Microfluidics and Sensor Technologies in Biomedical Engineering

A special issue of Bioengineering (ISSN 2306-5354). This special issue belongs to the section "Biosignal Processing".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 3753

Special Issue Editor


E-Mail Website
Guest Editor
1. Institute for Health Innovation & Technology (iHealthtech), National University of Singapore (NUS), MD6, 14 Medical Drive, #14-01, Singapore 117599, Singapore
2. Department of Biomedical Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore 117583, Singapore
Interests: wearable soft microtube sensors; cell-based diagnosis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Microfluidics and sensing technologies have converged in a fascinating partnership, creating powerful tools for diverse applications in bioengineering and healthcare. From sorting cells, mixing reagents, or analysing blood samples, microfluidic platforms promise efficiency, portability, affordability, and scalability. The seamless integration of microfluidic platforms with next-generation miniaturised sensors could drive real-time monitoring, diagnostics, and personalised medicine.

Despite rapid development in this field, many challenges remain–how do we fit a complex network of microchannels and sensors into a chip that is the size of a postage stamp? How can we automate sample collection and processing? How do we ensure biocompatibility, long-term stability, and reliability? How do we package the reagents for testing in remote areas? And, as we embrace artificial intelligence, what role can it play in orchestrating real-time feedback and data acquisition?

This special issue aims to put a spotlight on recent developments in integrating microfluidic and sensing technologies and their pivotal role in shaping the landscape of precision diagnostics. We invite contributions focusing on novel microfabrication methods, smart miniaturised devices, lab-on-a-chip, and the role of artificial intelligence in controlling fluid behaviour. We welcome submissions spanning the integration of optical, electrochemical, mechanical, and other biosensors. We aim to offer an insightful panorama of the dynamic landscape of this interdisciplinary field and its promise of transformative advancements in accessible healthcare and beyond.

Dr. Ali Asgar Bhagat
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Bioengineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • lab-on-a-chip
  • microfluidics fabrication
  • MEMS
  • point-of-care diagnostics
  • biosensors
  • materials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

26 pages, 3835 KiB  
Article
Event-Level Identification of Sleep Apnea Using FMCW Radar
by Hao Zhang, Shining Bo, Xuan Zhang, Peng Wang, Lidong Du, Zhenfeng Li, Pang Wu, Xianxiang Chen, Libin Jiang and Zhen Fang
Bioengineering 2025, 12(4), 399; https://doi.org/10.3390/bioengineering12040399 - 8 Apr 2025
Viewed by 440
Abstract
Sleep apnea, characterized by its high prevalence and serious health consequences, faces a critical bottleneck in diagnosis. Polysomnography (PSG), the gold standard, is costly and cumbersome, while wearable devices struggle with quality control and patient compliance, rendering them as unsuitable for both large-scale [...] Read more.
Sleep apnea, characterized by its high prevalence and serious health consequences, faces a critical bottleneck in diagnosis. Polysomnography (PSG), the gold standard, is costly and cumbersome, while wearable devices struggle with quality control and patient compliance, rendering them as unsuitable for both large-scale screening and continuous monitoring. To address these challenges, this research introduces a contactless, low-cost, and accurate event-level sleep apnea detection method leveraging frequency-modulated continuous-wave (FMCW) radar technology. The core of our approach is a novel deep-learning model, built upon the U-Net architecture and augmented with self-attention mechanisms and squeeze-and-excitation (SE) modules, meticulously designed for the precise event-level segmentation of sleep apnea from FMCW radar signals. Crucially, we integrate blood oxygen saturation (SpO2) prediction as an auxiliary task within a multitask-learning framework to enhance the model’s feature extraction capabilities and clinical utility by capturing physiological correlations between apnea events and oxygen levels. Rigorous evaluation in a clinical dataset, comprising data from 35 participants, with synchronized PSG and radar data demonstrated a performance exceeding that of the baseline methods (Base U-Net and CNN–MHA), achieving a high level of accuracy in event-level segmentation (with an F1-score of 0.8019) and OSA severity grading (91.43%). These findings underscore the significant potential of our radar-based event-level detection system as a non-contact, low-cost, and accurate solution for OSA assessment. This technology offers a promising avenue for transforming sleep apnea diagnosis, making large-scale screening and continuous home monitoring a practical reality and ultimately leading to improved patient outcomes and public health impacts. Full article
(This article belongs to the Special Issue Microfluidics and Sensor Technologies in Biomedical Engineering)
Show Figures

Graphical abstract

22 pages, 5917 KiB  
Article
Development of a Widely Accessible, Advanced Large-Scale Microfluidic Airway-on-Chip
by Brady Rae, Gwenda F. Vasse, Jalal Mosayebi, Maarten van den Berge, Simon D. Pouwels and Irene H. Heijink
Bioengineering 2025, 12(2), 182; https://doi.org/10.3390/bioengineering12020182 - 13 Feb 2025
Viewed by 1169
Abstract
On-chip microfluidics are advanced in vitro models that simulate lung tissue’s native 3D environment more closely than static 2D models to investigate the complex lung architecture and multifactorial processes that lead to pulmonary disease. Current microfluidic systems can be restrictive in the quantities [...] Read more.
On-chip microfluidics are advanced in vitro models that simulate lung tissue’s native 3D environment more closely than static 2D models to investigate the complex lung architecture and multifactorial processes that lead to pulmonary disease. Current microfluidic systems can be restrictive in the quantities of biological sample that can be retrieved from a single micro-channel, such as RNA, protein, and supernatant. Here, we describe a newly developed large-scale airway-on-chip model that employs a surface area for a cell culture wider than that in currently available systems. This enables the collection of samples comparable in volume to traditional cell culture systems, making the device applicable to any workflow utilizing these static systems (RNA isolation, ELISA, etc.). With our construction method, this larger culture area allows for easier handling, the potential for a wide range of exposures, as well as the collection of low-quantity samples (e.g., volatiles or mitochondrial RNA). The model consists of two large polydimethylsiloxane (PDMS) cell culture chambers under an independent flow of medium or air, separated by a semi-permeable polyethylene (PET) cell culture membrane (23 μm thick, 0.4 μm pore size). Each chamber carries a 5 × 18 mm, 90 mm2 (92 mm2 with tapered chamber inlets) surface area that can contain up to 1–2 × 104 adherent structural lung cells and can be utilized for close contact co-culture studies of different lung cell types, including airway epithelial cells, fibroblasts, smooth muscle cells, and endothelial cells. The parallel bi-chambered design of the chip allows for epithelial cells to be cultured at the air–liquid interface (ALI) and differentiation into a dense, multi-layered, pseudostratified epithelium under biological flow rates. This millifluidic airway-on-chip advances the field by providing a readily reproducible, easily adjustable, and cost-effective large-scale fluidic 3D airway cell culture platform. Full article
(This article belongs to the Special Issue Microfluidics and Sensor Technologies in Biomedical Engineering)
Show Figures

Figure 1

10 pages, 16522 KiB  
Article
Metered-Dose Inhaler Spacer with Integrated Spirometer for Home-Based Asthma Monitoring and Drug Uptake
by Cheuk-Yan Au, Kelleen J. X. Koh, Hui Fang Lim and Ali Asgar Saleem Bhagat
Bioengineering 2024, 11(6), 552; https://doi.org/10.3390/bioengineering11060552 - 29 May 2024
Viewed by 1655
Abstract
This work introduces Spiromni, a single device incorporating three different pressurised metered-dose inhaler (pMDI) accessories: a pMDI spacer, an electronic monitoring device (EMD), and a spirometer. While there are devices made to individually address the issues of technique, adherence and monitoring, respectively, for [...] Read more.
This work introduces Spiromni, a single device incorporating three different pressurised metered-dose inhaler (pMDI) accessories: a pMDI spacer, an electronic monitoring device (EMD), and a spirometer. While there are devices made to individually address the issues of technique, adherence and monitoring, respectively, for asthma patients as laid out in the Global Initiative for Asthma’s (GINA) global strategy for asthma management and prevention, Spiromni was designed to address all three issues using a single, combination device. Spiromni addresses the key challenge of measuring both inhalation and exhalation profiles, which are different by an order of magnitude. Moreover, the innovative design prevents exhalation from entering the spacer chamber and prevents medication loss during inhalation using umbrella valves without a loss in flow velocity. Apart from recording the peak exhalation flow rate, data from the sensors allow us to extract other key lung volume and capacities measures similar to a medical pulmonary function test. We believe this low-cost portable multi-functional device will benefit both asthma patients and clinicians in the management of the disease. Full article
(This article belongs to the Special Issue Microfluidics and Sensor Technologies in Biomedical Engineering)
Show Figures

Graphical abstract

Back to TopTop