Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (588)

Search Parameters:
Keywords = excitation synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3177 KiB  
Review
Galectin-3: Integrator of Signaling via Hexosamine Flux
by Mana Mohan Mukherjee, Devin Biesbrock and John Allan Hanover
Biomolecules 2025, 15(7), 1028; https://doi.org/10.3390/biom15071028 - 16 Jul 2025
Viewed by 269
Abstract
Galectin-3 (Gal-3) is a β-galactoside-binding lectin that mediates diverse signaling events in multiple cell types, including immune cells. It is also a prognostic indicator for multiple clinically important disorders, including cardiovascular disease. Gal-3 binds to cell surface glycans to form lattices that modulate [...] Read more.
Galectin-3 (Gal-3) is a β-galactoside-binding lectin that mediates diverse signaling events in multiple cell types, including immune cells. It is also a prognostic indicator for multiple clinically important disorders, including cardiovascular disease. Gal-3 binds to cell surface glycans to form lattices that modulate surface receptor signaling and internalization. However, the tissue-specific regulation of Gal-3 surface expression remains poorly understood. Here, we review evidence for the involvement of Gal-3 in cell surface signaling, intranuclear events, and intracellular trafficking. Our focus will be on the O-GlcNAc modification as a regulator of Gal-3 biosynthesis, non-canonical secretion, and recycling. We argue that the nutrient-driven cytoplasmic hexosamine biosynthetic pathway (HBP) and endomembrane transport mechanisms generate unique pools of nucleotide sugars. The differing levels of nucleotide sugars in the cytosol, endoplasmic reticulum (ER), and Golgi apparatus generate differential thresholds for the responsiveness of O-GlcNAc cycling, N- and O-linked glycan synthesis/branching, and glycolipid synthesis. By regulating Gal-3 synthesis and non-canonical secretion, O-GlcNAc cycling may serve as a nexus constraining Gal-3 cell surface expression and lattice formation. This homeostatic feedback mechanism would be critical under conditions where extensive glycan synthesis and branching in the endomembrane system and on the cell surface are maintained by elevated hexosamine synthesis. Thus, O-GlcNAc cycling and Gal-3 synergize to regulate Gal-3 secretion and influence cellular signaling. In humans, Gal-3 serves as an early-stage prognostic indicator for heart disease, kidney disease, viral infection, autoimmune disease, and neurodegenerative disorders. Since O-GlcNAc cycling has also been linked to these pathologic states, exploring the interconnections between O-GlcNAc cycling and Gal-3 expression and synthesis is likely to emerge as an exciting area of research. Full article
(This article belongs to the Special Issue Cell Biology and Biomedical Application of Galectins)
Show Figures

Figure 1

16 pages, 3251 KiB  
Article
Vibration Fatigue Characteristics of a High-Speed Train Bogie and Traction Motor Based on Field Measurement and Spectrum Synthesis
by Lirong Guo, Guoshun Li, Can Chen, Yichao Zhang, Hongwei Zhang and Dao Gong
Machines 2025, 13(7), 613; https://doi.org/10.3390/machines13070613 - 16 Jul 2025
Viewed by 201
Abstract
In this study, the fatigue behavior in high-speed train bogie frames and mounted traction motors was investigated through dynamic stress measurements and vibration analysis. A spectrum synthesis method was developed to integrate multipoint random vibrations from the bogie frame into a unified excitation [...] Read more.
In this study, the fatigue behavior in high-speed train bogie frames and mounted traction motors was investigated through dynamic stress measurements and vibration analysis. A spectrum synthesis method was developed to integrate multipoint random vibrations from the bogie frame into a unified excitation spectrum for motor fatigue assessment. The results demonstrate that fatigue damage in the bogie frame progresses linearly with increasing speed, with critical stress concentrations being identified at the motor base weld seams (41.4 MPa equivalent stress at 400 km/h). Traction motor vibration spectra were found to deviate substantially from IEC 61373 standards, leading to higher fatigue damage that follows an exponential growth pattern relative to speed increases. The proposed methodology provides direct experimental validation of component-specific fatigue mechanisms under operational loading conditions. Full article
(This article belongs to the Special Issue Research and Application of Rail Vehicle Technology)
Show Figures

Figure 1

15 pages, 4471 KiB  
Article
Reconfigurable Intelligent Surfaces with Dual-Band Dual-Polarization Capabilities for Arbitrary Beam Synthesis Beyond Beam Steering
by Moosung Kim, Geun-Yeong Jun and Minseok Kim
Electronics 2025, 14(14), 2812; https://doi.org/10.3390/electronics14142812 - 12 Jul 2025
Viewed by 264
Abstract
A surface-wave-assisted, dual-band, circularly polarized reconfigurable intelligent surface is proposed that allows arbitrary beam-shaping capability within the [4.35 GHz–4.5 GHz] and [11.8 GHz–12.3 GHz] frequency bands. In particular, alongside the proposed physical design of the surface, a genetic algorithm-based design framework is introduced [...] Read more.
A surface-wave-assisted, dual-band, circularly polarized reconfigurable intelligent surface is proposed that allows arbitrary beam-shaping capability within the [4.35 GHz–4.5 GHz] and [11.8 GHz–12.3 GHz] frequency bands. In particular, alongside the proposed physical design of the surface, a genetic algorithm-based design framework is introduced to enable the synthesis of complex radiation patterns beyond simple beam steering. It is shown that the phase profiles obtained from the proposed optimization scheme naturally lead to the excitation of surface waves, which facilitate arbitrary beam shaping by satisfying the local power conservation condition between the normally impinging and arbitrarily reflected waves. To physically construct the proposed surface, cascaded symmetric unit cells are employed to facilitate circular polarization operation and realize dual-band operation. Furthermore, varactor diodes are incorporated into the design of unit cells so that the reflection phase can be independently and continuously tuned across the two frequency bands, with a tuning range of 300 degrees. The versatility of the proposed surface is demonstrated through design examples that achieve (i) unidirectional beam steering, (ii) multi-directional beam steering, and (iii) sector-beam formation within each frequency band. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

17 pages, 3146 KiB  
Article
Ultraviolet Upconversion Emission of CaAl2SiO6 Polycrystals Doped with Pr3+ Ions
by Karol Lemański, Nadiia Rebrova, Patrycja Zdeb-Stańczykowska and Przemysław Jacek Dereń
Molecules 2025, 30(14), 2944; https://doi.org/10.3390/molecules30142944 - 11 Jul 2025
Viewed by 271
Abstract
The spectroscopic properties of Pr3+ ions in the aluminosilicate matrix were investigated for the first time. Synthesis of CaAl2SiO6 (CASO) polycrystals doped with Pr3+ ions was carried out using the sol–gel method. The crystalline structures have been confirmed [...] Read more.
The spectroscopic properties of Pr3+ ions in the aluminosilicate matrix were investigated for the first time. Synthesis of CaAl2SiO6 (CASO) polycrystals doped with Pr3+ ions was carried out using the sol–gel method. The crystalline structures have been confirmed with XRD measurement. The absorption, excitation, emission spectra, and time decay profiles of the praseodymium (III) ions were measured and analyzed. It was found that upon excitation with visible light, this material exhibits emission mainly in the UVC region, via an upconversion emission process. The Stokes emission in the visible range is observed mainly from the 3P0 and 1D2 energy levels. The 1D23H4 emission is very stable even at very high temperatures. The studied aluminosilicate phosphors possess characteristics that confirm their potential in upconversion emission applications. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

14 pages, 2812 KiB  
Perspective
The Generation of Wind Velocity via Scale Invariant Gibbs Free Energy: Turbulence Drives the General Circulation
by Adrian F. Tuck
Entropy 2025, 27(7), 740; https://doi.org/10.3390/e27070740 - 10 Jul 2025
Viewed by 276
Abstract
The mechanism for the upscale deposition of energy into the atmosphere from molecules and photons up to organized wind systems is examined. This analysis rests on the statistical multifractal analysis of airborne observations. The results show that the persistence of molecular velocity after [...] Read more.
The mechanism for the upscale deposition of energy into the atmosphere from molecules and photons up to organized wind systems is examined. This analysis rests on the statistical multifractal analysis of airborne observations. The results show that the persistence of molecular velocity after collision in breaking the continuous translational symmetry of an equilibrated gas is causative. The symmetry breaking may be caused by excited photofragments with the associated persistence of molecular velocity after collision, interaction with condensed phase surfaces (solid or liquid), or, in a scaling environment, an adjacent scale having a different velocity and temperature. The relationship of these factors for the solution to the Navier–Stokes equation in an atmospheric context is considered. The scale invariant version of Gibbs free energy, carried by the most energetic molecules, enables the acceleration of organized flow (winds) from the smallest planetary scales by virtue of the nonlinearity of the mechanism, subject to dissipation by the more numerous average molecules maintaining an operational temperature via infrared radiation to the cold sink of space. The fastest moving molecules also affect the transfer of infrared radiation because their higher kinetic energy and the associated more-energetic collisions contribute more to the far wings of the spectral lines, where the collisional displacement from the central energy level gap is greatest and the lines are less self-absorbed. The relationship of events at these scales to macroscopic variables such as the thermal wind equation and its components will be considered in the Discussion section. An attempt is made to synthesize the mechanisms by which winds are generated and sustained, on all scales, by appealing to published works since 2003. This synthesis produces a view of the general circulation that includes thermodynamics and the defining role of turbulence in driving it. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

21 pages, 6277 KiB  
Article
Implementation Method and Bench Testing of Fractional-Order Biquadratic Transfer Function-Based Mechatronic ISD Suspension
by Yujie Shen, Dongdong Qiu, Haolun Xu, Yanling Liu, Kecheng Sun, Xiaofeng Yang and Yan Guo
Sensors 2025, 25(14), 4255; https://doi.org/10.3390/s25144255 - 8 Jul 2025
Viewed by 223
Abstract
To address the challenge of physically realizing fractional-order electrical networks, this study proposes an implementation method for a mechatronic inerter–spring–damper (ISD) suspension based on a fractional-order biquadratic transfer function. Building upon a previously established model of a mechatronic ISD suspension, the influence of [...] Read more.
To address the challenge of physically realizing fractional-order electrical networks, this study proposes an implementation method for a mechatronic inerter–spring–damper (ISD) suspension based on a fractional-order biquadratic transfer function. Building upon a previously established model of a mechatronic ISD suspension, the influence of parameter perturbations on the suspension’s dynamic performance characteristics was systematically investigated. Positive real synthesis was employed to determine the optimal five-element passive network structure for the fractional-order biquadratic electrical network. Subsequently, the Oustaloup filter approximation algorithm was utilized to realize the integer-order equivalents of the fractional-order electrical components, and the approximation effectiveness was analyzed through frequency-domain and time-domain simulations. Bench testing validated the effectiveness of the proposed method: under random road excitation at 20 m/s, the root mean square (RMS) values of the vehicle body acceleration, suspension working space, and dynamic tire load were reduced by 7.86%, 17.45%, and 2.26%, respectively, in comparison with those of the traditional passive suspension. This research provides both theoretical foundations and practical engineering solutions for implementing fractional-order transfer functions in vehicle suspensions, establishing a novel technical pathway for comprehensively enhancing suspension performance. Full article
Show Figures

Figure 1

20 pages, 1043 KiB  
Article
Multiple Chemical Sensitivity and the SLC Gene Superfamily: A Case–Control Study
by Esther Alcorta and Carolina Gomez-Diaz
Int. J. Mol. Sci. 2025, 26(13), 6484; https://doi.org/10.3390/ijms26136484 - 5 Jul 2025
Viewed by 579
Abstract
Multiple chemical sensitivity (MCS) is a disease of unknown etiology with multiple symptoms. Triggered by exposure to environmental chemicals, it results in multiorgan effects. Studies on MCS use different approaches, ranging from searches for environmental triggers to susceptibility genes. Genetic research deals with [...] Read more.
Multiple chemical sensitivity (MCS) is a disease of unknown etiology with multiple symptoms. Triggered by exposure to environmental chemicals, it results in multiorgan effects. Studies on MCS use different approaches, ranging from searches for environmental triggers to susceptibility genes. Genetic research deals with genes for chemical detoxification, oxidative stress, inflammation, and neurodegeneration, as well as immune function and mast cell activation, with uneven results. The sensory hyperexcitability symptom has not been studied yet but has recently been linked to a member of the SLC gene superfamily. To explore its role in MCS disease, a complete-exome analysis was performed in a small number of subjects. Low-frequency genetic variants were analyzed for each individual, and their homozygous or heterozygous presence was determined in four groups of genes related either to the SLC superfamily members or to previous studies in MCS. We found homozygous rare variants in affected individuals only for the SLC gene superfamily, where each patient had at least one. Variants in heterozygosis and certain SNPs also point to SLC genes related to neurotransmitter synthesis, release, and clearance, as well as to the level of cellular excitability, as potentially underlying the differences. Full article
(This article belongs to the Special Issue Exploring the Genetics in Rare Diseases: A Genomic Odyssey)
Show Figures

Figure 1

15 pages, 1831 KiB  
Article
Eskebornite CuFeSe2: Solid-State Synthesis and Thermoelectric Properties
by Se-Hyeon Choi and Il-Ho Kim
Inorganics 2025, 13(7), 216; https://doi.org/10.3390/inorganics13070216 - 27 Jun 2025
Viewed by 327
Abstract
Eskebornite (CuFeSe2), a member of the I–III–VI2 ternary semiconductor family, was explored in this study as a potential thermoelectric material, offering new insights into its synthesis, structural characteristics, and transport behavior. Structurally analogous to chalcopyrite (CuFeS2)—an extensively studied [...] Read more.
Eskebornite (CuFeSe2), a member of the I–III–VI2 ternary semiconductor family, was explored in this study as a potential thermoelectric material, offering new insights into its synthesis, structural characteristics, and transport behavior. Structurally analogous to chalcopyrite (CuFeS2)—an extensively studied antiferromagnetic semiconductor—eskebornite remains relatively underexplored, particularly regarding its solid-state synthesis and thermoelectric performance. To address this gap, pure eskebornite was synthesized via mechanical alloying followed by hot pressing, a method that enables the fine control of its phase composition and microstructural features. The synthesized undoped CuFeSe2 exhibited p-type nondegenerate semiconducting behavior, with electrical conductivity increasing monotonically over the temperature range of 323–623 K, indicative of thermally activated carrier transport. Simultaneously, a decreasing trend in thermal conductivity with temperature was observed, likely resulting from intensified phonon scattering, which serves to suppress heat transport and enhance the thermoelectric efficiency by maintaining a thermal gradient across the material. A peak in the Seebeck coefficient occurred between 473 and 523 K, suggesting the onset of intrinsic carrier excitation and a transition in dominant carrier transport mechanisms. The material exhibited a maximum power factor of 1.55 μWm−1K−2, while the dimensionless thermoelectric figure of merit (ZT) reached a peak value of 0.37 × 10−3 at 523 K. Although the ZT remains low, these results underscore the potential of eskebornite as a thermoelectric candidate, with substantial room for optimization through chemical doping, microstructural engineering, or nanostructuring approaches to enhance the carrier mobility and reduce the lattice thermal conductivity. Full article
(This article belongs to the Special Issue Advances in Thermoelectric Materials, 2nd Edition)
Show Figures

Figure 1

15 pages, 2564 KiB  
Article
Effect of CaO Content on the Photoluminescence Excitation and Emission Properties of Bi2O3 and ZnO-Co-Doped Ca2+xGa4O8+x Phosphors
by Shu-Han Liao, Xiang-Chen Cheng, Fang-Tzu Hsu, Cheng-Fu Yang and Tung-Lung Wu
Photonics 2025, 12(7), 625; https://doi.org/10.3390/photonics12070625 - 20 Jun 2025
Viewed by 258
Abstract
The synthesis process employed solid-state reaction methods to produce phosphors with varying CaO contents, specifically at x values of 0, 0.2, 0.4, 0.6, 0.8, and 1.0. As the CaO content (represented by the x value) increases, the crystalline structure of Ca2+x [...] Read more.
The synthesis process employed solid-state reaction methods to produce phosphors with varying CaO contents, specifically at x values of 0, 0.2, 0.4, 0.6, 0.8, and 1.0. As the CaO content (represented by the x value) increases, the crystalline structure of Ca2+xGa4O8+x + 0.01 Bi2O3 + 0.07 ZnO compositions underwent notable transformations. X-ray diffraction was used to characterize these structural changes, and we found that CaGa2O4, CaO, Ga2O3, and Ca3Ga4O9 were clearly identified. The diffraction intensities of CaGa2O4 and CaO phases increased and those of Ga2O3 and Ca3Ga4O9 decreased with the x value. Our findings revealed that the photoluminescence excitation (PLE) spectra consistently peak around 340 nm across all samples, while the photoluminescence emission (PL) spectra exhibited slight variations within the range of 474–477 nm. Most notably, the intensity of both PLE and PL spectra demonstrated a non-linear relationship with CaO content, initially increasing with higher CaO concentration, reaching maximum intensity at x = 0.4, and subsequently decreasing as the x value continued to rise. This research provides valuable insights into the relationship between composition, crystal structure, and luminescent behavior in Ca2+xGa4O8+x phosphor systems, and the theoretical mechanisms underlying these observed trends were thoroughly discussed. Full article
Show Figures

Figure 1

12 pages, 2302 KiB  
Article
Synthesis Amphiphilic One-Handed Helical Ladder Polymers with Circularly Polarized Luminescence
by Ziheng Pan and Wei Zheng
Molecules 2025, 30(12), 2606; https://doi.org/10.3390/molecules30122606 - 16 Jun 2025
Viewed by 416
Abstract
Helical ladder polymers attract attention because of their well-defined, one-handed helical ladder structures and unique properties, which differ from precursor polymers that have random-coil conformations. However, the synthesis of helical ladder polymers is difficult and inhibits their functions and applications. In this study, [...] Read more.
Helical ladder polymers attract attention because of their well-defined, one-handed helical ladder structures and unique properties, which differ from precursor polymers that have random-coil conformations. However, the synthesis of helical ladder polymers is difficult and inhibits their functions and applications. In this study, we reported the synthesis of amphiphilic optically active 2,2′-tethered binaphthyl-embedded helical ladder polymers carrying hydrophilic oligo (ethylene glycol) (OEG) as side chains through quantitative and chemoselective acid-promoted intramolecular cyclization of random-coil precursor polymers. The obtained helical ladder polymers exhibited dramatic circular dichroism (CD) and circularly polarized luminescence (CPL) enhancement. Moreover, we further established a circularly polarized fluorescence-energy transfer (CPF-ET) strategy in which the helical ladder polymers work as a donor, emitting circularly polarized fluorescence to excite an achiral fluorophore (coumarin-6) as the acceptor, producing green CPL with luminescence dissymmetry factor (2.5 × 10−4). Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

17 pages, 2081 KiB  
Article
Efficiency of Microwave-Assisted Surface Grafting of Ni and Zn Clusters on TiO2 as Cocatalysts for Solar Light Degradation of Cyanotoxins
by Andraž Šuligoj, Mallikarjuna Nadagouda, Gregor Žerjav, Albin Pintar, Dionysios D. Dionysiou and Nataša Novak Tušar
Catalysts 2025, 15(6), 590; https://doi.org/10.3390/catal15060590 - 14 Jun 2025
Viewed by 579
Abstract
Herein, we report on the synthesis of Ni and Zn clusters on the surface of TiO2 as well as their bimetallic NiZn analogs. The materials were prepared by incipient wet impregnation of colloidal TiO2 followed by microwave (MW) irradiation to graft [...] Read more.
Herein, we report on the synthesis of Ni and Zn clusters on the surface of TiO2 as well as their bimetallic NiZn analogs. The materials were prepared by incipient wet impregnation of colloidal TiO2 followed by microwave (MW) irradiation to graft the clusters to TiO2 surface. The materials were further immobilized onto glass slides and exhibited high surface area, high mechanical stability, and porosity with accessible pores. The main species responsible for visible light degradation of microcystin LR via the interface charge transfer (IFCT) of excited e to surface metal clusters were found to be O2•− and h+. The optimal nominal grafting concentration was 0.5 wt.% for Ni and 1.0 wt.% for Zn, while for the bimetal modification (NiZn), the optimal nominal concentration was 0.5 wt.%. Compared to monometallic, bimetallic grafting showed a lower kinetic constant, albeit still improved compared to bare TiO2. Bimetal-modified titania showed a lower photocurrent compared to single metal-grafted TiO2 and poorer interfacial charge transport, namely, more recombination sites—possibly at the interface between the Ni and Zn domains. This work highlights the efficiency of using MW irradiation for grafting sub-nano-sized metallic species to TiO2 in a homogeneous way. However, further strategies using MW irradiation for the structural design of bimetallic cocatalysts can be implemented in the future. Full article
(This article belongs to the Special Issue Commemorative Special Issue for Prof. Dr. Dion Dionysiou)
Show Figures

Graphical abstract

20 pages, 5663 KiB  
Article
Facile and Low-Cost Fabrication of ZnO/Kaolinite Composites by Modifying the Kaolinite Composition for Efficient Degradation of Methylene Blue Under Sunlight Illumination
by Humera Shaikh, Ramsha Saleem, Imran Ali Halepoto, Muhammad Saajan Barhaam, Muhammad Yousuf Soomro, Mazhar Ali Abbasi, Nek Muhammad Shaikh, Muhammad Ali Bhatti, Shoukat Hussain Wassan, Elmuez Dawi, Aneela Tahira, Matteo Tonezzer and Zafar Hussain Ibupoto
Catalysts 2025, 15(6), 566; https://doi.org/10.3390/catal15060566 - 6 Jun 2025
Viewed by 1710
Abstract
Zinc oxide (ZnO) photocatalysts are recognized for their ease of synthesis, cost-effectiveness, efficiency, scalability, and environmental compatibility, making them highly suitable for addressing wastewater contamination. In this study, various compositions of kaolinite were used for the hydrothermal deposition of ZnO, including 0.5%, 0.75%, [...] Read more.
Zinc oxide (ZnO) photocatalysts are recognized for their ease of synthesis, cost-effectiveness, efficiency, scalability, and environmental compatibility, making them highly suitable for addressing wastewater contamination. In this study, various compositions of kaolinite were used for the hydrothermal deposition of ZnO, including 0.5%, 0.75%, 1%, and 1.25%. The main purpose of this study was to evaluate the effect of kaolinite toward the enhanced performance of ZnO through modification of particle size, morphology and surface functional groups. Several analytical techniques were employed to obtain structural and optical results, including scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and UV–visible spectroscopy, revealing significant changes in particle shape, particle size, surface functional groups, and optical band gap when kaolinite was added. The ZnO/kaolinite composite (sample 4) with 1.25% kaolinite content demonstrated outstanding photocatalytic performance for the degradation of methylene blue in natural sunlight. For sample 4, 15 mg of the dye in a 3.4 × 10−5 M dye solution exhibited a degradation efficiency of 99%. In contrast, when using 15 mg of catalyst dose and 1.5 × 10−5 M dye solution, the degradation efficiency was observed to be almost 100%, thus indicating that catalyst dose and dye concentration affect degradation efficiency. The reusability test revealed that sample 4 retained degradation efficiency of 98% after five cycles without showing any morphological changes. By decorating ZnO with kaolinite mineral clay, this study provides exciting findings and insights into the development of low-cost photocatalysts, which could be used to produce solar-powered hydrogen and treat wastewater. Full article
Show Figures

Figure 1

18 pages, 3754 KiB  
Article
N, S-Doped Carbon Dots (N, S-CDs) for Perfluorooctane Sulfonic Acid (PFOS) Detection
by Hani Nasser Abdelhamid
C 2025, 11(2), 36; https://doi.org/10.3390/c11020036 - 29 May 2025
Cited by 1 | Viewed by 1534
Abstract
Nitrogen and sulfur-co-doped carbon dots (N, S-CDs) were synthesized using a simple, eco-friendly hydrothermal technique with L-cysteine as the precursor. The synthesis approach produced highly water-dispersible, heteroatom-doped CDs with surface functional groups comprising amine, carboxyl, thiol, and sulfonic acid. Data analysis of X-ray [...] Read more.
Nitrogen and sulfur-co-doped carbon dots (N, S-CDs) were synthesized using a simple, eco-friendly hydrothermal technique with L-cysteine as the precursor. The synthesis approach produced highly water-dispersible, heteroatom-doped CDs with surface functional groups comprising amine, carboxyl, thiol, and sulfonic acid. Data analysis of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) confirmed their amorphous nature, nanoscale dimensions (1–8 nm, average particle size of 2.6 nm), and surface chemistry. Optical examination revealed intense and pure blue fluorescence emission under UV excitation, with excitation-dependent emission behavior attributed to surface defects and heteroatom doping. The N, S-CDs were applied as fluorescent probes for detecting perfluorooctanesulfonic acid (PFOS), a notable component of the perfluoroalkyl substances (PFAS) family, demonstrating pronounced and concentration-dependent fluorescence quenching. A linear detection range of 3.33–20 µM and a limit of detection (LOD) of 2 µM were reported using the N, S-CDs probe. UV-Vis spectral shifts and dye-interaction investigations indicated that the sensing mechanism is regulated by non-covalent interactions, primarily electrostatic and hydrophobic forces. These findings confirm the potential of N, S-CDs to be used as effective optical sensors for detecting PFOS in environmental monitoring applications. Full article
Show Figures

Graphical abstract

13 pages, 2415 KiB  
Article
Synthesis, Characterization, and Biological Activities of Rare Earth Metal Complexes with Gallic Acid
by Nguyen Thi Hien Lan, Hoang Phu Hiep, Dinh Cong Trinh and Pham Van Khang
Inorganics 2025, 13(6), 180; https://doi.org/10.3390/inorganics13060180 - 28 May 2025
Viewed by 536
Abstract
This study reports the synthesis and characterization of four novel rare earth-gallic acid complexes, Sm(Gal)3·4H2O, Eu(Gal)3·4H2O, Tb(Gal)3·4H2O, and Dy(Gal)3·4H2O. These complexes were synthesized under optimized conditions (60 [...] Read more.
This study reports the synthesis and characterization of four novel rare earth-gallic acid complexes, Sm(Gal)3·4H2O, Eu(Gal)3·4H2O, Tb(Gal)3·4H2O, and Dy(Gal)3·4H2O. These complexes were synthesized under optimized conditions (60 °C, pH 4–5) and characterized using the Ln3+ elemental content method, infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), mass spectrometry (MS), and fluorescence spectroscopy. IR spectra confirmed the coordination of rare earth ions (Ln3+) with gallic acid through carboxylate oxygen atoms. TGA revealed the thermal decomposition pathways, while MS identified the molecular ion peaks and fragmentation patterns. All complexes exhibited strong luminescence under UV excitation, with emission peaks corresponding to characteristic transitions of Sm3+, Eu3+, Tb3+, and Dy3+. Biological assays demonstrated significant antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, with Dy(Gal)3·4H2O showing the highest efficacy. Additionally, the complexes displayed inhibitory effects on MCF7 breast cancer cells, with Tb(Gal)3·4H2O exhibiting the lowest IC50 value (11.3 µM). These findings suggest that rare earth metal complexes with gallic acid have potential applications in biomedical fields, particularly as antimicrobial and anticancer agents. Full article
Show Figures

Figure 1

24 pages, 3364 KiB  
Article
One-Pot Approach Towards Peptoids Synthesis Using 1,4-Dithiane-2,5-Diol via Multicomponent Approach and DFT-Based Computational Analysis
by Musrat Shaheen and Akbar Ali
Molecules 2025, 30(11), 2340; https://doi.org/10.3390/molecules30112340 - 27 May 2025
Viewed by 1317
Abstract
Peptoids are peptidomimetics in which the side chain is attached to the nitrogen of the amide group rather than the α-carbon. This alteration in the backbone structure is highly valued because it endows beneficial properties, including enhanced resistance to proteolysis, greater immunogenicity, [...] Read more.
Peptoids are peptidomimetics in which the side chain is attached to the nitrogen of the amide group rather than the α-carbon. This alteration in the backbone structure is highly valued because it endows beneficial properties, including enhanced resistance to proteolysis, greater immunogenicity, improved biostability, and superior bioavailability. In this current study, we focused on the Ugi-4CR-based one-pot synthesis of peptoids using 1,4-dithiane-2,5-diol as the carbonyl component together with amine, carboxylic acid, and isocyanides. Four new peptoids—5a, 5b, 5c, and 5d—were designed and efficiently prepared in good chemical yields and were subjected to DFT investigations for their electronic behavior. These compounds have free OH, SH, and terminal triple bonds for further chemistry. In a computational analysis, the spectral data of compounds 5a5d were juxtaposed with calculated spectral values derived from the B3LYP/6-311G(d,p) level. The electronic excitation and orbital contributions of 5a5d were predicted using TD-DFT calculations. A natural bond order (NBO) analysis was utilized to investigate the electronic transition of newly synthesized peptoids, focusing on their charge distribution patterns. Furthermore, MEP and NPA analyses were conducted to predict charge distribution in these compounds. The reactivity and stability of the targeted peptoids were evaluated by global reactivity descriptors, which were determined with frontier molecular orbital analysis. The DFT results revealed that compound 5c displayed marginally higher reactivity compared to 5a, 5b, and 5d, possibly due to its extended conjugation. Full article
Show Figures

Figure 1

Back to TopTop