Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (914)

Search Parameters:
Keywords = energy storage density and efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2091 KB  
Article
Use of a Cobalt-Based Redox Electrolyte in Hybrid Electrochromic Devices
by Eleftheria Merkoulidi and George Syrrokostas
Energies 2026, 19(1), 68; https://doi.org/10.3390/en19010068 (registering DOI) - 23 Dec 2025
Abstract
In the present study, highly transparent evaporated tungsten oxide films with improved charge storage properties were used in battery-like (b-ECDs) and hybrid electrochromic devices (h-ECDs). A Co2+/3+ redox couple was added to the electrolyte as an alternative to other redox couples that [...] Read more.
In the present study, highly transparent evaporated tungsten oxide films with improved charge storage properties were used in battery-like (b-ECDs) and hybrid electrochromic devices (h-ECDs). A Co2+/3+ redox couple was added to the electrolyte as an alternative to other redox couples that have been already used in h-ECDs. The as-prepared h-ECDs, colored homogeneously, exhibited a contrast ratio of up to 7:1 in the visible spectrum, at a cathodic voltage of −2.5 V for only 10 s, compared to 3.5:1 at a cathodic voltage of −3 V for 180 s for a b-ECD. Moreover, when the redox couple was present in the electrolyte, almost a 50% higher areal capacitance and a 55% lower charge transfer resistance at the electrochromic layer/electrolyte interface were achieved. Also, the results show that the optical performance depends strongly on the coloration procedure (potentiostatic or galvanostatic), that self-bleaching is not so intense, and especially that the energy density consumed during bleaching is reduced in the presence of the redox couple. Overall, the findings of this study highlight the benefits of using a cobalt redox electrolyte in h-ECDs, allowing a direct comparison with b-ECDs, to dynamically control incoming solar irradiation in a building, thus improving buildings’ energy efficiency. Full article
(This article belongs to the Special Issue Highly Efficient Technologies for the Energy Transition)
Show Figures

Figure 1

23 pages, 1109 KB  
Review
A Systematic Review of Numerical Modelling Approaches for Cryogenic Energy Storage Systems
by Arian Semedo, João Garcia and Moisés Brito
Processes 2026, 14(1), 51; https://doi.org/10.3390/pr14010051 - 23 Dec 2025
Abstract
Cryogenic Energy Storage (CES) has emerged as a promising solution for large-scale and long-duration energy storage, offering high energy density, zero local emissions, and compatibility with intermittent renewable energy sources. This systematic review critically examines recent advances in the numerical modeling of CES [...] Read more.
Cryogenic Energy Storage (CES) has emerged as a promising solution for large-scale and long-duration energy storage, offering high energy density, zero local emissions, and compatibility with intermittent renewable energy sources. This systematic review critically examines recent advances in the numerical modeling of CES systems, with the objective of identifying prevailing methodologies, emerging trends, and existing research gaps. The studies analyzed are classified into three main categories: global thermodynamic modeling, simulation of specific components, and transient dynamic modeling. The findings highlight the continued use of thermodynamic models due to their simplicity and computational efficiency, alongside a growing reliance on high-fidelity CFD and transient models for more realistic operational analyses. A clear trend is also observed toward hybrid approaches, which integrate deterministic modeling with machine learning techniques and response surface methodologies to enhance predictive accuracy and computational performance. Nevertheless, significant challenges persist, including the absence of multiscale integrative models, the scarcity of high-resolution experimental data under transient conditions, and the limited consideration of operational uncertainties and material degradation. It is concluded that the development of integrated numerical frameworks will be critical to advancing the technological maturity of CES systems and ensuring their robust deployment in real-world energy transition scenarios. Additionally, the review also discusses local thermal non-equilibrium (LTNE) conditions, the influence of geometric and operational parameters, and the role of multidimensional and multi-region modeling in predicting thermal and exergy performance of packed-bed TES within LAES cycles. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

38 pages, 1295 KB  
Review
Secondary Use of Retired Lithium-Ion Traction Batteries: A Review of Health Assessment, Interface Technology, and Supply Chain Management
by Wen Gao, Ai Chin Thoo, Moniruzzaman Sarker, Noven Lee, Xiaojun Deng and Yun Yang
Batteries 2026, 12(1), 1; https://doi.org/10.3390/batteries12010001 - 19 Dec 2025
Viewed by 227
Abstract
Lithium-ion batteries (LIBs) dominate energy storage for electric vehicles (EVs) due to their high energy density, long cycle life, and low self-discharge. However, high costs, complex manufacturing, and the requirement for advanced battery management systems (BMSs) constrain their broader deployment. Therefore, extending the [...] Read more.
Lithium-ion batteries (LIBs) dominate energy storage for electric vehicles (EVs) due to their high energy density, long cycle life, and low self-discharge. However, high costs, complex manufacturing, and the requirement for advanced battery management systems (BMSs) constrain their broader deployment. Therefore, extending the utility of LIBs through reuse is essential for economic and environmental sustainability. Retired EV batteries with 70–80% state-of-health (SOH) can be repurposed in battery energy storage systems (BESSs) to support power grids. Effective reuse depends on accurate and rapid assessment of SOH and state-of-safety (SOS), which relies on precise state-of-charge (SOC) detection, particularly for aged LIBs with elevated thermal and electrochemical risks. This review systematically surveys SOC, SOH, and SOS detection methods for second-life LIBs, covering model-based, data-driven, and hybrid approaches, and highlights strategies for a fast and reliable evaluation. It further examines power electronics topologies and control strategies for integrating second-life LIBs into power grids, focusing on safety, efficiency, and operational performance. Finally, it analyzes key factors within the closed-loop supply chain, particularly reverse logistics, and provides guidance on enhancing adoption and supporting the establishment of circular battery ecosystems. This review serves as a comprehensive resource for researchers, industry stakeholders, and policymakers aiming to optimize second-life utilization of traction LIBs. Full article
(This article belongs to the Special Issue Industrialization of Second-Life Batteries)
Show Figures

Figure 1

30 pages, 1975 KB  
Review
Thermo-Fluid Dynamics Modelling of Liquid Hydrogen Storage and Transfer Processes
by Lucas M. Claussner, Giordano Emrys Scarponi and Federico Ustolin
Hydrogen 2025, 6(4), 122; https://doi.org/10.3390/hydrogen6040122 - 17 Dec 2025
Viewed by 212
Abstract
The use of liquid hydrogen (LH2) as an energy carrier is gaining traction across sectors such as aerospace, maritime, and large-scale energy storage due to its high gravimetric energy density and low environmental impact. However, the cryogenic nature of LH2 [...] Read more.
The use of liquid hydrogen (LH2) as an energy carrier is gaining traction across sectors such as aerospace, maritime, and large-scale energy storage due to its high gravimetric energy density and low environmental impact. However, the cryogenic nature of LH2, with storage temperatures near 20 K, poses significant thermodynamic and safety challenges. This review consolidates the current state of modelling approaches used to simulate LH2 behaviour during storage and transfer operations, with a focus on improving operational efficiency and safety. The review categorizes the literature into two primary domains: (1) thermodynamic behaviour within storage tanks and (2) multi-phase flow dynamics in storage and transfer systems. Within these domains, it covers a variety of phenomena. Particular attention is given to the role of heat ingress in driving self-pressurization and boil-off gas (BoG) formation, which significantly influence storage performance and safety mechanisms. Eighty-one studies published over six decades were analyzed, encompassing a diverse range of modelling approaches. The reviewed literature revealed significant methodological variety, including general analytical models, lumped-parameter models (0D/1D), empirical and semi-empirical models, computational fluid dynamics (CFD) models (2D/3D), machine learning (ML) and artificial neural network (ANN) models, and numerical multidisciplinary simulation models. The review evaluates the validation status of each model and identifies persistent research gaps. By mapping current modelling efforts and their limitations, this review highlights opportunities for enhancing the accuracy and applicability of LH2 simulations. Improved modelling tools are essential to support the design of inherently safe, reliable, and efficient hydrogen infrastructure in a decarbonized energy landscape. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

16 pages, 2376 KB  
Article
A Dual-Scale Encapsulation Strategy for Phase Change Materials: GTS-PEG for Efficient Heat Storage and Release
by Sixing Zhang, Guangyao Zhao, Zhen Li, Zhehui Zhao, Jiakang Yao, Geng Qiao, Zongkun Chen, Yuwei Wang, Donghui Zhang, Dongliang Guo, Zhixiang Zhu and Yu Han
Nanomaterials 2025, 15(24), 1887; https://doi.org/10.3390/nano15241887 - 16 Dec 2025
Viewed by 106
Abstract
With the advancement of new power systems, phase-change materials (PCMs), owing to their ability to convert and store electrical energy, are increasingly recognized as a key solution to the intermittency of power supply. Nevertheless, such materials face challenges, including leakage and low thermal [...] Read more.
With the advancement of new power systems, phase-change materials (PCMs), owing to their ability to convert and store electrical energy, are increasingly recognized as a key solution to the intermittency of power supply. Nevertheless, such materials face challenges, including leakage and low thermal conductivity, which lead to reduced utilization efficiency. In this study, guar gum was used as the macroscopic framework, while self-prepared and optimized silica aerogel microsheets served as the microscopic framework to synergistically encapsulate the polyethylene glycol (PEG). Titanium dioxide (TiO2) nanoparticles were incorporated to improve overall thermal conductivity, resulting in the composite PCM, GTS-PEG. In-depth characterization demonstrated effective PEG retention within the matrix, with a melting heat storage density of 164.16 J/g. Upon 30 min of continuous heating at 90 °C, the mass loss remained as low as 4.83%, indicating excellent thermal stability. The addition of TiO2 increased thermal conductivity to 0.53 W/(m·K), representing a 140% boost over unmodified material. As a result, GTS-PEG not only successfully overcomes the leakage and thermal conductivity limitations of conventional PCMs but also, as a green and low-carbon innovative solution, paves a new path for the coordinated optimization and efficient conversion of power grid energy systems. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

12 pages, 2912 KB  
Article
KI-Assisted MnO2 Electrocatalysis Enables Low-Charging Voltage, Long-Life Rechargeable Zinc–Air Batteries
by Francesco Biscaglia, Sabrina Di Masi, Marco Milanese, Claudio Mele, Giuseppe Gigli, Arturo De Risi and Luisa De Marco
Batteries 2025, 11(12), 463; https://doi.org/10.3390/batteries11120463 - 16 Dec 2025
Viewed by 200
Abstract
Rechargeable zinc–air batteries (ZABs) are promising candidates for sustainable energy storage owing to their high theoretical energy density, safety, and environmental compatibility. However, their practical application is hindered by sluggish oxygen evolution reaction (OER) kinetics and the high charging voltage required, which reduce [...] Read more.
Rechargeable zinc–air batteries (ZABs) are promising candidates for sustainable energy storage owing to their high theoretical energy density, safety, and environmental compatibility. However, their practical application is hindered by sluggish oxygen evolution reaction (OER) kinetics and the high charging voltage required, which reduce energy efficiency and accelerate electrode degradation. Here, we report for the first time the beneficial role of potassium iodide (KI) as a reaction modifier in ZABs employing manganese dioxide (MnO2) as a bifunctional catalyst. MnO2 not only exhibits remarkable electrocatalytic activity toward the oxygen reduction reaction (ORR) but also catalyzes the iodide oxidation reaction (IOR), which proceeds at significantly lower potentials than the OER. As a result, KI-modified MnO2 ZABs achieve a remarkably low charging voltage of ≈1.8 V and an energy efficiency of 69.9% at 5 mA/cm2. Although the IOR is not fully reversible in alkaline media and its effectiveness depends on the iodide concentration in the electrolyte—which may decrease upon repeated discharge–charge cycling—the suppression of electrode degradation enables stable operation for more than 200 charge–discharge cycles. These findings demonstrate the synergistic effect of KI and MnO2 in enabling an efficient ORR/IOR pathway, providing a sustainable and cost-effective alternative to noble metal catalysts and opening new perspectives for the practical development of high-performance ZABs. Full article
Show Figures

Figure 1

17 pages, 3608 KB  
Article
Mechanochemically Synthesized Nanocrystalline Cu2ZnSnSe4 as a Multifunctional Material for Energy Conversion and Storage Applications
by Angel Agnes Johnrose, Devika Rajan Sajitha, Vengatesh Panneerselvam, Anandhi Sivaramalingam, Kamalan Kirubaharan Amirtharaj Mosas, Beauno Stephen and Shyju Thankaraj Salammal
Nanomaterials 2025, 15(24), 1866; https://doi.org/10.3390/nano15241866 - 12 Dec 2025
Viewed by 291
Abstract
Cu2ZnSnSe4 is a promising light-absorbing material for cost-effective and eco-friendly thin-film solar cells; however, its synthesis often leads to secondary phases that limit device efficiency. To overcome these challenges, we devised a straightforward and efficient method to obtain single-phase Cu [...] Read more.
Cu2ZnSnSe4 is a promising light-absorbing material for cost-effective and eco-friendly thin-film solar cells; however, its synthesis often leads to secondary phases that limit device efficiency. To overcome these challenges, we devised a straightforward and efficient method to obtain single-phase Cu2ZnSnSe4 nanocrystalline powders directly from the elements Cu, Zn, Sn, and Se via mechanochemical synthesis followed by vacuum annealing at 450 °C. Phase evolution monitored by X-ray diffraction (XRD) and Raman spectroscopy at two-hour milling intervals confirmed the formation of phase-pure kesterite Cu2ZnSnSe4 and enabled tracking of transient secondary phases. Raman spectra revealed the characteristic A1 vibrational modes of the kesterite structure, while XRD peaks and Rietveld refinement (χ2 ~ 1) validated single-phase formation with crystallite sizes of 10–15 nm and dislocation densities of 3.00–3.20 1015 lines/m2. Optical analysis showed a direct bandgap of ~1.1 eV, and estimated linear and nonlinear optical constants validate its potential for photovoltaic applications. Scanning electron microscopy (SEM) analysis showed uniformly distributed particles 50–60 nm, and energy dispersive X-ray (EDS) analysis confirmed a near-stoichiometric Cu:Zn:Sn:Se ratio of 2:1:1:4. X-ray photoelectron spectroscopy (XPS) identified the expected oxidation states (Cu+, Zn2+, Sn4+, and Se2−). Electrical characterization revealed p-type conductivity with a mobility (μ) of 2.09 cm2/Vs, sheet resistance (ρ) of 4.87 Ω cm, and carrier concentrations of 1.23 × 1019 cm−3. Galvanostatic charge–discharge testing (GCD) demonstrated an energy density of 2.872 Wh/kg−1 and a power density of 1083 W kg−1, highlighting the material’s additional potential for energy storage applications. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

16 pages, 1803 KB  
Article
Layer-by-Layer Hybrid Film of PAMAM and Reduced Graphene Oxide–WO3 Nanofibers as an Electroactive Interface for Supercapacitor Electrodes
by Vanderley F. Gomes Junior, Danilo A. Oliveira, Paulo V. Morais and José R. Siqueira Junior
Nanoenergy Adv. 2025, 5(4), 22; https://doi.org/10.3390/nanoenergyadv5040022 - 12 Dec 2025
Viewed by 152
Abstract
Tungsten oxide (WO3) nanostructures have emerged as promising electroactive materials due to their high pseudocapacitance, structural versatility, and chemical stability, while reduced graphene oxide (rGO) provides excellent electrical conductivity and surface area. The strategic combination of these nanomaterials in hybrid electrodes [...] Read more.
Tungsten oxide (WO3) nanostructures have emerged as promising electroactive materials due to their high pseudocapacitance, structural versatility, and chemical stability, while reduced graphene oxide (rGO) provides excellent electrical conductivity and surface area. The strategic combination of these nanomaterials in hybrid electrodes has gained attention for enhancing the energy storage performance of supercapacitors. In this work, we report the fabrication and electrochemical performance of nanostructured multilayer films based on the electrostatic Layer-by-Layer (LbL) self-assembly of poly (amidoamine) (PAMAM) dendrimers alternated with tungsten oxide (WO3) nanofibers dispersed in reduced graphene oxide (rGO). The films were deposited onto indium tin oxide (ITO) substrates and subsequently subjected to electrochemical reduction. UV-Vis spectroscopy confirmed the linear growth of the multilayers, while atomic force microscopy (AFM) revealed homogeneous surface morphology and thickness control. Electrochemical characterization by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) revealed a predominantly electrical double-layer capacitive (EDLC) behavior. From the GCD measurements (PAMAM/rGO-WO3)20 films achieved an areal capacitance of ≈2.20 mF·cm−2, delivering an areal energy density of ≈0.17 µWh·cm−2 and an areal power density of ≈2.10 µW·cm−2, demonstrating efficient charge storage in an ultrathin electrode architecture. These results show that the synergistic integration of PAMAM dendrimers, reduced graphene oxide, and WO3 nanofibers yields a promising strategy for designing high-performance electrode materials for next-generation supercapacitors. Full article
(This article belongs to the Special Issue Hybrid Energy Storage Systems Based on Nanostructured Materials)
Show Figures

Graphical abstract

32 pages, 11529 KB  
Review
Flexible Polymer Hydrogel Materials for Next-Generation Wearable Energy Storage Technologies
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Gels 2025, 11(12), 999; https://doi.org/10.3390/gels11120999 - 11 Dec 2025
Viewed by 395
Abstract
The rapid advancement of wearable technology has created an increasing demand for efficient, high-performance energy storage systems that also offer key characteristics such as flexibility, lightweight, and durability. Among the emerging materials, polymer hydrogels have garnered significant attention due to their unique combination [...] Read more.
The rapid advancement of wearable technology has created an increasing demand for efficient, high-performance energy storage systems that also offer key characteristics such as flexibility, lightweight, and durability. Among the emerging materials, polymer hydrogels have garnered significant attention due to their unique combination of viscoelasticity, low density, and tunable porous nanostructures. These materials exhibit adaptable surface and structural properties, making them promising candidates for next-generation flexible and wearable energy storage devices. This work provides an overview of recent progress and innovations in the application of polymer hydrogels for the development of flexible energy storage systems. The intrinsic three-dimensional architecture and porous morphology of these hydrogels offer a versatile platform for constructing high-performance supercapacitors, rechargeable batteries, and personal thermal management devices. Various types of polymer hydrogels and their principal fabrication methods are discussed in detail, along with the structural factors that influence their electrochemical and mechanical performance. Furthermore, recent advancements in integrating polymer hydrogel materials into wearable and flexible technologies—such as energy storage devices, thermal regulation systems, and multifunctional energy platforms—are comprehensively reviewed and analyzed. Full article
(This article belongs to the Special Issue Energy Storage and Conductive Gel Polymers)
Show Figures

Figure 1

32 pages, 2680 KB  
Review
A Review of Multi-Port Converter Architecture in Hydrogen-Based DC Microgrid
by Qiyan Wang, Kosala Gunawardane and Li Li
Energies 2025, 18(24), 6487; https://doi.org/10.3390/en18246487 - 11 Dec 2025
Viewed by 334
Abstract
With the rapid advancement of hydrogen-based direct current microgrid (H2-DCMG) technology, multi-port converters (MPCs) have emerged as the pivotal interface for integrating renewable power generation, energy storage, and diverse DC loads. This paper systematically reviews the current research status and development [...] Read more.
With the rapid advancement of hydrogen-based direct current microgrid (H2-DCMG) technology, multi-port converters (MPCs) have emerged as the pivotal interface for integrating renewable power generation, energy storage, and diverse DC loads. This paper systematically reviews the current research status and development trends of isolated and non-isolated MPC topologies within hydrogen-based DC microgrids. Firstly, it analyses the interface requirements for typical distributed energy sources (DER) such as photovoltaics (PV), wind turbines (WT), fuel cells (FC), battery energy storage (BESS), proton exchange membrane electrolyzers (PEMEL), and supercapacitors (SC). Secondly, it classifies and evaluates existing MPC topologies, clarifying the structural characteristics, technical advantages, and challenges faced by each type. Results indicate that non-isolated topologies offer advantages such as structural simplicity, high efficiency, and high power density, making them more suitable for residential and small-scale microgrid applications. Isolated topologies, conversely, provide electrical isolation and modular scalability, rendering them appropriate for high-voltage electrolytic hydrogen production and industrial scenarios with stringent safety requirements. Finally, the paper identifies current research gaps and proposes that future efforts should focus on exploring topology optimization, system integration design, and reliability enhancement. Full article
(This article belongs to the Special Issue Novel and Emerging Energy Systems)
Show Figures

Figure 1

34 pages, 3381 KB  
Review
Electric Propulsion and Hybrid Energy Systems for Solar-Powered UAVs: Recent Advances and Challenges
by Norliza Ismail, Nadhiya Liyana Mohd Kamal, Nurhakimah Norhashim, Sabarina Abdul Hamid, Zulhilmy Sahwee and Shahrul Ahmad Shah
Drones 2025, 9(12), 846; https://doi.org/10.3390/drones9120846 - 10 Dec 2025
Viewed by 545
Abstract
Unmanned aerial vehicles (UAVs) are increasingly utilized across civilian and defense sectors due to their versatility, efficiency, and cost-effectiveness. However, their operational endurance remains constrained by limited onboard energy storage. Recent research has focused on electric propulsion systems integrated with hybrid energy sources, [...] Read more.
Unmanned aerial vehicles (UAVs) are increasingly utilized across civilian and defense sectors due to their versatility, efficiency, and cost-effectiveness. However, their operational endurance remains constrained by limited onboard energy storage. Recent research has focused on electric propulsion systems integrated with hybrid energy sources, particularly the combination of solar cells and advanced battery technologies to overcome this limitation. This review presents a comprehensive analysis of the latest advancements in electric propulsion architecture, solar-based power integration, and hybrid energy management strategies for UAVs. Key components, including motors, electronic speed controllers (ESCs), propellers, and energy storage systems, are examined alongside emerging technologies such as wireless charging and flexible photovoltaic (PV) materials. Power management techniques, including maximum power point tracking (MPPT) and intelligent energy control algorithms, are also discussed in the context of long-endurance missions. Challenges related to energy density, weight constraints, environmental adaptability, and component integration are highlighted, with insights into potential solutions and future directions. The findings of this review aim to guide the development of efficient, sustainable, and high-endurance UAV platforms leveraging electric-solar hybrid propulsion systems. Full article
Show Figures

Figure 1

32 pages, 9737 KB  
Article
Experimental Study on Marly Clay Stabilization Under Short-Term Conditions Using Volcanic Ash and Reactivity-Controlled Lime as Activator
by Roberto Ponce, Svetlana Melentijević, Natalia Montero and Sol López-Andrés
Infrastructures 2025, 10(12), 340; https://doi.org/10.3390/infrastructures10120340 - 10 Dec 2025
Viewed by 207
Abstract
Expansive soils undergo significant volume changes with moisture fluctuations, posing persistent challenges for infrastructure due to heave, settlement, and loss of bearing capacity. Stabilization is a common mitigation strategy, though traditional binders, such as cement and lime, are associated with high energy consumption [...] Read more.
Expansive soils undergo significant volume changes with moisture fluctuations, posing persistent challenges for infrastructure due to heave, settlement, and loss of bearing capacity. Stabilization is a common mitigation strategy, though traditional binders, such as cement and lime, are associated with high energy consumption and considerable CO2 emissions. In this context, identifying low-carbon alternatives is essential. This study evaluates the short-term behavior of expansive marly clays from southern Spain stabilized with volcanic ash generated during the 2021 Tajogaite eruption (La Palma, Canary Islands, Spain). Volcanic ash was incorporated in different proportions to assess its performance as a natural pozzolan, while natural hydrated lime was used both as a direct stabilizer and as an activator to enhance ash reactivity. A key methodological contribution of this research is the monitoring of lime reactivity throughout storage, using XRD and TGA to quantify portlandite loss and partial carbonation before mixing—an aspect seldom addressed in stabilization studies. The experimental program included chemical and mineralogical characterization, compaction, Atterberg limits, free swelling, unconfined compressive strength, and direct shear tests on natural and stabilized mixtures. The results show that volcanic ash, particularly when lime-activated, substantially improves volumetric stability. Free swelling decreased from 11.9% in the natural soil to values as low as 1.7%, while dry density increased and plasticity decreased. Strength gains were modest under short-term conditions, consistent with the limited time for pozzolanic reactions to develop. The combined use of volcanic ash and lime reduced the lime demand required to achieve equivalent volumetric control, offering an eco-efficient and technically viable alternative for stabilizing expansive marly clays. Full article
Show Figures

Figure 1

10 pages, 2098 KB  
Article
Co3O4/SnO2 Hybrid Nanorods as High-Capacity Anodes for Lithium-Ion Batteries
by Qiyao Zhang, Jingchao Zhu, Lichao Fu, Dapeng Liu and Yu Zhang
Physchem 2025, 5(4), 54; https://doi.org/10.3390/physchem5040054 - 10 Dec 2025
Viewed by 169
Abstract
With the surging demand for high-performance energy storage devices, enhancing the energy density and charge-discharge efficiency of lithium-ion batteries has become an urgent need. Co3O4, with a high theoretical specific capacity of 890 mAh g−1, is regarded [...] Read more.
With the surging demand for high-performance energy storage devices, enhancing the energy density and charge-discharge efficiency of lithium-ion batteries has become an urgent need. Co3O4, with a high theoretical specific capacity of 890 mAh g−1, is regarded as a promising anode candidate. In this work, rod-like hybrid Co3O4/SnO2 composites were successfully prepared via the pyrolysis of cobalt-tin ethylene glycolate precursor. Notably, when the Co/Sn molar ratio is tuned to 3.8:1, the product evolves into nanorods. Lithium-ion batteries using Co3.8Sn1 as the anode deliver an initial specific capacity of 1588.9 mAh g−1, and retain a reversible capacity of 427.9 mAh g−1 after 500 cycles at 2 A g−1, demonstrating that Sn-doping-induced optimization of morphology and conductivity effectively enhances electrochemical performance. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Graphical abstract

26 pages, 761 KB  
Article
In Situ Estimation of Li-Ion Battery State of Health Using On-Board Electrical Measurements for Electromobility Applications
by Jorge E. García Bustos, Benjamín Brito Schiele, Leonardo Baldo, Bruno Masserano, Francisco Jaramillo-Montoya, Diego Troncoso-Kurtovic, Marcos E. Orchard, Aramis Perez and Jorge F. Silva
Batteries 2025, 11(12), 451; https://doi.org/10.3390/batteries11120451 - 9 Dec 2025
Viewed by 343
Abstract
The well-balanced combination of high energy density and competitive cycle performance has established lithium-ion batteries as the technology of choice for Electric Vehicles (EVs) energy storage. Nevertheless, battery degradation continues to pose challenges to EV range, safety, and long-term reliability, making accurate estimation [...] Read more.
The well-balanced combination of high energy density and competitive cycle performance has established lithium-ion batteries as the technology of choice for Electric Vehicles (EVs) energy storage. Nevertheless, battery degradation continues to pose challenges to EV range, safety, and long-term reliability, making accurate estimation of their State of Health (SoH) crucial for efficient battery management, safety, and improved longevity. This paper addresses a compelling research question surrounding the possibility of developing a real-time, non-invasive, and efficient methodology for estimating lithium-ion battery SoH without battery removal, relying solely on voltage and current data. Our approach integrates the fitting abilities of Maximum Likelihood Estimation (MLE) with the dynamic uncertainty propagation of Bayesian Filtering to provide accurate and robust online SoH estimation. By reconstructing the open-circuit voltage curve from real-time data, the MLE estimates battery capacity during discharge cycles, while Bayesian Filtering refines these estimates, accounting for uncertainties and variations. The methodology is validated using an available dataset from Stanford University, demonstrating its effectiveness in tracking battery degradation under driving profiles. The results indicate that the approach can reliably estimate battery SoH with mean absolute errors below 1%, confirming its suitability for scalable EV applications. Full article
Show Figures

Figure 1

54 pages, 8634 KB  
Review
Comparative Analysis of Cell Design: Form Factor and Electrode Architectures in Advanced Lithium-Ion Batteries
by Khaled Mekdour, Anil Kumar Madikere Raghunatha Reddy, Jeremy I. G. Dawkins, Thiago M. Guimaraes Selva and Karim Zaghib
Batteries 2025, 11(12), 450; https://doi.org/10.3390/batteries11120450 - 9 Dec 2025
Viewed by 812
Abstract
This review investigates how cell form factors (cylindrical, prismatic, and pouch) and electrode architecture (jelly-roll, stacked, and blade) influence the performance, safety, and manufacturability of lithium-ion batteries (LIBs) across the main commercial chemistries LiFePO4 (LFP), Li (NiMnCo)O2 (NMC), LiNiCoAlO2 (NCA), [...] Read more.
This review investigates how cell form factors (cylindrical, prismatic, and pouch) and electrode architecture (jelly-roll, stacked, and blade) influence the performance, safety, and manufacturability of lithium-ion batteries (LIBs) across the main commercial chemistries LiFePO4 (LFP), Li (NiMnCo)O2 (NMC), LiNiCoAlO2 (NCA), and LiCoO2 (LCO). Literature, OEM datasheets, and teardown analyses published between 2015 and 2025 were examined to map the interdependence among geometry, electrode design, and electrochemical behavior. The comparison shows trade-offs among gravimetric and volumetric energy density, thermal runaway tolerance, cycle lifespan, and cell-to-pack integration efficiency. LFP, despite its lower nominal voltage, offers superior thermal stability and a longer cycle life, making it suitable for both prismatic and blade configurations in EVs and stationary storage applications. NMC and NCA chemistries achieve higher specific energy and power by using jelly-roll architectures that are best suited for tabless or multi-tab current collection, enhancing uniform current distribution and manufacturability. Pouch cells provide high energy-to-weight ratios and flexible packaging for compact modules, though they require precise mechanical compression. LCO remains confined to small electronics owing to safety and cost limitations. Although LFP’s safety and affordability make it dominant in cost-sensitive applications, its low voltage and energy density limit broader adoption. LiMnFePO4 (LMFP) cathodes offer a pathway to enhance voltage and energy while retaining cycle life and cost efficiency; however, their optimization across various form factors and electrode architecture remains underexplored. This study establishes an application-driven framework linking form factors and electrode design to guide the design and optimization of next-generation lithium-ion battery systems. Full article
Show Figures

Graphical abstract

Back to TopTop