Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (242)

Search Parameters:
Keywords = enzyme printing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1222 KB  
Article
Three-Dimensional (3D)-Printed Snacks from Indigenous Composite Inks Improve Metabolic Dysfunctions Associated with High-Fat-Diet-Induced Obesity in Wistar Rats
by Abdullahi Adekilekun Jimoh, Abidemi Paul Kappo, Fehintoluwa Joy Femi-Olabisi, Yusuf Olamide Kewuyemi, Omolola Mary Omosebi and Oluwafemi Ayodeji Adebo
Foods 2025, 14(24), 4185; https://doi.org/10.3390/foods14244185 - 5 Dec 2025
Abstract
This study investigated the anti-obesogenic effects of 3D-printed snacks—developed from indigenous composite inks of cowpea, sorghum, and orange-fleshed sweet potato—in male and female Wistar rats fed a high-fat diet (HFD). Four experimental diets (TD1–TD4) were formulated from snacks using two blend ratios (33.33%:33.33%:33.33%) [...] Read more.
This study investigated the anti-obesogenic effects of 3D-printed snacks—developed from indigenous composite inks of cowpea, sorghum, and orange-fleshed sweet potato—in male and female Wistar rats fed a high-fat diet (HFD). Four experimental diets (TD1–TD4) were formulated from snacks using two blend ratios (33.33%:33.33%:33.33%) and 50%:10%:40%) and two processing states (raw and bioprocessed). Following a five-week HFD-induction period, the rats were supplemented for an additional five weeks with diets containing 20% of these snacks, Orlistat, or HFD alone. Physiological assessments included body weight, fasting glucose, insulin, homeostatic model assessment for insulin resistance (HOMA-IR), serum lipids, sex hormones, angiotensin-converting enzyme (ACE) activity, and histological evaluation of cardiac tissue. HFD feeding induced hyperglycemia, dyslipidemia, and insulin resistance. Supplementation with the 3D-printed snacks improved glycemic control, with the TD4 (bioprocessed blend; 50:10:40%) restoring glucose levels close to baseline. TD1 and TD2 (raw blends) improved lipid and hormonal profiles in females, whereas TD3 (bioprocessed blend; 33.33%:33.33%:33.33%) significantly reduced triglycerides and elevated HDL in males. Importantly, only TD1 (raw blend; 33.33%:33.33%:33.33%) significantly reduced ACE activity in males, providing a unique cardioprotective mechanism not observed with other snack formulations. Histological analyses revealed inflammatory infiltration and fibroplasia in HFD and Orlistat groups, whereas all 3D-printed snacks preserved normal myocardial architecture without necrosis or fibrosis. Collectively, these findings demonstrate that 3D-printed snacks derived from indigenous composite inks improved metabolic dysfunctions associated with diet-induced obesity. The optimal formulation appears application-specific: TD4 for glycemic control, TD3 for lipid management in males, and TD1/TD2 for metabolic improvements in females. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

18 pages, 5966 KB  
Article
Preliminary Assessment of the Possible Environmental Risks of Photopolymerizing Resin Particles Produced by Finishing Stereolithography 3D-Printed Objects, Employing Toxicity Test on Tropical House Crickets (Gryllodes sigillatus)
by Bogumił Łosiewicz and Maciej Kamaszewski
Int. J. Mol. Sci. 2025, 26(23), 11245; https://doi.org/10.3390/ijms262311245 - 21 Nov 2025
Viewed by 371
Abstract
Additive manufacturing (AM), also known as 3D printing, is a rapidly growing field in industry. AM technologies include sintering, melting, and stereolithography. With steadily rising utilization, evaluating the environmental impact of AM materials has become essential, as these materials may act as emerging [...] Read more.
Additive manufacturing (AM), also known as 3D printing, is a rapidly growing field in industry. AM technologies include sintering, melting, and stereolithography. With steadily rising utilization, evaluating the environmental impact of AM materials has become essential, as these materials may act as emerging pollutants. Photopolymerizing resins (PRs) used in stereolithography can enter terrestrial ecosystems in polymerized and unpolymerized forms due to improper disposal. Insects are likely to be among the first organisms exposed to these contaminants in land ecosystems. This study evaluates the physiological effects of photopolymerizing resin particles (PRPs) produced via sanding on tropical house crickets (Gryllodes sigillatus) that were fed PRPs-contaminated agarose gels for 10 days. Effects were evaluated through mortality observations and enzymatic activity assays of cell transport mediating enzymes, digestive enzymes, and antioxidative stress enzymes. PRPs exposure caused sex-dependent differences in survival; an increase in amylase, alanine aminotransferase, aspartate aminotransferase, and trypsin; and a decrease in alkaline phosphatase, glutathione peroxidase, and superoxide dismutase activity, indicating molecular and cellular damage. PRPs’ toxicity might be enhanced due to a sex-dependent pulverization capability exhibited by G. sigillatus. These findings underscore the potential ecological risks associated with PRPs in terrestrial environments and the need for further research on their environmental impact. Full article
(This article belongs to the Special Issue Toxicity Mechanism of Emerging Pollutants: 2nd Edition)
Show Figures

Graphical abstract

14 pages, 2234 KB  
Article
A Novel Approach for Optimizing Molecularly Imprinted Polymer Composition in Electrochemical Detection of Collagen Peptides
by Naphatsawan Vongmanee, Jindapa Nampeng, Katesirin Rattanapithan, Phuritasinee Sriwichai, Chuchart Pintavirooj and Sarinporn Visitsattapongse
Bioengineering 2025, 12(11), 1272; https://doi.org/10.3390/bioengineering12111272 - 19 Nov 2025
Viewed by 437
Abstract
Collagen peptides are key structural proteins that play an important role in maintaining the integrity and proper function of multiple tissues in the human body. Their breakdown is recognized as an important biomarker for various degenerative conditions, including the loss of muscle mass, [...] Read more.
Collagen peptides are key structural proteins that play an important role in maintaining the integrity and proper function of multiple tissues in the human body. Their breakdown is recognized as an important biomarker for various degenerative conditions, including the loss of muscle mass, joint and bone disorders, and compromised skin health. Current analytical approaches for collagen detection, such as ultraviolet spectrometry, enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and histochemical staining, are widely used but often expensive, time-consuming, and reliant on specific laboratory instrumentation, limiting their practicality for routine or rapid diagnostics. This study reports a novel biosensor for collagen peptide detection based on molecularly imprinted polymers (MIPs) integrated with screen-printed electrodes (SPEs). Electrochemical measurements revealed a clear correlation between collagen concentration and current response, confirming effective molecular binding within the imprinted matrix. The optimized MIP-modified electrode exhibited a detection range of 0.1–1000 µg/mL with a limit of detection (LOD) of 1.0106 µg/mL, limit of quantification (LOQ) of 4.46 µg/mL, sensitivity of 8.3816, and correlation coefficient (R2 = 0.9436). These results highlight strong selectivity and sensitivity toward collagen peptides. The proposed MIP-based biosensor provides a rapid, low-cost platform for detecting collagen degradation products and holds potential for early diagnosis and future clinical applications in degenerative disease monitoring. Full article
(This article belongs to the Special Issue Microfluidics and Sensor Technologies in Biomedical Engineering)
Show Figures

Graphical abstract

16 pages, 1997 KB  
Article
A 3D-Printed PMMA Microneedle-Based TSA-ELISA Platform for Noninvasive Inflammatory Biomarker Detection
by Minghui Xu, Qingyu Ruan and Yukun Ren
Micromachines 2025, 16(11), 1286; https://doi.org/10.3390/mi16111286 - 14 Nov 2025
Viewed by 366
Abstract
Inflammatory cytokines and proteins are essential indicators of immune status and disease progression; however, conventional assays rely on invasive sampling and complex processing, restricting their use in real-time monitoring. Here, we present a 3D-printed poly(methyl methacrylate) (PMMA) microneedle-based biosensing platform integrated with a [...] Read more.
Inflammatory cytokines and proteins are essential indicators of immune status and disease progression; however, conventional assays rely on invasive sampling and complex processing, restricting their use in real-time monitoring. Here, we present a 3D-printed poly(methyl methacrylate) (PMMA) microneedle-based biosensing platform integrated with a tyramide signal amplification–enhanced enzyme-linked immunosorbent assay (TSA–ELISA) for noninvasive and highly sensitive detection of inflammatory biomarkers in interstitial fluid. The microneedles exhibit precise geometry, adequate mechanical strength, and excellent biocompatibility, facilitating efficient skin penetration and biomarker capture. Stepwise chemical functionalization ensured stable antibody immobilization, while TSA significantly amplified detection signals. The platform achieved reliable, reproducible, and multiplex detection of cytokines and albumin in both healthy individuals and patients with inflammatory skin conditions. Notably, the measured cytokine level in lesional skin of eczema patients was 97.7 pg/mL, showing a significant difference from the 62.8 pg/mL observed in healthy subjects. This MN-based TSA–ELISA system offers a robust and minimally invasive strategy for monitoring inflammation-related biomarkers, holding great potential for clinical diagnostics and personalized healthcare applications. Full article
(This article belongs to the Section B1: Biosensors)
Show Figures

Figure 1

31 pages, 910 KB  
Review
The Shift to Bio-Based Auxiliaries in Textile Wet Processing: Recent Advances and Industrial Potential
by Maria L. Catarino, Filipa Sampaio, Luísa Pacheco and Ana L. Gonçalves
Molecules 2025, 30(19), 4016; https://doi.org/10.3390/molecules30194016 - 8 Oct 2025
Viewed by 1340
Abstract
The textile industry is among the most resource-intensive sectors, heavily dependent on water, energy, and synthetic chemicals, particularly in wet processing stages such as desizing, scouring, bleaching, dyeing, printing, and finishing. Conventional practices generate vast amounts of contaminated wastewater, posing severe risks to [...] Read more.
The textile industry is among the most resource-intensive sectors, heavily dependent on water, energy, and synthetic chemicals, particularly in wet processing stages such as desizing, scouring, bleaching, dyeing, printing, and finishing. Conventional practices generate vast amounts of contaminated wastewater, posing severe risks to ecosystems and human health. In recent years, growing environmental concerns and stricter regulations have accelerated the search for sustainable alternatives. Biotechnology offers promising solutions, including enzymes, biopolymers, plant- and agrowaste-derived materials, and microbial metabolites, which can replace conventional auxiliaries and reduce the ecological footprint of textile processing. This review provides a structured overview of recent advances in bio-based compounds applied across different stages of textile wet processing. Applications are critically assessed in terms of performance, efficiency, environmental benefits, and potential for industrial adoption. Current limitations, future outlooks, and examples of commercially available products are also discussed. By highlighting the most recent progress, this review underscores the potential of bio-based innovations to support the transition toward more sustainable and resource-efficient textile manufacturing. Full article
(This article belongs to the Special Issue Advances in Biomass Chemicals: Transformation and Valorization)
Show Figures

Figure 1

36 pages, 2691 KB  
Review
Advanced Electrochemical Sensors for Rapid and Sensitive Monitoring of Tryptophan and Tryptamine in Clinical Diagnostics
by Janani Sridev, Arif R. Deen, Md Younus Ali, Wei-Ting Ting, M. Jamal Deen and Matiar M. R. Howlader
Biosensors 2025, 15(9), 626; https://doi.org/10.3390/bios15090626 - 19 Sep 2025
Viewed by 1676
Abstract
Tryptophan (Trp) and tryptamine (Tryp), critical biomarkers in mood regulation, immune function, and metabolic homeostasis, are increasingly recognized for their roles in both oral and systemic pathologies, including neurodegenerative disorders, cancers, and inflammatory conditions. Their rapid, sensitive detection in biofluids such as saliva—a [...] Read more.
Tryptophan (Trp) and tryptamine (Tryp), critical biomarkers in mood regulation, immune function, and metabolic homeostasis, are increasingly recognized for their roles in both oral and systemic pathologies, including neurodegenerative disorders, cancers, and inflammatory conditions. Their rapid, sensitive detection in biofluids such as saliva—a non-invasive, real-time diagnostic medium—offers transformative potential for early disease identification and personalized health monitoring. This review synthesizes advancements in electrochemical sensor technologies tailored for Trp and Tryp quantification, emphasizing their clinical relevance in diagnosing conditions like oral squamous cell carcinoma (OSCC), Alzheimer’s disease (AD), and breast cancer, where dysregulated Trp metabolism reflects immune dysfunction or tumor progression. Electrochemical platforms have overcome the limitations of conventional techniques (e.g., enzyme-linked immunosorbent assays (ELISA) and mass spectrometry) by integrating innovative nanomaterials and smart engineering strategies. Carbon-based architectures, such as graphene (Gr) and carbon nanotubes (CNTs) functionalized with metal nanoparticles (Ni and Co) or nitrogen dopants, amplify electron transfer kinetics and catalytic activity, achieving sub-nanomolar detection limits. Synergies between doping and advanced functionalization—via aptamers (Apt), molecularly imprinted polymers (MIPs), or metal-oxide hybrids—impart exceptional selectivity, enabling the precise discrimination of Trp and Tryp in complex matrices like saliva. Mechanistically, redox reactions at the indole ring are optimized through tailored electrode interfaces, which enhance reaction kinetics and stability over repeated cycles. Translational strides include 3D-printed microfluidics and wearable sensors for continuous intraoral health surveillance, demonstrating clinical utility in detecting elevated Trp levels in OSCC and breast cancer. These platforms align with point-of-care (POC) needs through rapid response times, minimal fouling, and compatibility with scalable fabrication. However, challenges persist in standardizing saliva collection, mitigating matrix interference, and validating biomarkers across diverse populations. Emerging solutions, such as AI-driven analytics and antifouling coatings, coupled with interdisciplinary efforts to refine device integration and manufacturing, are critical to bridging these gaps. By harmonizing material innovation with clinical insights, electrochemical sensors promise to revolutionize precision medicine, offering cost-effective, real-time diagnostics for both localized oral pathologies and systemic diseases. As the field advances, addressing stability and scalability barriers will unlock the full potential of these technologies, transforming them into indispensable tools for early intervention and tailored therapeutic monitoring in global healthcare. Full article
(This article belongs to the Special Issue Nanomaterial-Based Biosensors for Point-of-Care Testing)
Show Figures

Figure 1

17 pages, 2819 KB  
Article
Robust Pt/Au Composite Nanostructures for Abiotic Glucose Sensing
by Asghar Niyazi, Ashley Linden and Mirella Di Lorenzo
Biosensors 2025, 15(9), 588; https://doi.org/10.3390/bios15090588 - 8 Sep 2025
Viewed by 830
Abstract
Effective glucose monitoring is paramount for patients with diabetes to effectively manage their condition and prevent health complications. Electrochemical sensors for glucose monitoring have key advantages over other systems, including cost-effectiveness, miniaturisation and portability, enabling the design of compact and wearable devices. Typically, [...] Read more.
Effective glucose monitoring is paramount for patients with diabetes to effectively manage their condition and prevent health complications. Electrochemical sensors for glucose monitoring have key advantages over other systems, including cost-effectiveness, miniaturisation and portability, enabling the design of compact and wearable devices. Typically, enzymes are used in these sensors, with the limitations of poor stability and high cost. In alternative, this study reports the development of a gold and platinum composite nanostructured electrode and its testing as an abiotic (enzyme-free) electrocatalyst for glucose oxidation. The electrode consists of a film of highly porous gold electrodeposited onto gold-plated electrodes on a printed circuit board (PCB), which is coated with polyaniline decorated with platinum nanoparticles. The resulting nanocomposite structure shows a sensitivity towards glucose as high as 95.12 ± 2.54 µA mM−1 cm−2, nearly twice that of the highly porous gold electrodes, and excellent stability in synthetic interstitial fluid over extended testing, thus demonstrating robustness. Accordingly, this study lays the groundwork for the next generation of durable, selective, and affordable abiotic glucose biosensors. Full article
Show Figures

Figure 1

28 pages, 3865 KB  
Review
Recent Advances and Future Perspectives on Heat and Mass Transfer Mechanisms Enhanced by Preformed Porous Media in Vacuum Freeze-Drying of Agricultural and Food Products
by Xinkang Hu, Bo Zhang, Xintong Du, Huanhuan Zhang, Tianwen Zhu, Shuang Zhang, Xinyi Yang, Zhenpeng Zhang, Tao Yang, Xu Wang and Chundu Wu
Foods 2025, 14(17), 2966; https://doi.org/10.3390/foods14172966 - 25 Aug 2025
Cited by 1 | Viewed by 2061
Abstract
Preformed porous media (PPM) technology has emerged as a transformative approach to enhance heat and mass transfer in vacuum freeze-drying (VFD) of agricultural and food products. This review systematically analyzes recent advances in PPM research, with particular focus on spray freeze-drying (SFD) as [...] Read more.
Preformed porous media (PPM) technology has emerged as a transformative approach to enhance heat and mass transfer in vacuum freeze-drying (VFD) of agricultural and food products. This review systematically analyzes recent advances in PPM research, with particular focus on spray freeze-drying (SFD) as the dominant technique for precision pore architecture control. Empirical studies confirm PPM’s efficacy: drying time reductions of 20–50% versus conventional VFD while improving product quality (e.g., 15% higher ginsenoside retention in ginseng, 90% enzyme activity preservation). Key innovations include gradient porous structures and multi-technology coupling strategies that fundamentally alter transfer mechanisms through: resistance mitigation via interconnected macropores (50–500 μm, 40–90% porosity), pseudo-convection effects enabling 30% faster vapor removal, and radiation enhancement boosting absorption by 40–60% and penetration depth 2–3 times. While inherent VFD limitations (e.g., low thermal conductivity) persist, we identify PPM-specific bottlenecks: precision regulation of pore structures (<5% size deviation), scalable fabrication of gradient architectures, synergy mechanisms in multi-field coupling (e.g., microwave-PPM interactions). The most promising advancements include 3D-printed gradient pores for customized transfer paths, intelligent monitoring-feedback systems, and multiscale modeling bridging pore-scale physics to macroscale kinetics. This review provides both a critical assessment of current progress and a forward-looking perspective to guide future research and industrial adoption of PPM-enhanced VFD. Full article
Show Figures

Figure 1

18 pages, 5866 KB  
Article
Enzyme-Triggered Formation of Tensegrity Structures for Mechanospatial Manipulation of Hydrogels
by Juan Wang, Xu Han, Qingtai Li, Meng Qin, Bin Xue, Wenxu Sun, Yi Cao and Wei Sun
Gels 2025, 11(8), 654; https://doi.org/10.3390/gels11080654 - 18 Aug 2025
Viewed by 710
Abstract
Hydrogels with spatially programmable mechanical properties hold great potential for use in biomedical applications. Inspired by the architecture of the cytoskeleton, we present a strategy for constructing tensegrity-structured hydrogels (TS-Gels) through enzyme-triggered crystal growth to enable precise mechanospatial manipulation. Specifically, alkaline phosphatase (ALP) [...] Read more.
Hydrogels with spatially programmable mechanical properties hold great potential for use in biomedical applications. Inspired by the architecture of the cytoskeleton, we present a strategy for constructing tensegrity-structured hydrogels (TS-Gels) through enzyme-triggered crystal growth to enable precise mechanospatial manipulation. Specifically, alkaline phosphatase (ALP) was covalently anchored to a polyacrylamide (PAAm) hydrogel matrix to catalyze the in situ dephosphorylation of phosphotyrosine precursors, leading to the formation of rigid tyrosine crystals. These crystals functioned as compressive sticks, establishing tensegrity structures within the hydrogel network. By tuning the crystallization kinetics, both the structural morphology and mechanical reinforcement could be precisely controlled. The resulting TS-Gels exhibited significantly enhanced local tensile strength and stiffness, allowing for spatial–mechanical patterning via photo-initiated printing, mold-assisted shaping, and laser engraving. Furthermore, the unique mechanospatial tunability of TS-Gels was demonstrated in tribological surface engineering, underscoring their potential for use in tissue engineering and responsive biomaterials. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Figure 1

16 pages, 2230 KB  
Article
Three-Dimensional-Printed Biomimetic Scaffolds for Investigating Osteoblast-Like Cell Interactions in Simulated Microgravity: An In Vitro Platform for Bone Tissue Engineering Research
by Eleonora Zenobi, Giulia Gramigna, Elisa Scatena, Luca Panizza, Carlotta Achille, Raffaella Pecci, Annalisa Convertino, Costantino Del Gaudio, Antonella Lisi and Mario Ledda
J. Funct. Biomater. 2025, 16(8), 271; https://doi.org/10.3390/jfb16080271 - 24 Jul 2025
Cited by 1 | Viewed by 1420
Abstract
Three-dimensional cell culture systems are relevant in vitro models for studying cellular behavior. In this regard, this present study investigates the interaction between human osteoblast-like cells and 3D-printed scaffolds mimicking physiological and osteoporotic bone structures under simulated microgravity conditions. The objective is to [...] Read more.
Three-dimensional cell culture systems are relevant in vitro models for studying cellular behavior. In this regard, this present study investigates the interaction between human osteoblast-like cells and 3D-printed scaffolds mimicking physiological and osteoporotic bone structures under simulated microgravity conditions. The objective is to assess the effects of scaffold architecture and dynamic culture conditions on cell adhesion, proliferation, and metabolic activity, with implications for osteoporosis research. Polylactic acid scaffolds with physiological (P) and osteoporotic-like (O) trabecular architectures were 3D-printed by means of fused deposition modeling technology. Morphometric characterization was performed using micro-computed tomography. Human osteoblast-like SAOS-2 and U2OS cells were cultured on the scaffolds under static and dynamic simulated microgravity conditions using a rotary cell culture system (RCCS). Scaffold biocompatibility, cell viability, adhesion, and metabolic activity were evaluated through Bromodeoxyuridine incorporation assays, a water-soluble tetrazolium salt assay, and an enzyme-linked immunosorbent assay of tumor necrosis factor-α secretion. Both scaffold models supported osteoblast-like cell adhesion and growth, with an approximately threefold increase in colonization observed on the high-porosity O scaffolds under dynamic conditions. The dynamic environment facilitated increased surface interaction, amplifying the effects of scaffold architecture on cell behavior. Overall, sustained cell growth and metabolic activity, together with the absence of detectable inflammatory responses, confirmed the biocompatibility of the system. Scaffold microstructure and dynamic culture conditions significantly influence osteoblast-like cell behavior. The combination of 3D-printed scaffolds and a RCCS bioreactor provides a promising platform for studying bone remodeling in osteoporosis and microgravity-induced bone loss. These findings may contribute to the development of advanced in vitro models for biomedical research and potential countermeasures for bone degeneration. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Graphical abstract

26 pages, 1247 KB  
Review
Recent Progress in the Application of Electrospinning Technology in the Biomedical Field
by Qun Wang, Peng Ji, Tian Bu, Yating Mao, Hailun He and Naijing Ge
J. Funct. Biomater. 2025, 16(7), 266; https://doi.org/10.3390/jfb16070266 - 18 Jul 2025
Cited by 4 | Viewed by 2179
Abstract
Electrospinning has emerged as a highly effective technique for fabricating micro- and nanofibers, which are characterized by high porosity, large surface area, and structural mimicry of the extracellular matrix (ECM). These properties render it particularly suitable for biomedical applications. This review provides a [...] Read more.
Electrospinning has emerged as a highly effective technique for fabricating micro- and nanofibers, which are characterized by high porosity, large surface area, and structural mimicry of the extracellular matrix (ECM). These properties render it particularly suitable for biomedical applications. This review provides a comprehensive overview of recent developments in electrospinning-based strategies across various biomedical fields, including tissue engineering, drug delivery, wound healing, enzyme immobilization, biosensing, and protective materials. The distinctive advantages of electrospun fibers—such as excellent biocompatibility, tunable architecture, and facile surface functionalization—are discussed, alongside challenges such as the toxicity of organic solvents and limitations in scalability. Emerging approaches, including environmentally benign electrospinning techniques and integration with advanced technologies such as 3D printing and microfluidics, present promising solutions for intelligent and personalized biomedical applications. Full article
Show Figures

Figure 1

14 pages, 4505 KB  
Article
Electrochemical Determination of Creatinine Based on Multienzyme Cascade-Modified Nafion/Gold Nanoparticles/Screen-Printed Carbon Composite Biosensors
by Jialin Yang, Ruizhi Yu, Wanxin Zhang, Yijia Wang and Zejun Deng
Sensors 2025, 25(13), 4132; https://doi.org/10.3390/s25134132 - 2 Jul 2025
Viewed by 1654
Abstract
Creatinine serves as a crucial diagnostic biomarker for assessing kidney disease. This work developed portable non-enzymatic and multienzyme-modified electrochemical biosensors for the detection of creatinine based on commercial screen-printed carbon electrodes (SPCEs). The non-enzymatic creatinine sensor was constructed by the electrochemical deposition of [...] Read more.
Creatinine serves as a crucial diagnostic biomarker for assessing kidney disease. This work developed portable non-enzymatic and multienzyme-modified electrochemical biosensors for the detection of creatinine based on commercial screen-printed carbon electrodes (SPCEs). The non-enzymatic creatinine sensor was constructed by the electrochemical deposition of AuNPs onto the surface of a pre-activated SPCE by electrochemical activation, followed by the surface modification of a Nafion membrane. The developed AuNPs/SCPE exhibited excellent reproducibility, and the proposed Nafion/AuNPs/SPCE sensor showed excellent detection sensitivity and selectivity toward creatinine. In comparison, the enzymatic creatinine biosensor was gradually established by the electrodeposition of a Prussian blue (PB) membrane on the optimal AuNPs/SCPE surface, followed by multi-enzyme cascade modification (which consisted of creatinine amidohydrolase (CA), creatine oxidase (CI) and sarcosine oxidase (SOx)) and drop-casting the Nafion membrane to stabilize the interface. The introduction of a PB interlayer acted as the redox layer to monitor the generation of hydrogen peroxide (H2O2) produced by the enzymatic reaction, while the Nafion membrane enhanced the detection selectivity toward creatine, and the multi-enzyme cascade modification further increased the detection specificity. Both non-enzymatic and enzymatic creatinine sensors could detect the lowest concentrations of less than or equal to 10 μM. In addition, the efficiency and reproducibility of the proposed composite biosensor were also confirmed by repetitive electrochemical measurements in human serum, which showed a positive linear calibration relation of peak currents versus the logarithm of the concentration between 10 μM and 1000 μM, namely, ip (μA) = −7.06 lgC (μM) −5.30, R2 = 0.996. This work offers a simple and feasible approach to the development of enzymatic and non-enzymatic creatinine biosensors. Full article
Show Figures

Figure 1

26 pages, 3140 KB  
Review
Biodegradation of Poly(ε-caprolactone): Microorganisms, Enzymes, and Mechanisms
by Nikolay Krumov, Nikolina Atanasova, Ivanka Boyadzhieva, Kaloyan Petrov and Penka Petrova
Int. J. Mol. Sci. 2025, 26(12), 5826; https://doi.org/10.3390/ijms26125826 - 18 Jun 2025
Cited by 3 | Viewed by 3349
Abstract
Poly(ε-caprolactone) (PCL) is a synthetic plastic known for its excellent physicochemical properties and a wide range of applications in packaging, coatings, foaming, and agriculture. In medicine, its versatility allows it to function as a scaffold for drug delivery, sutures, implants, tissue engineering, and [...] Read more.
Poly(ε-caprolactone) (PCL) is a synthetic plastic known for its excellent physicochemical properties and a wide range of applications in packaging, coatings, foaming, and agriculture. In medicine, its versatility allows it to function as a scaffold for drug delivery, sutures, implants, tissue engineering, and 3D printing. In addition to its biocompatibility, PCL’s most notable characteristic is its biodegradability. However, this property is affected by temperature, microbial activity, and environmental conditions, which means PCL can sometimes remain in nature for long periods. This review shows that various types of microorganisms can efficiently degrade PCL, including different strains of Pseudomonas spp., Streptomyces spp., Alcaligenes faecalis, and fungi like Aspergillus oryzae, Fusarium spp., Rhizopus delemar, and Thermomyces lanuginosus. These microorganisms produce enzymes such as lipases, esterases, and cutinases that break down PCL into smaller molecules that act as substrates. The review also examines the phylogenetic diversity of organisms capable of biodegrading PCL, the biochemical pathways involved in this process, and specific aspects of the genetic framework responsible for the expression of the enzymes that facilitate degradation. Targeted research on microbial PCL biodegradation and its practical applications could significantly aid in reducing and managing plastic waste on a global ecological scale. Full article
Show Figures

Graphical abstract

13 pages, 1792 KB  
Article
A High-Sensitivity, Bluetooth-Enabled PCB Biosensor for HER2 and CA15-3 Protein Detection in Saliva: A Rapid, Non-Invasive Approach to Breast Cancer Screening
by Hsiao-Hsuan Wan, Chao-Ching Chiang, Fan Ren, Cheng-Tse Tsai, Yu-Siang Chou, Chun-Wei Chiu, Yu-Te Liao, Dan Neal, Coy D. Heldermon, Mateus G. Rocha and Josephine F. Esquivel-Upshaw
Biosensors 2025, 15(6), 386; https://doi.org/10.3390/bios15060386 - 15 Jun 2025
Cited by 2 | Viewed by 2845
Abstract
Breast cancer is a leading cause of cancer-related mortality worldwide, requiring efficient diagnostic tools for early detection and monitoring. Human epidermal growth factor receptor 2 (HER2) is a key biomarker for breast cancer classification, typically assessed using immunohistochemistry (IHC). However, IHC requires invasive [...] Read more.
Breast cancer is a leading cause of cancer-related mortality worldwide, requiring efficient diagnostic tools for early detection and monitoring. Human epidermal growth factor receptor 2 (HER2) is a key biomarker for breast cancer classification, typically assessed using immunohistochemistry (IHC). However, IHC requires invasive biopsies and time-intensive laboratory procedures. In this study, we present a biosensor integrated with a reusable printed circuit board (PCB) and functionalized glucose test strips designed for rapid and non-invasive HER2 detection in saliva. The biosensor achieved a limit of detection of 10−15 g/mL, 4 to 5 orders of magnitude more sensitive than the enzyme-linked immunosorbent assay (ELISA), with a sensitivity of 95/dec and a response time of 1 s. In addition to HER2, the biosensor also detects cancer antigen 15-3 (CA15-3), another clinically relevant breast cancer biomarker. The CA15-3 test demonstrated an equally low limit of detection, 10−15 g/mL, and a higher sensitivity, 190/dec, further validated using human saliva samples. Clinical validation using 29 saliva samples confirmed our biosensor’s ability to distinguish between healthy, in situ breast cancer, and invasive breast cancer patients. The system, which integrates a Bluetooth Low-Energy (BLE) module, enables remote monitoring, reduces hospital visits, and enhances accessibility for point-of-care and mobile screening applications. This ultra-sensitive, rapid, and portable biosensor can serve as a promising alternative for breast cancer detection and monitoring, particularly in rural and underserved communities. Full article
(This article belongs to the Special Issue Aptamer-Based Biosensors for Point-of-Care Diagnostics)
Show Figures

Figure 1

33 pages, 2401 KB  
Review
Recent Advances in Enzyme Immobilization: The Role of Artificial Intelligence, Novel Nanomaterials, and Dynamic Carrier Systems
by Melesse Tadesse and Yun Liu
Catalysts 2025, 15(6), 571; https://doi.org/10.3390/catal15060571 - 9 Jun 2025
Cited by 10 | Viewed by 11400
Abstract
Enzymes, as nature’s precision biocatalysts, hold transformative potential across industrial, environmental, and biomedical sectors. However, their instability, solvent sensitivity, and limited reusability in their free form necessitate advanced immobilization strategies to enhance their robustness and scalability. This review critically examines cutting-edge advancements in [...] Read more.
Enzymes, as nature’s precision biocatalysts, hold transformative potential across industrial, environmental, and biomedical sectors. However, their instability, solvent sensitivity, and limited reusability in their free form necessitate advanced immobilization strategies to enhance their robustness and scalability. This review critically examines cutting-edge advancements in enzyme immobilization, focusing on the integration of artificial intelligence (AI), novel nanomaterials, and dynamic carrier systems to overcome the traditional limitations of mass transfer, enzyme leakage, and cost inefficiency. Key innovations such as metal–organic frameworks (MOFs), magnetic nanoparticles, self-healing hydrogels, and 3D-printed scaffolds are highlighted for their ability to optimize enzyme orientation, stability, and catalytic efficiency under extreme conditions. Moreover, AI-driven predictive modeling and machine learning emerge as pivotal tools for rationalizing nanomaterial synthesis, multi-enzyme cascade design, and toxicity assessment, while microfluidic systems enable precise biocatalyst fabrication. This review also explores emerging carrier-free strategies, including cross-linked enzyme aggregates (CLEAs) and DNA-directed immobilization, which minimize diffusion barriers and enhance substrate affinity. Despite progress, challenges persist in regards to eco-friendly nanomaterial production, industrial scalability, and real-world application viability. Future directions emphasize sustainable hybrid material design, AI-aided lifecycle assessments, and interdisciplinary synergies between synthetic biology, nanotechnology, and data analytics. By connecting laboratory innovation with industrial needs, this work provides a forward-thinking framework to harness immobilized enzymes for achieving global sustainability goals, particularly in bioremediation, bioenergy, and precision medicine. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

Back to TopTop