Characterization of Bimi® Broccoli as a Convenience Food: Nutritional Composition and Quality Traits Following Industrial Sous-Vide Processing
Abstract
1. Introduction
2. Results and Discussion
2.1. Compositional Characterization of Raw Bimi® Broccoli
2.1.1. Proximate Composition
2.1.2. Mineral Content
2.1.3. Amino Acid Profile
2.1.4. Fatty Acid Profile
2.2. Color Traits and Chlorophyll Content
2.3. Total Polyphenol Content and Antioxidant Activity
2.4. Microbiological and Physicochemical Stability
2.5. Sensory Evaluation
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Sample Preparation and Industrial Processing
3.3. Compositional Characterization of Raw Bimi® Broccoli
3.3.1. Proximate Composition
3.3.2. Mineral Content
3.3.3. Amino Acid Profile Determination
3.3.4. Fatty Acid Profile Determination
3.4. Color Assessment
3.5. Chlorophyll Determination
3.6. Extraction of Samples for Total Phenolic Content and Antioxidant Activity
3.7. Determination of Total Phenolic Content
3.8. Antioxidant Activity
3.9. Microbial and Physicochemical Analyses
3.10. Sensory Profile of Bimi® Compared to Conventional Broccoli
3.11. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABTS | 3–ethylbenzothiazoline–6–sulfonic acid |
AOAC | Association of Official Analytical Collaboration |
AQC | 6–aminoquinolyl–N–hydroxysuccinimidyl carbamate |
Aw | Activity Water |
CFU | Colony-Forming Unit |
CFT | Capillary Flow Technology |
DAD | Diode Array Detector |
DPPH | 2,2–diphenyl–1–picrylhydrazyl |
EAAs | Essential Amino Acids |
FAMEs | Fatty Acid Methyl Esters |
FID | Flame Ionization Detector |
FRAP | Ferric Reducing Antioxidant Power |
FW | Fresh Weight |
GAE | Gallic Acid Equivalents |
GC×GC | Comprehensive Two–Dimensional Gas Chromatography |
HPLC | High-Performance Liquid Chromatography |
ICP–OES | Inductively Coupled Plasma Optical Emission Spectrometry |
MUFAs | Monounsaturated Fatty Acids |
NEAAs | Non-Essential Amino Acids |
PUFAs | Polyunsaturated Fatty Acids |
QDA® | Quantitative Descriptive Analysis |
RDA | Recommended Dietary Allowance |
SFAs | Saturated Fatty Acids |
SD | Standard Deviation |
TE | Trolox Equivalents |
TPC | Total Phenolic Content |
TPTZ | 2,4,6–tri(2–pyridyl)–s–triazine |
References
- Fernández-León, A.M.; Fernández-León, M.F.; González-Gómez, D.; Ayuso, M.C.; Bernalte, M.J. Quantification and Bioaccessibility of Intact Glucosinolates in Broccoli ‘Parthenon’ and Savoy Cabbage ‘Dama’. J. Food Compos. Anal. 2017, 61, 40–46. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Artés-Hernández, F.; Gómez, P.A.; Artés, F. Quality Changes after Vacuum-Based and Conventional Industrial Cooking of Kailan-Hybrid Broccoli throughout Retail Cold Storage. LWT 2013, 50, 707–714. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Gómez, P.A.; García-Talavera, N.V.; Artés−Hernández, F.; Monedero-Saiz, T.; Sánchez-Álvarez, C.; Artés, F. Bioavailability of Vitamin C and Folates in Plasma and Its Antioxidant Status after Consumption of Raw and Microwaved Broccoli. ACS Food Sci. Technol. 2021, 1, 1215–1221. [Google Scholar] [CrossRef]
- Akram, M.; Jabeen, F.; Riaz, M.; Khan, F.S.; Okushanova, E.; Imran, M.; Shariati, M.A.; Riaz, T.; Egbuna, C.; Ezeofor, N.J. Health Benefits of Glucosinolate Isolated from Cruciferous and Other Vegetables. In Preparation of Phytopharmaceuticals for the Management of Disorders: The Development of Nutraceuticals and Traditional Medicine; Elsevier: Amsterdam, The Netherlands, 2020; pp. 361–371. ISBN 9780128202845. [Google Scholar]
- Ramirez, D.; Abellán-Victorio, A.; Beretta, V.; Camargo, A.; Moreno, D.A. Functional Ingredients from Brassicaceae Species: Overview and Perspectives. Int. J. Mol. Sci. 2020, 21, 1998. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, P.; Canazza, E.; De Iseppi, A.; Mihaylova, D.; Lante, A. Collard Green Extracts as Potential Inhibitors of Enzymatic Browning. J. Food Biochem. 2025, 2025, 8133111. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Artés-Hernández, F.; Colares-Souza, F.; Gómez, P.A.; García-Gómez, P.; Artés, F. Innovative Cooking Techniques for Improving the Overall Quality of a Kailan-Hybrid Broccoli. Food Bioprocess Technol. 2013, 6, 2135–2149. [Google Scholar] [CrossRef]
- Garcia-Ibañez, P.; Moreno, D.A.; Carvajal, M. Nanoencapsulation of Bimi® Extracts Increases Its Bioaccessibility after In Vitro Digestion and Evaluation of Its Activity in Hepatocyte Metabolism. Food Chem. 2022, 385, 132680. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Gómez, P.A.; Pradas, I.; Artés, F.; Artés-Hernández, F. Moderate UV-C Pretreatment as a Quality Enhancement Tool in Fresh-Cut Bimi® Broccoli. Postharvest Biol. Technol. 2011, 62, 327–337. [Google Scholar] [CrossRef]
- Martínez–Hernández, G.B.; Gómez, P.A.; Artés, F.; Artes-Hernandez, F. New Broccoli Varieties with Improved Health Benefits and Suitability for the Fresh–Cut and Fifth Range Industries: An Opportunity to Increase Its Consumption. In Brassicaceae; Lang, M., Ed.; Nova Biomedical: Barcelona, Spain, 2013; pp. 77–102. ISBN 978-1-62808-869-4. [Google Scholar]
- Garcia-Ibañez, P.; Moreno, D.A.; Nuñez-Gomez, V.; Agudelo, A.; Carvajal, M. Use of Elicitation in the Cultivation of Bimi® for Food and Ingredients. J. Sci. Food Agric. 2020, 100, 2099–2109. [Google Scholar] [CrossRef]
- Nieto, J.A.; Hellín, P.; Pérez, B.; Viadel, B.; Alapont, A.; Agudelo, A. Fresh Brassicaceae Sprouting Broccoli (Bimi®) Glucosinolates Profile Characterization and Bioaccessibility Through an In Vitro Dynamic Digestion Study. J. Food Compos. Anal. 2023, 115, 104941. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X. Extraction, Identification and Comparison of Glucosinolates Profiles in the Seeds of Broccolini, Broccoli and Chinese Broccoli. Solvent Extr. Res. Dev. Jpn. 2012, 19, 153–160. [Google Scholar] [CrossRef]
- Rosés, C.; Viadel, B.; Nieto, J.A.; Soriano-Romaní, L.; Romo-Hualde, A.; Agudelo, A.; Milagro, F.I.; Barceló, A. Gut Microbiota Modulatory Capacity of Brassica Oleracea Italica x Alboglabra (Bimi®). Food Biosci. 2023, 55, 103006. [Google Scholar] [CrossRef]
- Koli, R.; Gyana Prasuna, R.; Watturakar, R. Consumer Behavior for Ready-to-Eat Salad Food with Special Reference to Working People. J. Postharvest Technol. 2024, 2024, 68–81. [Google Scholar]
- Testa, R.; Schifani, G.; Migliore, G. Understanding Consumers’ Convenience Orientation. An Exploratory Study of Fresh-Cut Fruit in Italy. Sustainability 2021, 13, 1027. [Google Scholar] [CrossRef]
- Peltner, J.; Thiele, S. Convenience-Based Food Purchase Patterns: Identification and Associations with Dietary Quality, Sociodemographic Factors and Attitudes. Public. Health Nutr. 2018, 21, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Wongprawmas, R.; Mora, C.; Pellegrini, N.; Guiné, R.P.F.; Carini, E.; Sogari, G.; Vittadini, E. Food Choice Determinants and Perceptions of a Healthy Diet among Italian Consumers. Foods 2021, 10, 318. [Google Scholar] [CrossRef] [PubMed]
- Kathuria, D.; Dhiman, A.K.; Attri, S. Sous Vide, a Culinary Technique for Improving Quality of Food Products: A Review. Trends Food Sci. Technol. 2022, 119, 57–68. [Google Scholar] [CrossRef]
- Lafarga, T.; Bobo, G.; Viñas, I.; Collazo, C.; Aguiló-Aguayo, I. Effects of Thermal and Non-Thermal Processing of Cruciferous Vegetables on Glucosinolates and Its Derived Forms. J. Food Sci. Technol. 2018, 55, 1973–1981. [Google Scholar] [CrossRef]
- Zavadlav, S.; Blažić, M.; Van de Velde, F.; Vignatti, C.; Fenoglio, C.; Piagentini, A.M.; Pirovani, M.E.; Perotti, C.M.; Kovačević, D.B.; Putnik, P. Sous-Vide as a Technique for Preparing Healthy and High-Quality Vegetable and Seafood Products. Foods 2020, 9, 1537. [Google Scholar] [CrossRef]
- Rinaldi, M.; Dall’Asta, C.; Meli, F.; Morini, E.; Pellegrini, N.; Gatti, M.; Chiavaro, E. Physicochemical and Microbiological Quality of Sous-Vide-Processed Carrots and Brussels Sprouts. Food Bioprocess Technol. 2013, 6, 3076–3087. [Google Scholar] [CrossRef]
- Stringer, S.C.; Metris, A. Predicting Bacterial Behaviour in Sous Vide Food. Int. J. Gastron. Food Sci. 2018, 13, 117–128. [Google Scholar] [CrossRef]
- Stringer, M.; Dennis, C. Chilled Foods: A Comprehensive Guide, 2nd ed.; Stringer, M., Dennis, C., Eds.; CRC Press: Boca Raton, FL, USA, 2000; ISBN 1855734990. [Google Scholar]
- European Chilled Food Federation (ECFF). Recommendations for the Production of Prepackaged Chilled Food; ECFF: Zoetermeer, The Netherlands, 2006. [Google Scholar]
- Daelman, J.; Jacxsens, L.; Devlieghere, F.; Uyttendaele, M. Microbial Safety and Quality of Various Types of Cooked Chilled Foods. Food Control 2013, 30, 510–517. [Google Scholar] [CrossRef]
- Daelman, J.; Jacxsens, L.; Lahou, E.; Devlieghere, F.; Uyttendaele, M. Assessment of the Microbial Safety and Quality of Cooked Chilled Foods and Their Production Process. Int. J. Food Microbiol. 2013, 160, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Hernández, G.B.; Formica, A.C.; Falagán, N.; Artés, F.; Artés-Hernández, F.; Gómez, P.A.; Navarro-Rico, J. Extending the Shelf Life of the New Bimi® Broccoli by Controlled Atmosphere Storage. ISHS Acta Hortic. 2013, 1012, 925–932. [Google Scholar] [CrossRef]
- Giraldo-Acosta, M.; Ruiz-Cano, D.; Cano, A.; Hernández-Ruiz, J.; Arnao, M.B. Extended Post-Harvest Effect of Melatonin in Fresh-Cut Broccolini Plants (Bimi®). Agronomy 2023, 13, 2459. [Google Scholar] [CrossRef]
- Official Journal of the European Union. Regulation (EU) No. 1169/2011 of the European Parliament and of the Council; Official Journal of the European Union: Brussels, Belgium, 2011. [Google Scholar]
- EFSA Panel on Dietetic Products. Scientific Opinion on Dietary Reference Values for Carbohydrates and Dietary Fibre. EFSA J. 2010, 8, 1462. [Google Scholar] [CrossRef]
- Rizwan, D.; Masoodi, F.A. Proximate, Mineral, Phytochemical and Antioxidant Analysis of Kohlrabi (Brassica oleracea Var Gongylodes). Vegetos 2025, 1–10. [Google Scholar] [CrossRef]
- Aǧagündüz, D.; Şahin, T.Ö.; Yilmaz, B.; Ekenci, K.D.; Duyar Özer, Ş.; Capasso, R. Cruciferous Vegetables and Their Bioactive Metabolites: From Prevention to Novel Therapies of Colorectal Cancer. Evid.-Based Complement. Altern. Med. 2022, 2022, 1534083. [Google Scholar] [CrossRef]
- Official Journal of the European Union. Regulation (EC) No. 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods; Official Journal of the European Union: Brussels, Belgium, 2006. [Google Scholar]
- Deyalage, S.T.; Wickramasinghe, I.; Amarasinghe, N.; Thilakarathna, G. Influence of Cooking Methods on Antioxidant Activities of Selected Leafy Vegetables Gymnema lactiferum, Wattakaka volubilis, and Argyreia populifolia in Sri Lanka. Int. J. Food Sci. 2021, 2021, 6660308. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Gómez, P.A.; Artés, F.; Artés-Hernández, F. Nutritional Quality Changes throughout Shelf-Life of Fresh-Cut Kailan-Hybrid and “Parthenon” Broccoli as Affected by Temperature and Atmosphere Composition. Food Sci. Technol. Int. 2015, 21, 14–23. [Google Scholar] [CrossRef]
- Xiao, Z.; Codling, E.E.; Luo, Y.; Nou, X.; Lester, G.E.; Wang, Q. Microgreens of Brassicaceae: Mineral Composition and Content of 30 Varieties. J. Food Compos. Anal. 2016, 49, 87–93. [Google Scholar] [CrossRef]
- Florkiewicz, A.; Socha, R.; Filipiak-Florkiewicz, A.; Topolska, K. Sous-Vide Technique as an Alternative to Traditional Cooking Methods in the Context of Antioxidant Properties of Brassica Vegetables. J. Sci. Food Agric. 2019, 99, 173–182. [Google Scholar] [CrossRef]
- Biondi, F.; Balducci, F.; Capocasa, F.; Visciglio, M.; Mei, E.; Vagnoni, M.; Mezzetti, B.; Mazzoni, L. Environmental Conditions and Agronomical Factors Influencing the Levels of Phytochemicals in Brassica Vegetables Responsible for Nutritional and Sensorial Properties. Appl. Sci. 2021, 11, 1927. [Google Scholar] [CrossRef]
- Miller-Cebert, R.L.; Sistani, N.A.; Cebert, E. Comparative Mineral Composition among Canola Cultivars and Other Cruciferous Leafy Greens. J. Food Compos. Anal. 2009, 22, 112–116. [Google Scholar] [CrossRef]
- Canazza, E.; Tessari, P.; Mayr Marangon, C.; Lante, A. Nutritional Profile and Chlorophyll Intake of Collard Green as a Convenience Food. Nutrients 2024, 16, 4015. [Google Scholar] [CrossRef]
- Xiao, F.; Guo, F. Impacts of Essential Amino Acids on Energy Balance. Mol. Metab. 2022, 57, 101393. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, L.; Ser, S.L.; Cumming, J.R.; Ku, K.-M. Comparative Phytonutrient Analysis of Broccoli By-Products: The Potentials for Broccoli By-Product Utilization. Molecules 2018, 23, 900. [Google Scholar] [CrossRef] [PubMed]
- Jin, N.; Jin, L.; Luo, S.; Tang, Z.; Liu, Z.; Wei, S.; Liu, F.; Zhao, X.; Yu, J.; Zhong, Y. Comprehensive Evaluation of Amino Acids and Polyphenols in 69 Varieties of Green Cabbage (Brassica oleracea L. Var. Capitata L.) Based on Multivariate Statistical Analysis. Molecules 2021, 26, 5355. [Google Scholar] [CrossRef]
- Martínez, S.; Losada, P.; Franco, I.; Carballo, J. Protein, Amino Acid, Ash and Mineral Contents in Brassica spp. Grown in Northwest Spain. Int. J. Food Sci. Technol. 2011, 46, 146–153. [Google Scholar] [CrossRef]
- Ayaz, F.A.; Glew, R.H.; Millson, M.; Huang, H.S.; Chuang, L.T.; Sanz, C.; Hayirlioglu-Ayaz, S. Nutrient Contents of Kale (Brassica oleraceae L. Var. Acephala DC.). Food Chem. 2006, 96, 572–579. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Kwak, J.H. Chemical Composition and Antioxidant Activity in Different Tissues of Brassica Vegetables. Molecules 2015, 20, 1228–1243. [Google Scholar] [CrossRef] [PubMed]
- Sanz, T.; Salvador, A.; Baixauli, R.; Fiszman, S.M. Evaluation of Four Types of Resistant Starch in Muffins. II. Effects in Texture, Colour and Consumer Response. Eur. Food Res. Technol. 2009, 229, 197–204. [Google Scholar] [CrossRef]
- Turkmen, N.; Poyrazoglu, E.S.; Sari, F.; Sedat Velioglu, Y. Effects of Cooking Methods on Chlorophylls, Pheophytins and Colour of Selected Green Vegetables. Int. J. Food Sci. Technol. 2006, 41, 281–288. [Google Scholar] [CrossRef]
- Gonnella, M.; Durante, M.; Caretto, S.; D’Imperio, M.; Renna, M. Quality Assessment of Ready-to-Eat Asparagus Spears as Affected by Conventional and Sous-Vide Cooking Methods. LWT 2018, 92, 161–168. [Google Scholar] [CrossRef]
- Alcusón, G.; Remón, S.; Salvador, M.L. Quality Related Aspects of Sous-Vide Processing of Borage (Borago officinalis L.) Stems. LWT 2017, 85, 104–109. [Google Scholar] [CrossRef]
- Petzold, G.; Caro, M.; Moreno, J. Influence of Blanching, Freezing and Frozen Storage on Physicochemical Properties of Broad Beans (Vicia faba L). Int. J. Refrig. 2014, 40, 429–434. [Google Scholar] [CrossRef]
- Korus, A. Effect of Preliminary and Technological Treatments on the Content of Chlorophylls and Carotenoids in Kale (Brassica oleracea l. Var. Acephala). J. Food Process Preserv. 2013, 37, 335–344. [Google Scholar] [CrossRef]
- Guillén, S.; Mir-Bel, J.; Oria, R.; Salvador, M.L. Influence of Cooking Conditions on Organoleptic and Health-Related Properties of Artichokes, Green Beans, Broccoli and Carrots. Food Chem. 2017, 217, 209–216. [Google Scholar] [CrossRef]
- Schwartz, S.J.; Woo, S.L.; Von Elbe, J.H.; Associates, W. High-Performance Liquid Chromatography of Chlorophylls and Their Derivatives in Fresh and Processed Spinach. J. Agric. Food Chem. 1981, 29, 533–535. [Google Scholar] [CrossRef]
- Koca, N.; Karadeniz, F.; Burdurlu, H.S. Effect of pH on Chlorophyll Degradation and Colour Loss in Blanched Green Peas. Food Chem. 2007, 100, 609–615. [Google Scholar] [CrossRef]
- Paciulli, M.; Palermo, M.; Chiavaro, E.; Pellegrini, N. Chlorophylls and Colour Changes in Cooked Vegetables. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd ed.; Wiley Blackwell: Hoboken, NJ, USA, 2017; Volume 1, pp. 703–719. [Google Scholar]
- Danowska-Oziewicz, M.; Narwojsz, A.; Draszanowska, A.; Marat, N. The Effects of Cooking Method on Selected Quality Traits of Broccoli and Green Asparagus. Int. J. Food Sci. Technol. 2020, 55, 127–135. [Google Scholar] [CrossRef]
- Paciulli, M.; Ganino, T.; Pellegrini, N.; Rinaldi, M.; Zaupa, M.; Fabbri, A.; Chiavaro, E. Impact of the Industrial Freezing Process on Selected Vegetables–Part I. Structure, Texture and Antioxidant Capacity. Food Res. Int. 2015, 74, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Dos Reis, L.C.R.; De Oliveira, V.R.; Hagen, M.E.K.; Jablonski, A.; Flôres, S.H.; De Oliveira Rios, A. Effect of Cooking on the Concentration of Bioactive Compounds in Broccoli (Brassica oleracea Var. Avenger) and Cauliflower (Brassica oleracea Var. Alphina F1) Grown in an Organic System. Food Chem. 2015, 172, 770–777. [Google Scholar] [CrossRef]
- Zhan, L.; Pang, L.; Ma, Y.; Zhang, C. Thermal Processing Affecting Phytochemical Contents and Total Antioxidant Capacity in Broccoli (Brassica oleracea L.). J. Food Process Preserv. 2018, 42, e13548. [Google Scholar] [CrossRef]
- Dini, I.; Tenore, G.C.; Dini, A. Antioxidant Compound Contents and Antioxidant Activity before and after Cooking in Sweet and Bitter Chenopodium Quinoa Seeds. LWT 2010, 43, 447–451. [Google Scholar] [CrossRef]
- Chuah, A.M.; Lee, Y.C.; Yamaguchi, T.; Takamura, H.; Yin, L.J.; Matoba, T. Effect of Cooking on the Antioxidant Properties of Coloured Peppers. Food Chem. 2008, 111, 20–28. [Google Scholar] [CrossRef]
- Bunea, A.; Andjelkovic, M.; Socaciu, C.; Bobis, O.; Neacsu, M.; Verhé, R.; Camp, J. Van Total and Individual Carotenoids and Phenolic Acids Content in Fresh, Refrigerated and Processed Spinach (Spinacia oleracea L.). Food Chem. 2008, 108, 649–656. [Google Scholar] [CrossRef]
- Kosewski, G.; Górna, I.; Bolesławska, I.; Kowalówka, M.; Więckowska, B.; Główka, A.K.; Morawska, A.; Jakubowski, K.; Dobrzyńska, M.; Miszczuk, P.; et al. Comparison of Antioxidative Properties of Raw Vegetables and Thermally Processed Ones Using the Conventional and Sous-Vide Methods. Food Chem. 2018, 240, 1092–1096. [Google Scholar] [CrossRef]
- Doniec, J.; Florkiewicz, A.; Dziadek, K.; Filipiak-Florkiewicz, A. Hydrothermal Treatment Effect on Antioxidant Activity and Polyphenols Concentration and Profile of Brussels Sprouts (Brassica oleracea Var. Gemmifera) in an In Vitro Simulated Gastrointestinal Digestion Model. Antioxidants 2022, 11, 446. [Google Scholar] [CrossRef]
- Official Journal of the European Union. Commission Regulation (EC) No. 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs; Official Journal of the European Union: Brussels, Belgium, 2005. [Google Scholar]
- CREA Tabelle Di Composizione Degli Alimenti. Available online: https://www.alimentinutrizione.it/sezioni/tabelle-nutrizionali (accessed on 25 May 2025).
- Vázquez-González, C.; Mejía-Garibay, B.; Robles-López, M.R.; Ramírez-López, C. A Review on the Effect on Phytochemical Compounds Relevant to Human Health by Broccoli Processing Technologies. Trends Hortic. 2021, 4, 120. [Google Scholar] [CrossRef]
- Martínez Hernández, G.B. Innovative Minimal Processing of Mini Broccoli for Keeping Quality and Safety and Enhancing Bioactive Compounds. Ph.D. Thesis, Universidad Politécnica de Cartagena, Cartagena, Colombia, 2012. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Agricultural Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Monteiro, S.; Reboredo, F.H.; Lageiro, M.M.; Lourenço, V.M.; Dias, J.; Lidon, F.; Abreu, M.; Martins, A.P.L.; Alvarenga, N. Nutritional Properties of Baobab Pulp from Different Angolan Origins. Plants 2022, 11, 2272. [Google Scholar] [CrossRef] [PubMed]
- Cascone, G.; Crescente, G.; Sorrentino, A.; Volpe, M.G.; Moccia, S. Physicochemical Characterization of a Functional Chestnut Sweet Cream Enriched with Carotenoids and Fiber. LWT 2023, 177, 114583. [Google Scholar] [CrossRef]
- Lante, A.; Lomolino, G.; Cagnin, M.; Spettoli, P. Content and Characterisation of Minerals in Milk and in Crescenza and Squacquerone Italian Fresh Cheeses by ICP-OES. Food Control 2006, 17, 229–233. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Mihaylova, D.; Marangon, C.M.; Grigoletto, L.; Lante, A. Impact of Sample Pretreatment and Extraction Methods on the Bioactive Compounds of Sugar Beet (Beta vulgaris L.) Leaves. Molecules 2022, 27, 8110. [Google Scholar] [CrossRef]
- Bosch, L.; Alegría, A.; Farré, R. Application of the 6-Aminoquinolyl-N-Hydroxysccinimidyl Carbamate (AQC) Reagent to the RP-HPLC Determination of Amino Acids in Infant Foods. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2006, 831, 176–183. [Google Scholar] [CrossRef]
- European Union Commission. Directive 2000/45/EC; European Union Commission: Brussels, Belgium, 2000. [Google Scholar]
- AOAC. Official Methods of Analysis of the AOAC. 942.04 Chlorophyll in Plants. Spectrophotometric Method for Total Chlorophyll and the A and B Components; Association of Official Agricultural Chemists: Arlington, VA, USA, 2002. [Google Scholar]
- Chiu, P.E.; Lai, L.S. Antimicrobial Activities of Tapioca Starch/Decolorized Hsian-Tsao Leaf Gum Coatings Containing Green Tea Extracts in Fruit-Based Salads, Romaine Hearts and Pork Slices. Int. J. Food Microbiol. 2010, 139, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Marjan, Z.M.; Foong, C.W. Total Antioxidant Activity and Phenolic Content in Selected Vegetables. Food Chem. 2004, 87, 581–586. [Google Scholar] [CrossRef]
- Cisneros-Yupanqui, M.; Chalova, V.I.; Kalaydzhiev, H.R.; Mihaylova, D.; Krastanov, A.I.; Lante, A. Preliminary Characterisation of Wastes Generated from the Rapeseed and Sunflower Protein Isolation Process and Their Valorisation in Delaying Oil Oxidation. Food Bioprocess Technol. 2021, 14, 1962–1971. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Bayram, I.; Lante, A.; Decker, E.A. Acid-Hydrolyzed Phenolic Extract of Parsley (Petroselinum crispum L.) Leaves Inhibits Lipid Oxidation in Soybean Oil-in-Water Emulsions. Food Res. Int. 2024, 187, 114452. [Google Scholar] [CrossRef] [PubMed]
- UNI EN ISO 4833-1:2013/Amd1:2022; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique. International Organization for Standardization (ISO): Geneva, Switzerland, 2022.
- ISO 4832:2006; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coliforms—Colo-ny-Count Technique. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- ISO 16649-2:2001; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Be-ta-Glucuronidase-Positive Escherichia Coli 2: Colony-Count Technique at 44 Degrees C Using 5-Bromo-4-Chloro-3-Indolyl Beta-D-Glucuronide. International Organization for Standardization (ISO): Geneva, Switzerland, 2001.
- UNI EN ISO 6888-2:2021/A1:2023; Microbiology of the Food Chain-Horizontal Method for the Enumeration of Coag-ulase-Positive Staphylococci (Staphylococcus Aureus and Other Species)-Part 2: Method Using Rabbit Plasma Fibrinogen Agar Medium. International Organization for Standardization (ISO): Geneva, Switzerland, 2023.
- ISO 15213-1:2023; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Clostridium Spp. Part 1: Enumeration of Sulfite-Reducing Clostridium Spp. by Colony-Count Technique. International Organization for Standardization (ISO): Geneva, Switzerland, 2023.
- ISO 15214:1998; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 Degrees C. International Organization for Standardization (ISO): Geneva, Switzerland, 1998.
- ISO 21527-1:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds Part 1: Colony Count Technique in Products with Water Activity Greater than 0,95. International Organization for Standardization (ISO): Geneva, Switzerland, 2008.
Parameter | (g/100 g FW) |
---|---|
Moisture | 89.39 ± 0.56 |
Ash | 0.84 ± 0.01 |
Fats | 0.46 ± 0.04 (0.66% RDA) |
Protein | 4.32 ± 0.06 (8.63% RDA) |
Carbohydrates | 2.03 ± 0.12 (0.78% RDA) |
Dietary fiber | 2.96 ± 0.03 (11.85% RDA) |
Energy (kcal/100 g) | 35.46 ± 0.14 (1.77% RDA) |
Minerals | Whole | Floret | Stem |
---|---|---|---|
Ca | 64.75 ± 5.68 b | 87.74 ± 4.61 a | 51.77 ± 1.57 c |
K | 311.79 ± 11.54 a | 249.23 ± 24.53 b | 357.66 ± 19.75 a |
Mg | 18.55 ± 0.54 b | 22.36 ± 0.87 a | 15.53 ± 0.95 c |
Na | 3.87 ± 0.75 b | 3.49 ± 0.29 b | 4.96 ± 0.14 a |
P | 98.32 ± 4.13 a | 106.90 ± 6.38 a | 84.94 ± 2.52 b |
S | 143.38 ± 6.17 ab | 164.21 ± 17.72 a | 122.36 ± 6.76 b |
Amino Acid | Whole | Floret | Stem |
---|---|---|---|
Essential amino acids | |||
Histidine | 75.99 ± 0.74 b | 114.29 ± 3.69 a | 56.53 ± 3.62 c |
Isoleucine | 81.42 ± 2.51 b | 119.77 ± 3.64 a | 64.26 ± 0.56 c |
Leucine | 134.93 ± 2.13 b | 203.50 ± 1.48 a | 98.53 ± 7.00 c |
Lysine | 183 ± 4.67 b | 276.87 ± 20.23 a | 126.21 ± 0.59 c |
Methionine | 17.01 ± 0.65 a | 18.40 ± 0.93 a | 13.36 ± 0.94 b |
Phenylalanine | 96.20 ± 2.63 b | 143.85 ± 5.67 a | 71.56 ± 2.46 c |
Threonine | 96.48 ± 2.85 b | 140.43 ± 12.56 a | 75.63 ± 5.57 c |
Tryptophan | 29.32 ± 0.36 b | 52.65 ± 1.87 a | 21.38 ± 1.43 c |
Valine | 129.63 ± 3.86 b | 176.46 ± 2.04 a | 105.04 ± 8.15 c |
Total EAA | 844.01 ± 4.16 b | 1246.23 ± 40.39 a | 632.51 ± 4.99 c |
Non-essential amino acids | |||
Arginine | 207.05 ± 10.19 b | 357.80 ± 22.18 a | 136.08 ± 1.60 c |
Alanine | 123.11 ± 0.41 b | 156.01 ± 14.60 a | 101.21 ± 4.46 b |
Aspartic acid | 489.76 ± 46.10 a | 520.39 ± 36.53 a | 405.78 ± 56.79 a |
Cysteine | 27.18 ± 0.92 b | 38.76 ± 2.09 a | 22.93 ± 0.47 c |
Glutamic acid | 1761.96 ±88.33 a | 1618.68 ± 130.08 a | 1743.10 ± 123.47 a |
Glycine | 95.72 ± 3.60 b | 147.42 ± 5.58 a | 77.81 ± 2.51 c |
Proline | 98.81 ± 3.93 b | 127.19 ± 15.75 a | 83.65 ± 6.18 b |
Serine | 138.55 ± 3.50 b | 183.87 ± 22.97 a | 111.45 ± 4.27 b |
Tyrosine | 49.45 ± 2.38 b | 74.60 ± 6.84 a | 39.31 ± 3.07 b |
Total NEAA | 2991.59 ± 46.24 ab | 3224.70 a | 3224.70 ± 156.26 b |
Total amino acids | 3835.60 ± 49.52 b | 4470.92 ± 196.52 a | 3353.83 ±193.11 c |
Sample | L* | a* | b* | C* | H° | ∆E | |
---|---|---|---|---|---|---|---|
Stem | |||||||
Raw sample | 48.56 ± 0.38 a | – 20.06 ± 0.38 a | 33.27 ± 0.11b | 38.85 ± 0.15 a | 120.68 ± 0.44 a | – | |
Sous-vide t1 | 40.30 ± 0.23 c | –10.43 ± 0.50 c | 35.52 ± 0.46 a | 37.02 ± 0.50 b | 106.89 ± 0.43 b | 12.89 ± 0.35 c | |
Sous-vide t60 | 35.45 ± 0.24 e | – 8.75 ± 0.73 d | 36.03 ± 0.62 a | 37.09 ± 0.44 b | 103.80 ± 1.30 c | 17.54 ± 0.38 a | |
Floret | |||||||
Raw sample | 42.75 ± 0.38 b | –12.65 ± 0.51b | 20.28 ± 0.32 d | 23.91± 0.31 e | 121.71 ± 1.29 a | – | |
Sous-vide t1 | 37.35 ± 0.28 d | –6.38 ± 0.18 e | 28.42 ± 0.26 c | 29.13 ± 0.26 d | 102.33 ± 0.66 c | 11.51 ± 0.26 d | |
Sous-vide t60 | 34.36 ± 0.14 f | –5.33 ± 0.45 e | 32.77 ± 0.21 b | 33.20 ± 0.14 c | 98.73 ± 1.71 d | 16.73 ± 0.32 b |
TPC | FRAP | ABTS | DPPH | |
---|---|---|---|---|
(mg GAE/100 g FW) | (mmol TE/100 g FW) | |||
Raw sample | 22.72 ± 0.39 c | 1.76 ± 0.09 c | 1.02 ± 0.16 c | 0.40 ± 0.07 c |
Sous-vide t1 | 39.44 ± 0.71 a | 4.03 ± 0.14 a | 3.25 ± 0.10 a | 1.64 ± 0.05 a |
Sous-vide t60 | 27.64 ± 0.98 b | 2.69 ± 0.11 b | 2.27 ± 0.16 b | 1.02 ± 0.05 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canazza, E.; Marangon, C.M.; Mihaylova, D.; Giaccone, V.; Lante, A. Characterization of Bimi® Broccoli as a Convenience Food: Nutritional Composition and Quality Traits Following Industrial Sous-Vide Processing. Molecules 2025, 30, 3255. https://doi.org/10.3390/molecules30153255
Canazza E, Marangon CM, Mihaylova D, Giaccone V, Lante A. Characterization of Bimi® Broccoli as a Convenience Food: Nutritional Composition and Quality Traits Following Industrial Sous-Vide Processing. Molecules. 2025; 30(15):3255. https://doi.org/10.3390/molecules30153255
Chicago/Turabian StyleCanazza, Elisa, Christine Mayr Marangon, Dasha Mihaylova, Valerio Giaccone, and Anna Lante. 2025. "Characterization of Bimi® Broccoli as a Convenience Food: Nutritional Composition and Quality Traits Following Industrial Sous-Vide Processing" Molecules 30, no. 15: 3255. https://doi.org/10.3390/molecules30153255
APA StyleCanazza, E., Marangon, C. M., Mihaylova, D., Giaccone, V., & Lante, A. (2025). Characterization of Bimi® Broccoli as a Convenience Food: Nutritional Composition and Quality Traits Following Industrial Sous-Vide Processing. Molecules, 30(15), 3255. https://doi.org/10.3390/molecules30153255