Ultraviolet Upconversion Emission of CaAl2SiO6 Polycrystals Doped with Pr3+ Ions
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis
3.2. Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bloembergen, N. Solid State Infrared Quantum Counters. Phys. Rev. Lett. 1959, 2, 84–85. [Google Scholar] [CrossRef]
- Auzel, F. Compteur Quantique Par Transfert d’energie Entre Deux Ions de Terres Rares Dans Un Tungstate Mixte et Dans Un Verre. CR Acad. Sci. Paris 1966, 262, 1016–1019. [Google Scholar]
- Auzel, F.E. Materials and Devices Using Double-Pumped-Phosphors with Energy Transfer. Proc. IEEE 1973, 61, 758–786. [Google Scholar] [CrossRef]
- Blasse, G.; Grabmaier, B.C. Luminescent Materials; Springer: Berlin/Heidelberg, Germany, 1994; ISBN 978-3-540-58019-5. [Google Scholar]
- Lemański, K.; Pązik, R.; Dereń, P.J. Efficient Up-Conversion Emission and Energy Transfer in LaAlO3 Doped with Er3+, Ho3+, and Yb3+ Ions. Opt. Mater. 2012, 34, 1990–1993. [Google Scholar] [CrossRef]
- Marciniak, L.; Stefanski, M.; Tomala, R.; Hreniak, D.; Strek, W. Synthesis and Up-Conversion Luminescence of Er3+ and Y B3+ Codoped Nanocrystalline Tetra- (KLaP4O12) and Pentaphosphates (LaP5O14). J. Chem. Phys. 2015, 143, 094701. [Google Scholar] [CrossRef]
- Pilch, A.; Wawrzyńczyk, D.; Kurnatowska, M.; Czaban, B.; Samoć, M.; Strek, W.; Bednarkiewicz, A. The Concentration Dependent Up-Conversion Luminescence of Ho3+ and Yb3+ Co-Doped β-NaYF4. J. Lumin. 2017, 182, 114–122. [Google Scholar] [CrossRef]
- Runowski, M.; Shyichuk, A.; Tymiński, A.; Grzyb, T.; Lavín, V.; Lis, S. Multifunctional Optical Sensors for Nanomanometry and Nanothermometry: High-Pressure and High-Temperature Upconversion Luminescence of Lanthanide-Doped Phosphates—LaPO4/YPO4:Yb3+–Tm3+. ACS Appl. Mater. Interfaces 2018, 10, 17269–17279. [Google Scholar] [CrossRef]
- Hölsä, J.; Laihinen, T.; Laamanen, T.; Lastusaari, M.; Pihlgren, L.; Rodrigues, L.C.V.; Soukka, T. Enhancement of the Up-Conversion Luminescence from NaYF4:Yb3+,Tb3+. Phys. B Condens. Matter 2014, 439, 20–23. [Google Scholar] [CrossRef]
- Naccache, R.; Vetrone, F.; Speghini, A.; Bettinelli, M.; Capobianco, J.A. Cross-Relaxation and Upconversion Processes in Pr3+ Singly Doped and Pr3+/Yb3+ Codoped Nanocrystalline Gd3Ga5O12: The Sensitizer/Activator Relationship. J. Phys. Chem. C 2008, 112, 7750–7756. [Google Scholar] [CrossRef]
- Guyot, Y.; Moncorgé, R.; Merkle, L.D.; Pinto, A.; McIntosh, B.; Verdun, H. Luminescence Properties of Y2O3 Single Crystals Doped with Pr3+ or Tm3+ and Codoped with Yb3+, Tb3+ or Ho3+ Ions. Opt. Mater. 1996, 5, 127–136. [Google Scholar] [CrossRef]
- Dramićanin, M.D.; Brik, M.G.; Antić, Ž.; Bănică, R.; Mosoarca, C.; Dramićanin, T.; Ristić, Z.; Dima, G.D.; Förster, T.; Suta, M. Pr3+ Visible to Ultraviolet Upconversion for Antimicrobial Applications. Nanomaterials 2025, 15, 562. [Google Scholar] [CrossRef] [PubMed]
- Aboamer, M.A.; Alsuayri, A.S.; Alassaf, A.; Alqahtani, T.M.; Alresheedi, B.A.; Saijari, G.N.; Osman, E.A.; Mohamed, N.A.R. Hybrid Radiant Disinfection: Exploring UVC and UVB Sterilization Impact on the Mechanical Characteristics of PLA Materials. Polymers 2023, 15, 4658. [Google Scholar] [CrossRef] [PubMed]
- Hamamoto, A.; Mori, M.; Takahashi, A.; Nakano, M.; Wakikawa, N.; Akutagawa, M.; Ikehara, T.; Nakaya, Y.; Kinouchi, Y. New Water Disinfection System Using UVA Light-emitting Diodes. J. Appl. Microbiol. 2007, 103, 2291–2298. [Google Scholar] [CrossRef]
- Nakahashi, M.; Mawatari, K.; Hirata, A.; Maetani, M.; Shimohata, T.; Uebanso, T.; Hamada, Y.; Akutagawa, M.; Kinouchi, Y.; Takahashi, A. Simultaneous Irradiation with Different Wavelengths of Ultraviolet Light Has Synergistic Bactericidal Effect on Vibrio parahaemolyticus. Photochem. Photobiol 2014, 90, 1397–1403. [Google Scholar] [CrossRef]
- Lemański, K.; Bondzior, B.; Szymański, D.; Dereń, P.J. Spectroscopic Properties of GdxLa1−xAlO3 Nanocrystals Doped with Pr3+ Ions. New J. Chem. 2019, 43, 6242–6248. [Google Scholar] [CrossRef]
- Macalik, B.; Lisiecki, R.; Kowalski, R.M.; Ryba-Romanowski, W. Down- and up-Conversion of Femtosecond Light Pulses into Pr3+ Luminescence in LiTaO3:Pr3+ Single Crystal. J. Lumin. 2020, 224, 117294. [Google Scholar] [CrossRef]
- Zhanturina, N.; Beketova, G.; Gorecka, N.; Szczodrowski, K.; Lesniewski, T.; Aimaganbetova, Z.; Bizhanova, K.; Bekeshev, A. Luminescence Properties of LaAlO3:Pr under Hydrostatic Pressure. Crystals 2023, 13, 1558. [Google Scholar] [CrossRef]
- Lemański, K.; Bezkrovna, O.; Rebrova, N.; Lisiecki, R.; Zdeb, P.; Dereń, P.J. UVC Stokes and Anti-Stokes Emission of Ca9Y(PO4)7 Polycrystals Doped with Pr3+ Ions. Molecules 2024, 29, 2084. [Google Scholar] [CrossRef]
- Rebrova, N.; Zdeb, P.; Lemański, K.; Macalik, B.; Bezkrovnyi, O.; Dereń, P.J. Upconversion Luminescence Properties of Pr3+-Doped BaYF5 Nanoparticles Prepared by Microwave Hydrothermal Method. Inorg. Chem. 2024, 63, 3028–3036. [Google Scholar] [CrossRef]
- Weber, M.J. Multiphonon Relaxation of Rare-Earth Ions in Yttrium Orthoaluminate. Phys. Rev. B 1973, 8, 54–64. [Google Scholar] [CrossRef]
- Dereń, P.J.; Mahiou, R.; Goldner, P. Multiphonon Transitions in LaAlO3 Doped with Rare Earth Ions. Opt. Mater. 2009, 31, 465–469. [Google Scholar] [CrossRef]
- Vaniman, D.T.; Bish, D.L. Yoshiokaite, a New Ca,Al-Silicate Mineral from the Moon. Am. Mineral. 1990, 75, 676–686. [Google Scholar]
- Lemański, K.; Walerczyk, W.; Dereń, P.J. Luminescent Properties of Europium Ions in CaAl2SiO6. J. Alloys Compd. 2016, 672, 595–599. [Google Scholar] [CrossRef]
- Lemański, K. Tunable Phosphor Properties of the CaAl2SiO6 Polycrystals Doped with Chromium, Manganese and Vanadium Ions. Solid State Sci. 2023, 144, 107300. [Google Scholar] [CrossRef]
- Lemański, K. Optical Properties of CaAl2SiO6 Polycrystals Doped with Ce3+ and Nd3+ Ions. Bull. Mater. Sci. 2024, 47, 70. [Google Scholar] [CrossRef]
- Wang, B.; Sun, L.; Ju, H. Luminescence and Energy Transfer of White-Light Emitting CaAl2SiO6:Ce3+, Tb3+ Phosphors. Solid State Commun. 2010, 150, 1460–1462. [Google Scholar] [CrossRef]
- Sun, L.; Wang, B.; Ju, H.; Xu, S. Optical Properties of CaAl2SiO6: Eu2+ Phosphors Prepared by a Sol-Gel Method. J. China Jiliang Univ. 2008, 19, 372. [Google Scholar]
- Steele, I.M.; Pluth, J.J. Crystal Structure of Synthetic Yoshiokaite, a Stuffed Derivative of the Tridymite Structure. Am. Mineral. 1990, 75, 1186–1191. [Google Scholar]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Williamson, G.K.; Hall, W.H. X-Ray Line Broadening from Filed Aluminium and Wolfram. Acta Metall. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung Der Grösse Und Der Inneren Struktur von Kolloidteilchen Mittels Röntgenstrahlen. Nachrichten Ges. Wiss. Göttingen Math.-Phys. Kl. 1918, 1918, 98–100. [Google Scholar]
- Korotkov, A.S.; Atuchin, V.V. Prediction of Forbidden Band Gap of Oxide Crystal by Chemical Formula. In Proceedings of the 2008 9th International Workshop and Tutorials on Electron Devices and Materials, Novosibirsk, Russia, 1–5 July 2008; IEEE: New York, NY, USA, 2008; pp. 23–25. [Google Scholar]
- Lemański, K.; Babij, M. Tunable Spectroscopic Properties of Benitoite BaTiSi2GeO9:Eu3+ Phosphors. Mater. Res. Bull. 2024, 180, 113035. [Google Scholar] [CrossRef]
- Guan, Y.; Tsuboi, T.; Huang, Y.; Huang, W. Concentration Quenching of Praseodymium Ions Pr3+ in BaGd2(MoO4)4 Crystals. Dalton Trans. 2014, 43, 3698–3703. [Google Scholar] [CrossRef] [PubMed]
- Lemański, K.; Sztolberg, D.; Brzostowski, B.; Drzewiecki, A.; Stefańska, D.; Dereń, P.J. Spectroscopic and Paramagnetic Studies of LaAlO3 Polycrystals Doped with Manganese Ions. Mater. Chem. Phys. 2020, 250, 123149. [Google Scholar] [CrossRef]
- Chi, F.; Wei, X.; Jiang, B.; Chen, Y.; Duan, C.; Yin, M. Luminescence Properties and the Thermal Quenching Mechanism of Mn2+ Doped Zn2GeO4 Long Persistent Phosphors. Dalton Trans. 2018, 47, 1303–1311. [Google Scholar] [CrossRef]
- Lemański, K.; Babij, M. Modulation of the Optical Properties of Na2ZnGexSi1-XO4 Polycrystals Doped with Eu3+ Ions. J. Lumin. 2025, 284, 121316. [Google Scholar] [CrossRef]
- Pollnau, M.; Gamelin, D.R.; Lüthi, S.R.; Güdel, H.U.; Hehlen, M.P. Power Dependence of Upconversion Luminescence in Lanthanide and Transition-Metal-Ion Systems. Phys. Rev. B 2000, 61, 3337–3346. [Google Scholar] [CrossRef]
- Piccinelli, F.; Speghini, A.; Ivanovskikh, K.; Meijerink, A.; Ronda, C.; Bettinelli, M. UV and Visible Luminescence of Pr3+ Doped Oxides: New Materials. MRS Proc. 2008, 1111, 807. [Google Scholar] [CrossRef]
- Zych, A.; Donegá, C.d.M.; Meijerink, A. Fast d–f Emission in Ce3+, Pr3+ and Nd3+ Activated RbCl. Opt. Mater. 2011, 33, 347–354. [Google Scholar] [CrossRef]
- Kappelhoff, J.; Keil, J.-N.; Kirm, M.; Makhov, V.N.; Chernenko, K.; Möller, S.; Jüstel, T. Spectroscopic Studies on Pr3+ Doped YPO4 and LuPO4 upon Vacuum Ultraviolet (VUV) and Synchrotron Radiation Excitation. Chem. Phys. 2022, 562, 111646. [Google Scholar] [CrossRef]
- Srivastava, A.M. Aspects of Pr3+ Luminescence in Solids. J. Lumin. 2016, 169, 445–449. [Google Scholar] [CrossRef]
- Li, L.; Zi, L.; Yang, F.; Feng, S.; Wang, C.; Yang, Y. Pr3+-Based Visible-to-Ultraviolet Upconversion. A Minireview. Adv. Phys. Res. 2025, 4, 2400097. [Google Scholar] [CrossRef]
- Srivastava, A.M.; Jennings, M.; Collins, J. The Interconfigurational (4f15d1→4f2) Luminescence of Pr3+ in LuPO4, K3Lu(PO4)2 and LiLuSiO4. Opt. Mater. 2012, 34, 1347–1352. [Google Scholar] [CrossRef]
- Rebrova, N.; Grippa, A.; Zdeb-Stańczykowska, P.; Dereń, P.J. Unusually Effective Blue-to-UVC Upconversion of Pr3+-Doped Sr3 Lu(PO4)3 and Ba3Lu(PO4)3 Phosphors: A Comparative Study. Inorg. Chem. 2025, 64, 11146–11154. [Google Scholar] [CrossRef]
- Rebrova, N.; Grippa, A.; Zdeb, P.; Dereń, P.J. Blue to UV Upconversion Properties of Pr3+ Doped ACaF3 (A = K, Rb, Cs) Phosphors. Scr. Mater. 2025, 255, 116395. [Google Scholar] [CrossRef]
- Rebrova, N.; Lisiecki, R.; Zdeb-Stańczykowska, P.; Zorenko, Y.; Voloshinovskii, A.; Pushak, A.; Dereń, P.J. Optical and Upconversion Properties of A3Y(PO4)3: Pr3+ (A = Sr, Ba) Phosphors. J. Phys. Chem. C 2025, 129, 1873–1884. [Google Scholar] [CrossRef]
- Cates, E.L.; Li, F. Balancing Intermediate State Decay Rates for Efficient Pr3+ Visible-to-UVC Upconversion: The Case of β-Y2Si2O7: Pr3+. RSC Adv. 2016, 6, 22791–22796. [Google Scholar] [CrossRef]
- Lai, F.; Xu, X.; Shen, J.; Wang, Y.; Yan, Y.; Nie, Y.; You, W.; Wu, D.; Han, L.; Xiao, Z. Structure and Upconversion Luminescence Properties of Pr3+-Doped Y2SiO5 Phosphor. Silicon 2023, 15, 1913–1923. [Google Scholar] [CrossRef]
- Trevisani, M.; Ivanovskikh, K.V.; Piccinelli, F.; Bettinelli, M. Fast 5d-4f Luminescence in Pr3+-Doped K3Lu(PO4)2. J. Lumin. 2014, 152, 2–6. [Google Scholar] [CrossRef]
Sample | Lattice Parameters | Crystallite Size | Strain | |||
---|---|---|---|---|---|---|
a (Å) | c (Å) | V (Å3) | SM (nm) | W-H (nm) | ×10−3 | |
CaAl2SiO6 | 9.9278 | 8.2172 | 701.39 | 68.8 | 82.0 | 1.33 |
CaAl2SiO6:0.1%Pr3+ | 9.9288 | 8.2397 | 703.46 | 71.3 | 119.5 | 0.81 |
CaAl2SiO6:0.5%Pr3+ | 9.9429 | 8.2325 | 704.84 | 70.3 | 86.6 | 1.04 |
CaAl2SiO6:1.0%Pr3+ | 9.9562 | 8.2394 | 707.32 | 65.6 | 70.9 | 1.71 |
CaAl2SiO6:1.5%Pr3+ | 9.962 | 8.2613 | 710.02 | 68.9 | 101.2 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemański, K.; Rebrova, N.; Zdeb-Stańczykowska, P.; Dereń, P.J. Ultraviolet Upconversion Emission of CaAl2SiO6 Polycrystals Doped with Pr3+ Ions. Molecules 2025, 30, 2944. https://doi.org/10.3390/molecules30142944
Lemański K, Rebrova N, Zdeb-Stańczykowska P, Dereń PJ. Ultraviolet Upconversion Emission of CaAl2SiO6 Polycrystals Doped with Pr3+ Ions. Molecules. 2025; 30(14):2944. https://doi.org/10.3390/molecules30142944
Chicago/Turabian StyleLemański, Karol, Nadiia Rebrova, Patrycja Zdeb-Stańczykowska, and Przemysław Jacek Dereń. 2025. "Ultraviolet Upconversion Emission of CaAl2SiO6 Polycrystals Doped with Pr3+ Ions" Molecules 30, no. 14: 2944. https://doi.org/10.3390/molecules30142944
APA StyleLemański, K., Rebrova, N., Zdeb-Stańczykowska, P., & Dereń, P. J. (2025). Ultraviolet Upconversion Emission of CaAl2SiO6 Polycrystals Doped with Pr3+ Ions. Molecules, 30(14), 2944. https://doi.org/10.3390/molecules30142944