You are currently viewing a new version of our website. To view the old version click .
Batteries
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Review
  • Open Access

9 December 2025

Comparative Analysis of Cell Design: Form Factor and Electrode Architectures in Advanced Lithium-Ion Batteries

,
,
,
and
Department of Chemical and Materials Engineering, Concordia University, 1455 De Maisonneuve Blvd. West, Montreal, QC H3G 1M8, Canada
*
Author to whom correspondence should be addressed.
This article belongs to the Section Battery Materials and Interfaces: Anode, Cathode, Separators and Electrolytes or Others

Abstract

This review investigates how cell form factors (cylindrical, prismatic, and pouch) and electrode architecture (jelly-roll, stacked, and blade) influence the performance, safety, and manufacturability of lithium-ion batteries (LIBs) across the main commercial chemistries LiFePO4 (LFP), Li (NiMnCo)O2 (NMC), LiNiCoAlO2 (NCA), and LiCoO2 (LCO). Literature, OEM datasheets, and teardown analyses published between 2015 and 2025 were examined to map the interdependence among geometry, electrode design, and electrochemical behavior. The comparison shows trade-offs among gravimetric and volumetric energy density, thermal runaway tolerance, cycle lifespan, and cell-to-pack integration efficiency. LFP, despite its lower nominal voltage, offers superior thermal stability and a longer cycle life, making it suitable for both prismatic and blade configurations in EVs and stationary storage applications. NMC and NCA chemistries achieve higher specific energy and power by using jelly-roll architectures that are best suited for tabless or multi-tab current collection, enhancing uniform current distribution and manufacturability. Pouch cells provide high energy-to-weight ratios and flexible packaging for compact modules, though they require precise mechanical compression. LCO remains confined to small electronics owing to safety and cost limitations. Although LFP’s safety and affordability make it dominant in cost-sensitive applications, its low voltage and energy density limit broader adoption. LiMnFePO4 (LMFP) cathodes offer a pathway to enhance voltage and energy while retaining cycle life and cost efficiency; however, their optimization across various form factors and electrode architecture remains underexplored. This study establishes an application-driven framework linking form factors and electrode design to guide the design and optimization of next-generation lithium-ion battery systems.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.