The Impact of Storage Time and Reheating Method on the Quality of a Precooked Lamb-Based Dish
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the EASM Precooked Dish
2.2. A Proximate Analysis of Raw Meat and Precooked Dishes
2.3. Storage and Post-Storage Reheating
2.4. Storage Quality Analysis
2.4.1. Microbiological Analysis
2.4.2. Spoilage Assessment
2.4.3. Lipid Oxidation
2.4.4. Low-Field Nuclear Magnetic Resonance Application in this Study (Water Distribution)
2.4.5. Shelf-Life Prediction
2.5. Reheating Quality Analysis
2.5.1. Color Measurement
2.5.2. Cooking Yield
2.5.3. Chemical Analysis of the Odor Profile
2.5.4. Chemical Analysis of the Flavor Profile
2.6. The Statistical Analysis
3. Results and Discussion
3.1. The Proximate Composition of the Raw and Cooked Meat
3.2. The Effect of Storage on the Quality of the Precooked Dish
3.2.1. The Effect of Storage Time on the Microbiological Characteristics of the EASM Precooked Dish
3.2.2. Moisture Content, TVB-N, and Lipid Oxidation
3.2.3. Water Distribution
3.2.4. Shelf-Life Modeling
3.3. The Effect of Reheating Methods on the Quality Characteristics of the EASM Precooked Dish Under Different Storage Conditions
3.3.1. Color and Yield
3.3.2. Odor Profile
3.3.3. Flavor Profile
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Array Serial Number | Sensor Name | Performance Description |
---|---|---|
R1 | W1C | Sensitive to aromatic components, benzene compounds |
R2 | W5S | Sensitive to nitrogen oxides |
R3 | W3C | Sensitive to aromatic components, ammonia compounds |
R4 | W6S | Sensitive to hydrides |
R5 | W5C | Sensitive to short-chain alkane aromatic components |
R6 | W1S | Sensitive to methyl compounds |
R7 | W1W | Sensitive to sulfides |
R8 | W2S | Sensitive to alcohols, aldehydes, and ketones |
R9 | W2W | Sensitive to organic sulfides |
R10 | W3S | Sensitive to long-chain alkanes |
References
- Cui, S.; Wang, Y.; Zhou, Z.; Zhang, Y.-Y.; Huang, X.-H.; Zhou, D.-Y.; Qin, L. A comprehensive evaluation of lipid profiles and nutritional quality in different animal source muscle tissues. Food Biosci. 2024, 59, 103947. [Google Scholar] [CrossRef]
- Feng, Q. New Constituents from Eleutherine americana. Chem. Res. Chin. Univ. 2005, 26, 2057. [Google Scholar]
- Luo, Y.; Bi, Y.; Du, R.; Yuan, H.; Hou, Y.; Luo, R. The impact of freezing methods on the quality, moisture distribution, microstructure, and flavor profile of hand-grabbed mutton during long-term frozen storage. Food Res. Int. 2023, 173, 113346. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.Z.; Luo, Y.L.; Luo, R.M.; Ji, C.; Gao, S.; Bai, S.; Wang, Y.R.; Dong, F.J.; Hu, X.L.; Guo, J.J. High freezing rate improves flavor fidelity effect of hand grab mutton after short-term frozen storage. Front. Nutr. 2022, 9, 959824. [Google Scholar] [CrossRef] [PubMed]
- James, S.J.; James, C. 23-Impact of refrigeration on processed meat safety and quality. In Processed Meats; Kerry, J.P., Kerry, J.F., Eds.; Woodhead Publishing: New Delhi, India, 2011; pp. 567–589. [Google Scholar]
- Coombs, C.E.O.; Holman, B.W.B.; Collins, D.; Friend, M.A.; Hopkins, D.L. Effects of chilled-then-frozen storage (up to 52 weeks) on lamb M. longissimus lumborum quality and safety parameters. Meat Sci. 2017, 134, 86–97. [Google Scholar] [CrossRef]
- Huang, L. Impact of refrigeration operations on the microbial ecology of foods. In Quantitative Microbiology in Food Processing; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Nanje, O.S.; Sylvia Ninying, V.Z.; Tonfack Djikeng, F.; Azia Morfor, T.; Achidi, A.U. Effect of different reheating processes and conditions on the nutritional, functional, and microbiological properties of cow meat. Food Sci. Nutr. 2024, 12, 4233–4247. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, H.; Huang, F.; Li, X.; Liu, J.; Mehmood, W.; Zheng, J.; Zhang, C. Changes in eating quality and oxidation deterioration of pork steaks cooked by different methods during refrigerated storage. Int. J. Gastron. Food Sci. 2022, 29, 100576. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Fan, K.; Yang, C.-h.; Fang, Z. Effects of reheating methods on the product quality of Hongsu chicken dish. J. Food Process. Preserv. 2018, 42, e13823. [Google Scholar] [CrossRef]
- Niu, F.; Ju, M.; Du, Y.; Wang, M.; Han, X.; Chen, Q.; Zhang, B.; Ritzoulis, C.; Pan, W. Changes in properties of nano protein particles (NPP) of fish muscle stored at 4 °C and its application in food quality assessment. LWT 2022, 155, 112968. [Google Scholar] [CrossRef]
- Tarladgis, B.G.; Watts, B.M.; Younathan, M.T.; Dugan, L. A distillation method for the quantitative determination of malonaldehyde in rancid foods. J. Am. Oil Chem. Soc. 1960, 37, 44–48. [Google Scholar] [CrossRef]
- Bertram, H.C.; Engelsen, S.B.; Busk, H.; Karlsson, A.H.; Andersen, H.J. Water properties during cooking of pork studied by low-field NMR relaxation: Effects of curing and the RN−-gene. Meat Sci. 2004, 66, 437–446. [Google Scholar] [CrossRef]
- Pathare, P.B.; Roskilly, A.P. Quality and Energy Evaluation in Meat Cooking. Food Eng. Rev. 2016, 8, 435–447. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Y.; Zhao, J.; Tian, H. Taste characteristics of Chinese bayberry juice characterized by sensory evaluation, chromatography analysis, and an electronic tongue. J. Food Sci. Technol. 2018, 55, 1624–1631. [Google Scholar] [CrossRef] [PubMed]
- Wettasinghe, M.; Vasanthan, T.; Temelli, F.; Swallow, K. Volatile flavour composition of cooked by-product blends of chicken, beef and pork: A quantitative GC–MS investigation. Food Res. Int. 2001, 34, 149–158. [Google Scholar] [CrossRef]
- Jiao, Y.; Liu, Y.; Quek, S.Y. Systematic evaluation of nutritional and safety characteristics of Hengshan goat leg meat affected by multiple thermal processing methods. J. Food Sci. 2020, 85, 1344–1352. [Google Scholar] [CrossRef]
- Erkmen, O. Plate count techniques. In Microbiological Analysis of Foods and Food Processing Environments; Erkmen, O., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 13–18. [Google Scholar]
- Zhan, X.; Sun, D.W.; Zhu, Z.; Wang, Q.J. Improving the quality and safety of frozen muscle foods by emerging freezing technologies: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2925–2938. [Google Scholar] [CrossRef]
- Roldán, M.; Antequera, T.; Hernández, A.; Ruiz, J. Physicochemical and microbiological changes during the refrigerated storage of lamb loins sous-vide cooked at different combinations of time and temperature. Food Sci. Technol. Int. 2015, 21, 512–522. [Google Scholar] [CrossRef]
- Huang, H.; Wen, G.; Liang, A.; Jiang, Z. A new SERS quantitative analysis strategy for ultratrace chloramphenicol with Fe3O4@MIP nanocatalytic probe. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 322, 124732. [Google Scholar] [CrossRef]
- Choi, M.J.; Abduzukhurov, T.; Park, D.H.; Kim, E.J.; Hong, G.P. Effects of Deep Freezing Temperature for Long-term Storage on Quality Characteristics and Freshness of Lamb Meat. Korean J. Food Sci. Anim. Resour. 2018, 38, 959–969. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, D.; Zheng, X.; Wen, X.; Yan, T.; Zhang, Z.; Hou, C. Effects of Different Storage Temperatures on the Physicochemical Properties and Bacterial Community Structure of Fresh Lamb Meat. Food Sci. Anim. Resour. 2021, 41, 509–526. [Google Scholar] [CrossRef]
- Wu, J.; Li, C.; Li, L.; Yang, X.; Wang, Y.; Zhou, W. Improved physicochemical properties and product characteristics of tilapia surimi by tea polyphenols during chilled storage. LWT 2022, 167, 113822. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Zamuz, S.; López-Pedrouso, M.; Barba, F.J.; Lorenzo, J.M.; Domínguez, H.; Franco, D. Application of hull, bur and leaf chestnut extracts on the shelf-life of beef patties stored under MAP: Evaluation of their impact on physicochemical properties, lipid oxidation, antioxidant, and antimicrobial potential. Food Res. Int. 2018, 112, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Medić, H.; Djurkin Kušec, I.; Pleadin, J.; Kozačinski, L.; Njari, B.; Hengl, B.; Kušec, G. The impact of frozen storage duration on physical, chemical and microbiological properties of pork. Meat Sci. 2018, 140, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Rudszuck, T.; Nirschl, H.; Guthausen, G. Perspectives in process analytics using low field NMR. J. Magn. Reson. 2021, 323, 106897. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, C.K.; Allen, P.; Duggan, E.; Arimi, J.M.; Casey, E.; Duane, G.; Lyng, J.G. The effect of salt and fibre direction on water dynamics, distribution and mobility in pork muscle: A low field NMR study. Meat Sci. 2013, 95, 51–58. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhou, Q.; Sun, D.-W. Measuring and controlling ice crystallization in frozen foods: A review of recent developments. Trends Food Sci. Technol. 2019, 90, 13–25. [Google Scholar] [CrossRef]
- Stenberg, E.; Arvidsson-Segerkvist, K.; Karlsson, A.H.; Ólafsdóttir, A.; Hilmarsson, Ó.Þ.; Gudjónsdóttir, M.; Thorkelsson, G. A Comparison of Fresh and Frozen Lamb Meat—Differences in Technological Meat Quality and Sensory Attributes. Animals 2022, 12, 2830. [Google Scholar] [CrossRef]
- Tan, S.L.; Sulaiman, R.; Rukayadi, Y.; Ramli, N.S. Physical, chemical, microbiological properties and shelf life kinetic of spray-dried cantaloupe juice powder during storage. LWT 2021, 140, 110597. [Google Scholar] [CrossRef]
- Wenjiao, F.; Yongkui, Z.; Yunchuan, C.; Junxiu, S.; Yuwen, Y. TBARS predictive models of pork sausages stored at different temperatures. Meat Sci. 2014, 96, 1–4. [Google Scholar] [CrossRef]
- Cao, Q.; Chen, J.; Zhang, Q.; Li, X.; Feng, Y.; Guo, J.; Guo, M.; Liu, G.; Cai, J.; Zhao, Y. Effects of reheat treatment on warmed-over flavor and lipid oxidation in bowl-steamed Tan lamb. Food Chem. 2025, 479, 143833. [Google Scholar] [CrossRef]
- van Heerden, S.M.; Strydom, P.E. Nutrient retention values and cooking yield factors for three South African lamb and mutton cuts. J. Sci. Food Agric. 2017, 97, 5037–5042. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, Y.; Tang, C.; Yue, S.; Zhao, Q.; Li, F.; Zhang, J. Changes in lipids and aroma compounds in intramuscular fat from Hu sheep. Food Chem. 2022, 383, 132611. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, V.; Song, Z.; Hwang, I. The potential role of secondary metabolites in modulating the flavor and taste of the meat. Food Res. Int. 2019, 122, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Kantono, K.; Hamid, N.; Chadha, D.; Ma, Q.; Oey, I.; Farouk, M.M. Pulsed Electric Field (PEF) Processing of Chilled and Frozen-Thawed Lamb Meat Cuts: Relationships between Sensory Characteristics and Chemical Composition of Meat. Foods 2021, 10, 1148. [Google Scholar] [CrossRef]
- Pratama, R.I.; Rostini, I.; Rochima, E. Amino Acid Profile and Volatile Flavour Compounds of Raw and Steamed Patin Catfish (Pangasius hypophthalmus) and Narrow-barred Spanish Mackerel (Scomberomorus commerson). In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 116. [Google Scholar]
- Mottram, D.S. The effect of cooking conditions on the formation of volatile heterocyclic compounds in pork. J. Sci. Food Agric. 1985, 36, 377–382. [Google Scholar] [CrossRef]
- Zhu, W.; Jiang, B.; Zhong, F.; Chen, J.; Zhang, T. Effect of Microbial Fermentation on the Fishy-Odor Compounds in Kelp (Laminaria japonica). Foods 2021, 10, 2532. [Google Scholar] [CrossRef]
- Ganeko, N.; Shoda, M.; Hirohara, I.; Bhadra, A.; Ishida, T.; Matsuda, H.; Takamura, H.; Matoba, T. Analysis of volatile flavor compounds of sardine (Sardinops melanostica) by solid phase microextraction. J. Food Sci. 2008, 73, S83–S88. [Google Scholar] [CrossRef]
- An, Y.; Qian, Y.L.; Alcazar Magana, A.; Xiong, S.; Qian, M.C. Comparative Characterization of Aroma Compounds in Silver Carp (Hypophthalmichthys molitrix), Pacific Whiting (Merluccius productus), and Alaska Pollock (Theragra chalcogramma) Surimi by Aroma Extract Dilution Analysis, Odor Activity Value, and Aroma Recombination Studies. J. Agric. Food Chem. 2020, 68, 10403–10413. [Google Scholar] [CrossRef]
- Matthews, R.F.; Scanlan, R.A.; Libbey, L.M. Autoxidation products of 2,4-decadienal. J. Am. Oil Chem. Soc. 1971, 48, 745–747. [Google Scholar] [CrossRef]
- Martin, D.; Antequera, T.; Muriel, E.; Perez-Palacios, T.; Ruiz, J. Volatile compounds of fresh and dry-cured loin as affected by dietary conjugated linoleic acid and monounsaturated fatty acids. Meat Sci. 2009, 81, 549–556. [Google Scholar] [CrossRef]
- Yin, H.; Xu, L.; Porter, N.A. Free radical lipid peroxidation: Mechanisms and analysis. Chem. Rev. 2011, 111, 5944–5972. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Han, D.; Huang, F.; Zhang, C. Effect of reheating methods on eating quality, oxidation and flavor characteristics of Braised beef with potatoes dish. Int. J. Gastron. Food Sci. 2023, 31, 100659. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Franco, D.; Carballo, J. Effect of the inclusion of chestnut in the finishing diet on volatile compounds during the manufacture of dry-cured “Lacón” from Celta pig breed. Meat Sci. 2014, 96, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Cai, Y.; Liu, D.; Chen, Y.; Li, J.; Zhang, M.; Chen, N.; Zhang, H. Analysis of flavor formation during production of Dezhou braised chicken using headspace-gas chromatography-ion mobility spec-trometry (HS-GC-IMS). Food Chem. 2022, 370, 130989. [Google Scholar] [CrossRef]
- Xie, Q.; Xu, B.; Xu, Y.; Yao, Z.; Zhu, B.; Li, X.; Sun, Y. Effects of different thermal treatment temperatures on volatile flavour compounds of water-boiled salted duck after packaging. LWT 2022, 154, 112625. [Google Scholar] [CrossRef]
- Yang, Z.; Hou, Y.; Zhang, M.; Hou, P.; Liu, C.; Dou, L.; Chen, X.; Zhao, L.; Su, L.; Jin, Y. Unraveling proteome changes of Sunit lamb meat in different feeding regimes and its relationship to flavor analyzed by TMT-labeled quantitative proteomic. Food Chem. 2024, 437, 137657. [Google Scholar] [CrossRef]
- Hoch, C.C.; Petry, J.; Griesbaum, L.; Weiser, T.; Werner, K.; Ploch, M.; Verschoor, A.; Multhoff, G.; Bashiri Dezfouli, A.; Wollenberg, B. 1,8-cineole (eucalyptol): A versatile phytochemical with therapeutic applications across multiple diseases. Biomed. Pharmacother. 2023, 167, 115467. [Google Scholar] [CrossRef]
- Petričević, S.; Marušić Radovčić, N.; Lukić, K.; Listeš, E.; Medić, H. Differentiation of dry-cured hams from different processing methods by means of volatile compounds, physico-chemical and sensory analysis. Meat Sci. 2018, 137, 217–227. [Google Scholar] [CrossRef]
- Tian, Y.; Zheng, P.; Mu, Y.; Su, W.; Chen, T. Correlation analysis of normal and moldy beef jerky microbiota with Volatile compounds. LWT 2022, 162, 113457. [Google Scholar] [CrossRef]
Parameter | Fresh Lamb Leg Meat | EASM Precooked Dish |
---|---|---|
Moisture | 72.12 ± 3.23 A | 57.32 ± 1.72 B |
Ash | 0.98 ± 0.21 A | 0.88 ± 0.17 A |
Protein | 21.26 ± 0.7 B | 32.35 ± 0.32 A |
Fat | 3.81 ± 0.35 B | 7.37 ± 0.45 A |
Storage Time (d) | Storage Temperature | |
---|---|---|
4 °C | −18 °C | |
0 | <1 | <1 |
7 | 2.72 ± 0.12 Ca | 2.68 ± 0.09 Ca |
14 | 3.91 ± 0.28 Ba | 2.98 ± 0.24 Bb |
21 | 4.32 ± 0.14 Aa | 3.53 ± 0.26 Ab |
28 | 4.8 ± 0.12 Aa | 3.73 ± 0.13 Ab |
Testing Indicators | Absolute Storage Temperature/K | Regression Equation | Reaction Rate Constant K | Regression Coefficient R2 |
---|---|---|---|---|
TBARS | 277.15 | y = 0.0549e0.0353x | 0.0353 | 0.799 |
255.15 | y = 0.0852e0.0229x | 0.0229 | 0.599 | |
TVB-N | 277.15 | y = 2.525e0.0658x | 0.0658 | 0.921 |
255.15 | y = 1.9589e0.0488x | 0.0488 | 0.977 |
Parameter | C | RB | RM | FB | FM |
---|---|---|---|---|---|
L* | 53.52 ± 0.577 c | 60.21 ± 0.74 a | 56.51 ± 1.47 b | 53.78 ± 0.19 c | 54.33 ± 0.55 c |
a* | 9.55 ± 0.11 b | 8.24 ± 0.37 c | 9.07 ± 0.48 b | 9.24 ± 0.11 b | 11.09 ± 0.67 a |
b* | 13.48 ± 0.037 c | 17.72 ± 0.28 b | 17.66 ± 0.29 b | 19.06 ± 0.66 a | 18.54 ± 0.44 a |
Yield (%) | — | 78.73 ± 2.31 b | 86.53 ± 3.15 a | 75.90 ± 1.97 b | 86.21 ± 2.36 a |
Compound | C | RB | RM | FB | FM |
---|---|---|---|---|---|
Aldehydes | |||||
Pentanal | 7.21 ± 2.64 c | 14.49 ± 0.25 b | 18.59 ± 0.80 a | 8.91 ± 0.20 c | 14.15 ± 2.59 b |
Hexanal | 192.45 ± 75.59 b | 277.12 ± 12.56 a | 300.58 ± 11.63 a | 249.82 ± 30.85 a | 311.43 ± 51.52 a |
Benzaldehyde | 17.40 ± 1.55 b | 26.03 ± 2.95 a | 29.45 ± 1.76 a | 26.41 ± 1.35 a | 19.01 ± 3.32 b |
Octanal | 82.31 ± 11.74 a | 60.83 ± 2.10 c | 78.34 ± 2.23 b | 75.98 ± 0.80 b | 58.23 ± 3.19 c |
(E)-2-Nonenal | 2.46 ± 0.55 a | 2.82 ± 0.33 a | 2.97 ± 0.07 a | ND | 2.35 ± 0.17 a |
Nonanal | 128.96 ± 19.30 a | 94.44 ± 5.67 c | 125.56 ± 7.38 a | 111.11 ± 3.50 b | 99.06 ± 0.68 c |
Decanal | 9.27 ± 1.34 a | 6.02 ± 0.35 b | 5.29 ± 0.74 b | 9.32 ± 1.33 a | 8.28 ± 0.34 a |
(Z)-2,6-Octadienal,3,7-dimethyl- | 10.65 ± 2.55 bc | 9.13 ± 1.05 c | 8.55 ± 0.11 c | 17.47 ± 1.79 ab | 18.75 ± 5.61 a |
(E)-2,6-Octadienal,3,7-dimethyl- | 12.04 ± 2.84 b | 27.16 ± 5.72 a | 10.79 ± 0.17 bc | 31.47 ± 2.16 a | 24.18 ± 5.87 a |
Citral | 15.09 ± 0.39 d | 28.77 ± 1.63 c | 38.59 ± 0.97 b | 44.11 ± 1.32 a | 41.27 ± 0.34 a |
(E)-2-Decenal | ND | 0.49 ± 0.13 b | 0.78 ± 0.03 a | ND | ND |
Hexadecanal | 9.52 ± 1.32 b | 15.87 ± 2.73 a | 9.59 ± 1.65 b | 8.81 ± 1.56 b | 7.28 ± 1.93 b |
Ketones | |||||
2-Heptanone | 2.09 ± 0.45 a | 1.55 ± 0.01 b | 2.11 ± 0.01 a | 2.48 ± 0.16 a | 2.18 ± 0.24 a |
2,3-Octanedione | ND | 125.53 ± 8.37 a | 110.98 ± 5.20 b | 133.69 ± 14.51 a | 96.25 ± 3.17 b |
2-Nonanone | 3.11 ± 1.20 b | 5.91 ± 0.30 a | 5.23 ± 0.39 a | 5.14 ± 0.52 a | 5.37 ± 0.16 a |
2-Undecanone | 1.85 ± 0.15 c | 5.58 ± 0.74 a | 2.70 ± 0.01 b | 5.83 ± 0.11 a | 3.11 ± 0.89 b |
Alcohols | |||||
1-Heptanol | 3.76 ± 1.29 a | 1.64 ± 0.22 b | 1.74 ± 0.01 b | ND | ND |
1-Octen-3-ol | 68.59 ± 0.46 | ND | ND | ND | ND |
2-Ethyl-1-hexanol | 277.38 ± 37.97 a | 56.46 ± 0.38 b | 53.84 ± 2.19 b | 54.92 ± 0.70 b | 23.86 ± 3.31 c |
α-Terpineol | 11.73 ± 1.32 a | 4.72 ± 0.74 b | 6.89 ± 0.13 b | 12.89 ± 1.11 a | 13.78 ± 3.10 a |
2-Heptanol | ND | 2.15 ± 0.05 a | 1.82 ± 0.08 b | ND | ND |
1-Octanol | 91.98 ± 7.22 a | 29.23 ± 5.13 b | 23.60 ± 2.36 b | 11.14 ± 1.12 c | 9.69 ± 1.31 c |
Isoborneol | 2.28 ± 0.14 | ND | ND | ND | ND |
2,4-Hexadien-1-ol | ND | ND | ND | 2.65 ± 0.17 a | 2.74 ± 0.32 a |
2-Hexadecanol | 0.23 ± 0.04 a | 0.20 ± 0.01 a | 0.26 ± 0.06 a | 0.20 ± 0.01 a | 0.19 ± 0.02 a |
Ethers | |||||
n-Caproicacidvinylester | 48.19 ± 5.65 a | 35.81 ± 5.57 b | 45.39 ± 6.58 a | 33.97 ± 9.02 b | 56.92 ± 12.54 a |
Decanoicacid,decylester | ND | ND | ND | 5.52 ± 0.01 a | 3.09 ± 0.80 b |
Other | |||||
Eucalyptol | 46.08 ± 10.68 c | 87.80 ± 0.60 b | 79.87 ± 2.93 b | 106.69 ± 2.07 a | 96.49 ± 11.98 ab |
endo-Borneol | ND | 23.96 ± 0.99 a | ND | 23.15 ± 1.32 a | 22.26 ± 4.19 a |
Camphor | ND | ND | ND | 2.33 ± 0.17 a | 2.64 ± 0.59 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Wang, C.; Jin, Y.; Le, W.; Zhang, L.; Wang, L.; Zhang, B.; Guo, Y.; Zhang, M.; Su, L. The Impact of Storage Time and Reheating Method on the Quality of a Precooked Lamb-Based Dish. Foods 2025, 14, 2748. https://doi.org/10.3390/foods14152748
Yang Z, Wang C, Jin Y, Le W, Zhang L, Wang L, Zhang B, Guo Y, Zhang M, Su L. The Impact of Storage Time and Reheating Method on the Quality of a Precooked Lamb-Based Dish. Foods. 2025; 14(15):2748. https://doi.org/10.3390/foods14152748
Chicago/Turabian StyleYang, Zhihao, Chenlei Wang, Ye Jin, Wenjia Le, Liang Zhang, Lifei Wang, Bo Zhang, Yueying Guo, Min Zhang, and Lin Su. 2025. "The Impact of Storage Time and Reheating Method on the Quality of a Precooked Lamb-Based Dish" Foods 14, no. 15: 2748. https://doi.org/10.3390/foods14152748
APA StyleYang, Z., Wang, C., Jin, Y., Le, W., Zhang, L., Wang, L., Zhang, B., Guo, Y., Zhang, M., & Su, L. (2025). The Impact of Storage Time and Reheating Method on the Quality of a Precooked Lamb-Based Dish. Foods, 14(15), 2748. https://doi.org/10.3390/foods14152748