-Feng Qin, Usman Rasheed and Gan-Lin Chen
Foods 2025, 14(15), 2606; https://doi.org/10.3390/foods14152606 - 24 Jul 2025
Viewed by 483
Abstract
Coffee is one of the most widely consumed beverages worldwide, primarily due to the stimulating effects attributed to its caffeine content. However, excessive intake of caffeine results in negative effects, including palpitations, anxiety, and insomnia. Therefore, low-caffeine coffee has captivated growing consumer interest, [...] Read more.
Coffee is one of the most widely consumed beverages worldwide, primarily due to the stimulating effects attributed to its caffeine content. However, excessive intake of caffeine results in negative effects, including palpitations, anxiety, and insomnia. Therefore, low-caffeine coffee has captivated growing consumer interest, highlighting its significant market potential. Traditional decaffeination methods often lead to non-selective extraction, resulting in a loss of desirable flavor compounds, thereby compromising coffee quality. In recent years, microbial fermentation has emerged as a promising, targeted, and safe approach for reducing caffeine content during processing. Additionally, mixed-culture fermentation further enhances coffee flavor and overcomes the drawbacks of monoculture fermentation, such as low efficiency and limited flavor profiles. Nonetheless, several challenges are yet to be resolved, including microbial tolerance to caffeine and related alkaloids, the safety of fermentation products, and elucidation of the underlying mechanisms behind microbial synergy in co-cultures. This review outlines the variety of microorganisms with the potential to degrade caffeine and the biochemical processes involved in this process. It explores how microbes tolerate caffeine, the safety of metabolites produced during fermentation, and the synergistic effects of mixed microbial cultures on the modulation of coffee flavor compounds, including esters and carbonyls. Future directions are discussed, including the screening of alkaloid-tolerant strains, constructing microbial consortia for simultaneous caffeine degradation for flavor enhancement, and developing high-quality low-caffeine coffee. Full article
Show Figures

Figure 1

30 pages, 1834 KiB  
Article
Development of Innovative Mediterranean-Style Semi-Hard Goat’s Cheese Supplemented with Seaweeds (Palmaria palmata and Ulva sp.) and Its Characterization
by Bruno M. Campos, Bruno S. Moreira-Leite, Abigail Salgado, Edgar Ramalho, Isa Marmelo, Manuel Malfeito-Ferreira, Paulo H. M. de Sousa, Adolfo Henriques, João P. Noronha, Mário S. Diniz and Paulina Mata
Appl. Sci. 2025, 15(15), 8232; https://doi.org/10.3390/app15158232 - 24 Jul 2025
Viewed by 204
Abstract
The main objective of this study was the development of two semi-hard goat cheeses supplemented with Palmaria palmata and Ulva sp. with the aim of developing innovative food products, increasing the concentration of nutrients in these cheeses and familiarizing consumers with seaweed-containing foods. [...] Read more.
The main objective of this study was the development of two semi-hard goat cheeses supplemented with Palmaria palmata and Ulva sp. with the aim of developing innovative food products, increasing the concentration of nutrients in these cheeses and familiarizing consumers with seaweed-containing foods. The impact of seaweed addition was evaluated through physicochemical, microbiological, and organoleptic properties of the semi-hard goat cheeses. Carbohydrate content was relatively low, whereas the total lipid content was relatively high (particularly in semi-hard goat cheese supplemented with seaweeds). Crude protein content presented higher values in semi-hard goat cheese supplemented with Ulva sp. The semi-hard goat cheese supplemented with Ulva sp. shows increased levels of Ca, Fe, Mn, and Zn. Instrumental color and the textural parameters of semi-hard goat’s cheese varied significantly with seaweed addition. Most of the microbiological load complies with the Portuguese (INSA) and the United Kingdom’s (HPA) guidelines for assessing the microbiological safety of ready-to-eat foods placed on the market. Additionally, the Flash Profile scores of semi-hard goat cheeses supplemented with seaweeds highlighted aroma and flavor complexity. Overall, this study confirms the potential of using seaweeds as a viable alternative to produce semi-hard goat cheeses with less pungency or goat milk flavor, making this product more pleasant and appealing to consumers sensitive to these sensory characteristics. Full article
Show Figures

Figure 1

23 pages, 3376 KiB  
Article
Physicochemical and Instrumental Flavor Analysis of Plant-Based Drinks with Plant Powder Additions
by Joanna Kolniak-Ostek, Agnieszka Kita, Davide Giacalone, Laura Vázquez-Araújo, Luis Noguera-Artiaga, Jessica Brzezowska and Anna Michalska-Ciechanowska
Foods 2025, 14(15), 2593; https://doi.org/10.3390/foods14152593 - 24 Jul 2025
Viewed by 338
Abstract
This study explored the use of fruit- and herb-based powders as fortifying agents in soy- and oat-based beverages. Developed using a New Product Development approach, the powders were derived from underutilized plants rich in bioactives but with limited sensory appeal. Formulations included powders [...] Read more.
This study explored the use of fruit- and herb-based powders as fortifying agents in soy- and oat-based beverages. Developed using a New Product Development approach, the powders were derived from underutilized plants rich in bioactives but with limited sensory appeal. Formulations included powders from both widely available fruits, such as apple and pear, chosen for their accessibility and economic relevance, and less commonly consumed fruits, such as Japanese quince, rosehip, and rhubarb, which are often discarded due to sour or astringent flavors. Processing these into powders helped mask undesirable sensory traits and enabled incorporation into beverage matrices. Physicochemical analyses confirmed their technological suitability, while high polyphenol content indicated potential health benefits. Importantly, no process contaminants (furfural, 5-hydroxymethyl-L-furfural, and acrylamide) were detected, supporting the powders’ safety for food use. The integrated application of an electronic tongue and nose enabled objective profiling of taste and aroma. The electronic tongue distinguished taste profiles across formulations, revealing matrix-dependent effects and interactions, particularly with trehalose, that influenced sweetness and bitterness. The electronic nose provided consistent aroma differentiation. Overall, the results highlight the potential of these underutilized plant powders as multifunctional ingredients in plant-based beverage development. They support product innovation aligned with consumer expectations for natural, health-promoting foods. Future work will include sensory validation with consumer panels. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

Back to TopTop