Physicochemical and Instrumental Flavor Analysis of Plant-Based Drinks with Plant Powder Additions
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials and Compositions Design for Drying
2.2. Application of Powders to Plant Beverages
2.3. Product Characterizations
2.3.1. Moisture Content
2.3.2. Water Activity (aw)
2.3.3. Color
2.3.4. Water Solubility Index (WSI)
2.3.5. Electron Microscopy
2.3.6. Process Contaminants
2.3.7. Identification and Quantification of Polyphenolic Compounds
2.3.8. Electronic Nose Analysis
2.3.9. Electronic Tongue Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physical Properties of Powder Compositions
3.2. Scanning Electron Microscopy (SEM)
3.3. Identification and Quantification of Polyphenolic Compounds
3.4. Electronic Nose and Tongue
3.4.1. Electronic Nose
3.4.2. Electronic Tongue
3.5. Processing Contaminants Contents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kevers, C.; Pincemail, J.; Tabart, J.; Defraigne, J.-O.; Dommes, J. Influence of Cultivar, Harvest Time, Storage Conditions, and Peeling on the Antioxidant Capacity and Phenolic and Ascorbic Acid Contents of Apples and Pears. J. Agric. Food Chem. 2011, 59, 6165–6171. [Google Scholar] [CrossRef]
- Zhou, M.; Sun, Y.; Mao, Q.; Luo, L.; Pan, H.; Zhang, Q.; Yu, C. Comparative Metabolomics Profiling Reveals the Unique Bioactive Compounds and Astringent Taste Formation of Rosehips. Food Chem. 2024, 452, 139584. [Google Scholar] [CrossRef]
- Zhou, M.; Sun, Y.; Luo, L.; Pan, H.; Zhang, Q.; Yu, C. Road to a Bite of Rosehip: A Comprehensive Review of Bioactive Compounds, Biological Activities, and Industrial Applications of Fruits. Trends Food Sci. Technol. 2023, 136, 76–91. [Google Scholar] [CrossRef]
- Gao, W.; Chen, F.; Wang, X.; Meng, Q. Recent Advances in Processing Food Powders by Using Superfine Grinding Techniques: A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2222–2255. [Google Scholar] [CrossRef]
- Neacsu, M.; Vaughan, N.; Raikos, V.; Multari, S.; Duncan, G.J.; Duthie, G.G.; Russell, W.R. Phytochemical Profile of Commercially Available Food Plant Powders: Their Potential Role in Healthier Food Reformulations. Food Chem. 2015, 179, 159–169. [Google Scholar] [CrossRef]
- Bhandari, B.; Bansal, N.; Zhang, M.; Schuck, P. (Eds.) Handbook of Food Powders: Processes and Properties; Woodhead Publishing: Cambridge, UK, 2013. [Google Scholar]
- Vardanega, R.; Muzio, A.F.V.; Silva, E.K.; Prata, A.S.; Meireles, M.A.A. Obtaining Functional Powder Tea from Brazilian Ginseng Roots: Effects of Freeze and Spray Drying Processes on Chemical and Nutritional Quality, Morphological and Redispersion Properties. Food Res. Int. 2019, 116, 932–941. [Google Scholar] [CrossRef]
- Michalska-Ciechanowska, A.; Brzezowska, J.; Nowicka, P.; Tkacz, K.; Turkiewicz, I.P.; Hendrysiak, A.; Oszmiański, J.; Andlauer, W. Advantages of Spray Drying over Freeze Drying: A Comparative Analysis of Lonicera caerulea L. Juice Powders—Matrix Diversity and Bioactive Response. Molecules 2024, 29, 3586. [Google Scholar] [CrossRef]
- Fitzgerald, M. It Is Time to Appreciate the Value of Processed Foods. Trends Food Sci. Technol. 2023, 134, 222–229. [Google Scholar] [CrossRef]
- Jeske, S.; Zannini, E.; Arendt, E.K. Past, Present and Future: The Strength of Plant-Based Dairy Substitutes Based on Gluten-Free Raw Materials. Food Res. Int. 2018, 110, 42–51. [Google Scholar] [CrossRef]
- Xiong, K.; Li, M.-M.; Chen, Y.-Q.; Hu, Y.-M.; Jin, W. Formation and Reduction of Toxic Compounds Derived from the Maillard Reaction During the Thermal Processing of Different Food Matrices. J. Food Prot. 2024, 87, 100338. [Google Scholar] [CrossRef]
- Michalska-Ciechanowska, A.; Brzezowska, J.; Wojdyło, A.; Gajewicz-Skretna, A.; Ciska, E.; Majerska, J. Chemometric Contribution for Deeper Understanding of Thermally-Induced Changes of Polyphenolics and the Formation of Hydroxymethyl-L-Furfural in Chokeberry Powders. Food Chem. 2021, 342, 128335. [Google Scholar] [CrossRef]
- Chen, A.; Tapia, H.; Goddard, J.M.; Gibney, P.A. Trehalose and Its Applications in the Food Industry. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5004–5037. [Google Scholar] [CrossRef]
- Figiel, A. Drying Kinetics and Quality of Beetroots Dehydrated by Combination of Convective and Vacuum-Microwave Methods. J. Food Eng. 2010, 98, 461–470. [Google Scholar] [CrossRef]
- Vicente, A.; Villanueva, M.; Caballero, P.A.; Muñoz, J.M.; Ronda, F. Buckwheat Grains Treated with Microwave Radiation: Impact on the Techno-Functional, Thermal, Structural, and Rheological Properties of Flour. Food Hydrocoll. 2023, 137, 108328. [Google Scholar] [CrossRef]
- Golkhoo, S.; Ahmadi, A.-R.; Hanachi, P.; Barantalab, F.; Vaziri, M. Determination of Daidzein and Genistein in Soy Milk in Iran by Using HPLC Analysis Method. Pak. J. Biol. Sci. 2008, 11, 2254–2258. [Google Scholar] [CrossRef]
- Chandran, A.K.; Stach, M.; Kucharska, A.Z.; Sokół-Łętowska, A.; Szumny, A.; Moreira, H.; Szyjka, A.; Barg, E.; Kolniak-Ostek, J. Comparison of Polyphenol and Volatile Compounds and in vitro Antioxidant, Anti-Inflammatory, Antidiabetic, Anti-Ageing, and Anticancer Activities of Dry Tea Leaves. LWT–Food Sci. Technol. 2025, 222, 117632. [Google Scholar] [CrossRef]
- Tze, N.L.; Han, C.P.; Yusof, Y.A.; Ling, C.N.; Talib, R.A.; Abd Rahman, R.; Zainal, S. Physicochemical and Nutritional Properties of Spray-Dried Pitaya Fruit Powder as Natural Colorant. Food Sci. Biotechnol. 2012, 21, 675–682. [Google Scholar] [CrossRef]
- Khan, I.; Edes, K.; Alsaadi, I.; Al-Khaial, M.Q.; Bnyan, R.; Khan, S.A.; Sadozai, S.K.; Khan, W.; Yousaf, S. Investigation of Spray Drying Parameters to Formulate Novel Spray-Dried Proliposome Powder Formulations Followed by Their Aerosolization Performance. Pharmaceutics 2024, 16, 1541. [Google Scholar] [CrossRef]
- Aryaee, H.; Ariaii, P.; Zare, D.; Mirdamadi, S.; Raeisi, S.N. Evaluation of the Physicochemical Characteristics of a Blend Fruit Juice Powder Mixed with Lactiplantibacillus plantarum: A Comparison of Spray Drying and Freeze Drying. J. Food Process. Preserv. 2023, 2023, 5597647. [Google Scholar] [CrossRef]
- Fazaeli, M.; Emam-Djomeh, Z.; Kalbasi Ashtari, A.; Omid, M. Effect of Spray Drying Conditions and Feed Composition on the Physical Properties of Black Mulberry Juice Powder. Food Bioprod. Process. 2012, 90, 667–675. [Google Scholar] [CrossRef]
- Camacho, M.M.; Silva-Espinoza, M.A.; Martínez-Navarrete, N. Flowability, Rehydration Behaviour and Bioactive Compounds of an Orange Powder Product as Affected by Particle Size. Food Bioproc. Techn. 2022, 15, 683–692. [Google Scholar] [CrossRef]
- Eliasson, L.; Oliveira, G.; Ehrnell, M.; Höglund, E.; Alminger, M. Tailoring Bilberry Powder Functionality through Preprocessing and Drying. Food Sci. Nutr. 2019, 7, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Avila, J.A.; López-Martínez, L.X.; Pareek, S.; Madera Santana, T.J.; González Aguilar, G.A. Valorization of Tropical Fruit Peel Powders: Physicochemical Composition, Techno-Functional Properties, and in vitro Antioxidant and Antidiabetic Activities. Emir. J. Food Agric. 2023, 35, 577–587. [Google Scholar] [CrossRef]
- Cendrowski, A.; Ścibisz, I.; Mitek, M.; Kieliszek, M.; Kolniak-Ostek, J. Profile of the Phenolic Compounds of Rosa rugosa Petals. J. Food Qual. 2017, 2017, 7941347. [Google Scholar] [CrossRef]
- Irakli, M.; Skendi, A.; Bouloumpasi, E.; Chatzopoulou, P.; Biliaderis, C.G. LC-MS Identification and Quantification of Phenolic Compounds in Solid Residues from the Essential Oil Industry. Antioxidants 2021, 10, 2016. [Google Scholar] [CrossRef]
- Kalisz, S.; Oszmiański, J.; Kolniak-Ostek, J.; Grobelna, A.; Kieliszek, M.; Cendrowski, A. Effect of a Variety of Polyphenols Compounds and Antioxidant Properties of Rhubarb (Rheum rhabarbarum). LWT–Food Sci. Technol. 2020, 118, 108775. [Google Scholar] [CrossRef]
- Kolniak-Ostek, J.; Oszmiański, J.; Wojdyło, A. Effect of L-Ascorbic Acid Addition on Quality, Polyphenolic Compounds and Antioxidant Capacity of Cloudy Apple Juices. Eur. Food Res. Technol. 2013, 236, 777–798. [Google Scholar] [CrossRef]
- Kolniak-Ostek, J. Chemical Composition and Antioxidant Capacity of Different Anatomical Parts of Pear (Pyrus communis L.). Food Chem. 2016, 203, 491–497. [Google Scholar] [CrossRef]
- Radenkovs, V.; Krasnova, I.; Cinkmanis, I.; Juhnevica-Radenkova, K.; Rubauskis, E.; Seglina, D. Comparative Analysis of Japanese Quince Juice Concentrate as a Substitute for Lemon Juice Concentrate: Functional Applications as a Sweetener, Acidifier, Stabilizer, and Flavoring Agent. Horticulturae 2024, 10, 1362. [Google Scholar] [CrossRef]
- Xie, X.; Lin, M.; Xiao, G.; Liu, H.; Wang, F.; Liu, D.; Ma, L.; Wang, Q.; Li, Z. Phenolic Amides (Avenanthramides) in Oats—An Update Review. Bioengineered 2024, 15, 2305029. [Google Scholar] [CrossRef]
- Li, Y.; Qi, B. (Eds.) Phytochemicals in Soybeans: Bioactivity and Health Benefits, 1st ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Duizer, L.M.; Langfried, A. Sensory Characterization During Repeated Ingestion of Small-Molecular-Weight Phenolic Acids. J. Sci. Food Agr. 2016, 96, 513–521. [Google Scholar] [CrossRef]
- Huang, R.; Xu, C. An Overview of the Perception and Mitigation of Astringency Associated with Phenolic Compounds. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1036–1074. [Google Scholar] [CrossRef]
- Ferrari, L.; Panaite, S.-A.; Bertazzo, A.; Visioli, F. Animal- and Plant-Based Protein Sources: A Scoping Review of Human Health Outcomes and Environmental Impact. Nutrients 2022, 14, 5115. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health Benefits of Polyphenols: A Concise Review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, D. Efficient Solutions for Discreteness, Drift, and Disturbance (3D) in Electronic Olfaction. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 242–254. [Google Scholar] [CrossRef]
- Rabehi, A.; Helal, H.; Zappa, D.; Comini, E. Advancements and Prospects of Electronic Nose in Various Applications: A Comprehensive Review. Appl. Sci. 2024, 14, 4506. [Google Scholar] [CrossRef]
- Mohd Ali, M.; Hashim, N.; Abd Aziz, S.; Lasekan, O. Principles and Recent Advances in Electronic Nose for Quality Inspection of Agricultural and Food Products. Trends Food Sci. Technol. 2020, 99, 1–10. [Google Scholar] [CrossRef]
- Bushdid, C.; Magnasco, M.O.; Vosshall, L.B.; Keller, A. Humans Can Discriminate More than 1 Trillion Olfactory Stimuli. Science 2014, 343, 1370–1372. [Google Scholar] [CrossRef]
- Tan, J.; Xu, J. Applications of Electronic Nose (E-Nose) and Electronic Tongue (E-Tongue) in Food Quality-Related Properties Determination: A Review. Artif. Intell. Agric. 2020, 4, 104–115. [Google Scholar] [CrossRef]
- Keerthana, S.; Santhi, B. Survey on Applications of Electronic Nose. J. Comput. Sci. 2020, 16, 314–320. [Google Scholar] [CrossRef]
- Lvova, L. Rodríguez Méndez, M.L., Ed.; Electronic Tongue Principles and Applications in the Food Industry. In Electronic Noses and Tongues in Food Science; Academic Press: Cambridge, MA, USA, 2016; pp. 151–160. [Google Scholar] [CrossRef]
- Pérez-Ràfols, C.; Serrano, N.; Ariño, C.; Esteban, M.; Díaz-Cruz, J.M. Voltammetric Electronic Tongues in Food Analysis. Sensors 2019, 19, 4261. [Google Scholar] [CrossRef] [PubMed]
- Titova, T.; Nachev, V. “Electronic Tongue” in the Food Industry. Food Sci. Appl. Biotechnol. 2020, 3, 71–76. [Google Scholar] [CrossRef]
- Schlossareck, C.; Ross, C.F. Electronic Tongue and Consumer Sensory Evaluation of Spicy Paneer Cheese. J. Food Sci. 2019, 84, 1563–1569. [Google Scholar] [CrossRef] [PubMed]
- Cetó, X.; Voelcker, N.H.; Prieto-Simón, B. Bioelectronic Tongues: New Trends and Applications in Water and Food Analysis. Biosensors 2016, 79, 608–626. [Google Scholar] [CrossRef]
- Richards, A.B.; Krakowka, S.; Dexter, L.B.; Schmid, H.; Wolterbeek, A.P.M.; Waalkens-Berendsen, D.H.; Shigoyuki, A.; Kurimoto, M. Trehalose: A Review of Properties, History of Use and Human Tolerance, and Results of Multiple Safety Studies. Food Chem. Toxicol. 2002, 40, 871–898. [Google Scholar] [CrossRef]
- Jilek, M. Investigation and Characterization of Flavor to Food Matrix Interactions Using Solid State Nuclear Magnetic Resonance. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2016. Available online: https://hdl.handle.net/11299/183365 (accessed on 10 June 2025).
- Osakabe, N.; Shimizu, T.; Fujii, Y.; Fushimi, T.; Calabrese, V. Sensory Nutrition and Bitterness and Astringency of Polyphenols. Biomolecules 2024, 14, 234. [Google Scholar] [CrossRef]
- Canivenc-Lavier, M.-C.; Neiers, F.; Briand, L. Plant Polyphenols, Chemoreception, Taste Receptors and Taste Management. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 472–478. [Google Scholar] [CrossRef]
- Osakabe, N.; Shimizu, T.; Fujii, Y.; Fushimi, T.; Calabrese, V. Sensory Nutrition and Polyphenols; Regulation of Homeostasis through Chemosensory Receptor Interaction with Bitter or Astringent Taste. Preprints 2024, 2024011010. [Google Scholar] [CrossRef]
- Habschied, K.; Košir, I.J.; Krstanović, V.; Kumrić, G.; Mastanjević, K. Beer Polyphenols—Bitterness, Astringency, and Off-Flavors. Beverages 2021, 7, 38. [Google Scholar] [CrossRef]
- Pittari, E.; Moio, L.; Piombino, P. Interactions between Polyphenols and Volatile Compounds in Wine: A Literature Review on Physicochemical and Sensory Insights. Appl. Sci. 2021, 11, 1157. [Google Scholar] [CrossRef]
- Jukić, H.; Hrnjica, D.; Aldžić, A. The Influence and the Role of Polyphenols on the Sensory and Organoleptic Aspects of Food. Technol. Acta 2015, 4, 113–119. Available online: https://hrcak.srce.hr/file/223998 (accessed on 10 June 2025).
- Sneath, R.W.; Persaud, K.C. Correlating Electronic Nose and Sensory Panel Data. In Handbook of Machine Olfaction: Electronic Nose Technology; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2004; pp. 377–397. [Google Scholar] [CrossRef]
- Hu, J.; Ding, X.; Wang, R.; Cai, C. Intrinsic Differences of Sensory Analysis from Instrumental Evaluation on Fabric Softness by Lateral Compression. Fibers Polym. 2009, 10, 371–378. [Google Scholar] [CrossRef]
- Reddy, T. Instrumental Analysis of Flavors and Fragrances in Food Processing: Hyphenated Techniques. In Flavors and Fragrances in Food Processing: Preparation and Characterization Methods; Acs Symposium Series; Curran Associates, Inc.: New York, NY, USA, 2022; pp. 341–359. [Google Scholar] [CrossRef]
Raw Material | V1 | V2 |
---|---|---|
Apple juice | 60% | – |
Pear juice | – | 50% |
Japanese quince juice | – | 25% |
Rhubarb juice | 21% | 12.5% |
Rosehip juice | 11% | – |
Lemon balm infusion | 8% | 12.5% |
Brix (°) of the mixes | 8.3 ± 0.1 | 6.8 ± 0.0 |
Sample | Moisture Content (%) | Water Activity (—) | Color | WSI (%) | ||
---|---|---|---|---|---|---|
L* | a* | b* | ||||
V1 | 2.09 ± 0.06 a | 0.1354 ± 0.004 a | 57.95 ± 0.13 a | 3.44 ± 0.02 a | 12.26 ± 0.05 a | 94.90 ± 0.99 a |
V2 | 2.14 ± 0.01 a | 0.1360 ± 0.001 a | 58.69 ± 0.30 a | 1.63 ± 0.02 b | 9.20 ± 0.02 b | 90.45 ± 0.21 b |
MS [M − H]−/[M + H]+ (m/z) * | MS/MS Fragments (m/z) * | Tentative Identification | V1 | V2 |
---|---|---|---|---|
(mg/g) | ||||
Anthocyanins | ||||
465.2344 + | 303.9030 | Delphinidin-3-O-glucoside b | 0.01 ± 0.00 a | ND |
611.7432 + | 303.7512 | Delphinidin-3-O-rutinoside | 0.06 ± 0.00 a | ND |
449.0984 + | 287.0144 | Cyanidin-3-O-glucoside b | 0.18 ± 0.01 a | 0.15 ± 0.01 a |
595.1774 + | 287.0503 | Cyanidin 3-O-rutinoside | 1.46 ± 0.01 a | 1.11 ± 0.01 b |
Sum | 1.71 ± 0.52 a | 1.26 ± 0.40 b | ||
Phenolic acids | ||||
179.0811 | 165.0556 | Caffeic acid | 1.83 ± 0.02 a | 1.81 ± 0.02 a |
193.0602 | Ferulic acid | 1.18 ± 0.02 b | 1.22 ± 0.01 a | |
341.0468 | 179.0148 | Caffeoylhexose | 1.75 ± 0.02 a | ND |
190.9818 | 172.9777/128.9920 | Quinic acid b | 1.36 ± 0.02 a | 0.75 ± 0.01 b |
365.0162 | 229.4809 | Caffeoyl N-tryptophan | 1.15 ± 0.02 a | ND |
341.0509 | 179.0438 | Caffeoylhexose | 4.18 ± 0.09 a | 1.91 ± 0.02 b |
163.0380 | p-Coumaric acid b | 0.28 ± 0.01 a | 0.15 ± 0.01 b | |
515.1934 | 353.1473/191.0763 | 3,5-di-O-Caffeoylquinic acid | 0.19 ± 0.01 a | ND |
337.1073 | 173.9.9947 | trans-4-p-Coumaroylquinic acid | 4.33 ± 0.08 a | 0.11 ± 0.01 b |
387.0593 | 192.9996/134.5223 | Ferulic truxilic acid | ND | 3.08 ± 0.02 a |
353.0306 | 191.0174 | 1-Caffeoylquinic acid b | 0.66 ± 0.01 a | ND |
515.2367 | 353.0879/191.0554 | 3,4-di-O-Caffeoylquinic acid | ND | 0.44 ± 0.01 a |
341.1409 | 179.0677 | Caffeoylhexose | ND | 0.11 ± 0.00 a |
353.0843 | 191.0960/179.0468 | 3-Caffeoylquinic acid b | 0.76 ± 0.01 b | 1.03 ± 0.01 a |
325.1466 | 191.0551/163.2115 | p-Coumaroylhexose | ND | 0.14 ± 0.00 a |
499.1084 | 353.0879/337.0523/191.0548 | p-Coumaroylcaffeoylquinic acid | ND | 0.42 ± 0.01 a |
337.1186 | 173.0446 | cis-4-p-Coumaroylquinic acid | 0.20 ± 0.00 a | ND |
341.0627 | 179.0480 | Caffeoylhexose | 44.97 ± 0.24 a | ND |
353.0283 | 191.0209/179.0011 | 5-Caffeoylquinic acid b | 0.92 ± 0.01 a | 1.07 ± 0.01 a |
353.0896 | 179.0426 | cis-4-Caffeoylquinic acid | 2.07 ± 0.02 a | 0.57 ± 0.01 b |
337.0972 | 173.0505/163.0469 | trans-5-p-Coumaroylquinic acid | 0.54 ± 0.01 a | ND |
341.1122 | 191.0626 | Caffeoylhexose | 1.79 ± 0.01 a | ND |
337.1011 | 173.0539 | cis-5-p-Coumaroylquinic acid | 3.66 ± 0.02 a | 0.24 ± 0.01 b |
691.1932 | 529.1307/515.1149/353.0918 | Feruloyl-dicaffeoylquinic acid | ND | 0.05 ± 0.00 a |
597.2382 | 359.9091 | Yunnaneic acid F | ND | 4.12 ± 0.02 a |
359.0802 | Rosmarinic acid b | 3.53 ± 0.02 b | 4.92 ± 0.03 a | |
249.0976 | Unknown p-coumaric acid derivative | ND | 0.20 ± 0.01 a | |
249.0972 | Unknown p-coumaric acid derivative | ND | 0.03 ± 0.00 a | |
337.0899 | 173.0387 | 3-p-Coumaroylquinic acid b | ND | 0.25 ± 0.02 a |
499.1221 | 337.0878/163.0390 | Caffeoyl-p-coumaroylquinic acid | ND | 0.11 ± 0.01 a |
451.0993 | 341.0660/179.0349/163.1194 | Unknown caffeoylhexose derivative | ND | 0.32 ± 0.01 a |
367.1354 | 191.0541/174.9556 | Feruloylquinic acid b | ND | 0.09 ± 0.00 a |
Sum | 75.35 ± 0.21 a | 23.14 ± 1.12 b | ||
Flavan-3-ols and procyanidins | ||||
575.1403 | 289.0717 | A-type procyanidin dimer b | ND | 3.24 ± 0.02 a |
577.1852 | 289.1011 | B-type procyanidin dimer b | ND | 6.43 ± 0.02 a |
289.0741 | (+)-Catechin b | 4.39 ± 0.02 a | ND | |
577.1362 | 289.0237 | B-type procyanidin dimer | 0.55 ± 0.01 a | ND |
865.1913 | 577.1187/289.0578 | B-type procyanidin trimer | 3.19 ± 0.01 b | 22.14 ± 0.12 a |
1153.1325 | 577.0475/289.0168 | B-type procyanidin tetramer | 0.74 ± 0.02 a | ND |
577.2034 | 289.0967 | B-type procyanidin dimer | ND | 1.50 ± 0.01 a |
577.1312 | 407.1258/287.0577 | B-type procyanidin dimer | 1.99 ± 0.02 b | 3.87 ± 0.04 a |
1153.3409 | 577.0475/289.0168 | B-type procyanidin tetramer | ND | 1.07 ± 0.01 a |
1153.3531 | 289.1059 | B-type procyanidin tetramer | ND | 8.76 ± 0.03 a |
575.1630 | 289.1061 | A-type procyanidin dimer | ND | 0.52 ± 0.01 a |
865.1795 | 577.1144/287.0547 | B-type procyanidin trimer | 2.20 ± 0.02 a | 0.39 ± 0.01 b |
289.0808 | (−)-Epicatechin b | 7.78 ± 0.15 a | 7.76 ± 0.02 a | |
Sum | 20.84 ± 0.12 b | 55.68 ± 0.58 a | ||
Flavonols | ||||
447.1028 | 285.0488 | Kaempferol 3-O-galactoside b | 0.08 ± 0.00 a | ND |
593.2101 | 285.0394 | Kaempferol 3-O-rutinoside b | ND | 0.30 ± 0.00 a |
609.1412 | 301.0356 | Quercetin 3-O-rutinoside b | 1.31 ± 0.01 b | 1.61 ± 0.02 a |
463.0848 | 301.0355 | Quercetin 3-O-galactoside b | 0.33 ± 0.01 a | 0.30 ± 0.00 a |
463.0940 | 301.0383 | Quercetin 3-O-glucoside b | 0.58 ± 0.01 b | 0.71 ± 0.02 a |
593.1683 | 285.0768 | Kaempferol 3-O-rutinoside | 0.11 ± 0.01 a | ND |
477.1170 | 315.0122 | Isorhamnetin 3-O-galactodside | 0.23 ± 0.01 a | ND |
623.2241 | 315.0421 | Isorhamnetin 3-O-rutinoside b | 0.10 ± 0.00 b | 0.48 ± 0.02 a |
447.0974 | 285.9372 | Kaempferol 3-O-glucoside b | 0.60 ± 0.01 b | 0.79 ± 0.02 a |
595.1262 | 301.0258 | Quercetin 3-O-glucosyl-xyloside | 0.04 ± 0.00 a | ND |
579.2061 | 285.0313 | Kaempferol 3,7-di-O-rhamnoside | 0.05 ± 0.00 a | ND |
489.1042 | 285.0394 | Kaempferol-3-O-6-acetylglucoside | ND | 0.41 ± 0.00 a |
433.1635 | 301.0355 | Quercetin 3-O-arabinoside | 0.37 ± 0.02 a | ND |
519.1152 | 315.0327 | Isorhamnetin-acylated hexoside | ND | 2.83 ± 0.00 a |
433.1628 | 301.0359 | Quercetin 3-O-xyloside | 0.15 ± 0.01 a | ND |
519.1129 | 315.0512 | Isorhamnetin-acylated hexoside | ND | 1.00 ± 0.01 a |
Sum | 3.95 ± 0.25 b | 8.43 ± 0.09 a | ||
Dihydrochalcones | ||||
567.1042 | 273.0394 | Phloretin 2′-O-xyloglucose | 2.64 ± 0.03 a | ND |
435.0762 | 273.0394 | Phloretin 2′-O-glucose b | 1.94 ± 0.02 a | ND |
Sum | 4.58 ± 0.08 a | ND | ||
TOTAL | 106.43 ± 2.59 a | 88.51 ± 1.26 b |
O(C) | O(V1) | O(V2) | S(C) | S(V1) | S(V2) | |
---|---|---|---|---|---|---|
Phenolic acids | 12.45 ± 0.43 b | 29.01 ± 0.28 a | 12.38 ± 1.01 b | 6.67 ± 0.87 d | 11.57 ± 0.98 bc | 10.97 ± 0.52 c |
Isoflavones | ND | ND | ND | 65.62 ± 0.89 a | 42.94 ± 1.02 b | 44.17 ± 0.99 b |
Anthocyanins | ND | 0.10 ± 0.00 a | 0.07 ± 0.00 a | ND | ND | ND |
Flavan-3-ols and procyanidins | ND | 16.50 ± 0.69 c | 22.53 ± 1.02 b | 3.94 ± 0.44 d | 33.22 ± 0.32 a | 30.69 ± 0.12 a |
Phytoalexins | 3.08 ± 0.09 a | 0.61 ± 0.10 b | 0.57 ± 0.12 b | ND | ND | ND |
Flavonols | ND | 1.63 ± 0.07 c | 0.64 ± 0.05 d | 5.92 ± 0.09 b | 35.15 ± 0.12 a | 37.94 ± 0.21 a |
Flavanones | ND | ND | ND | 7.93 ± 0.06 a | 1.03 ± 0.05 b | 1.65 ± 0.07 b |
Dihydrochalcones | ND | 2.43 ± 0.05 a | ND | 0.07 ± 0.00 b | 2.58 ± 0.03 a | 0.02 ± 0.00 b |
TOTAL | 15.53 ± 2.46 e | 50.28 ± 3.15 c | 36.19 ± 2.87 d | 90.15 ± 1.99 b | 126.49 ± 1.67 a | 125.44 ± 2.17 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolniak-Ostek, J.; Kita, A.; Giacalone, D.; Vázquez-Araújo, L.; Noguera-Artiaga, L.; Brzezowska, J.; Michalska-Ciechanowska, A. Physicochemical and Instrumental Flavor Analysis of Plant-Based Drinks with Plant Powder Additions. Foods 2025, 14, 2593. https://doi.org/10.3390/foods14152593
Kolniak-Ostek J, Kita A, Giacalone D, Vázquez-Araújo L, Noguera-Artiaga L, Brzezowska J, Michalska-Ciechanowska A. Physicochemical and Instrumental Flavor Analysis of Plant-Based Drinks with Plant Powder Additions. Foods. 2025; 14(15):2593. https://doi.org/10.3390/foods14152593
Chicago/Turabian StyleKolniak-Ostek, Joanna, Agnieszka Kita, Davide Giacalone, Laura Vázquez-Araújo, Luis Noguera-Artiaga, Jessica Brzezowska, and Anna Michalska-Ciechanowska. 2025. "Physicochemical and Instrumental Flavor Analysis of Plant-Based Drinks with Plant Powder Additions" Foods 14, no. 15: 2593. https://doi.org/10.3390/foods14152593
APA StyleKolniak-Ostek, J., Kita, A., Giacalone, D., Vázquez-Araújo, L., Noguera-Artiaga, L., Brzezowska, J., & Michalska-Ciechanowska, A. (2025). Physicochemical and Instrumental Flavor Analysis of Plant-Based Drinks with Plant Powder Additions. Foods, 14(15), 2593. https://doi.org/10.3390/foods14152593