Hybrid Energy Storage Systems Based on Nanostructured Materials

A special issue of Nanoenergy Advances (ISSN 2673-706X).

Deadline for manuscript submissions: 30 June 2026 | Viewed by 2022

Special Issue Editor


E-Mail Website
Guest Editor
Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, F-67000 Strasbourg, France
Interests: energy storage; supercapacitors; batteries; multifunctional materials; plasmonics; SERS; electrochemistry; machine learning
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The urgent demand for sustainable and high-performance energy storage systems (ESSs) has accelerated the exploration of alternative technologies beyond conventional lithium-ion batteries. Hybrid energy storage systems (HESSs), particularly those incorporating aqueous zinc-ion hybrid supercapacitors (Zn-HSCs), aluminum-ion batteries (AIBs), and lithium metal batteries (LMBs), offer a promising pathway to bridge the gap between high-energy and high-power-density devices. This Special Issue focuses on the design and development of nanostructured materials as advanced electrodes for next-generation HESSs.

Recent progress in the synthesis of donor–acceptor conjugated polymers, covalent organic frameworks (COFs), metal–organic frameworks (MOFs), MOF@COF hybrids, and functionalized graphene derivatives has revealed their potential to significantly enhance charge storage mechanisms. These materials leverage properties such as high surface area, hierarchical porosity, tunable redox activity, and strong metal-ion affinity—achieved through molecular engineering, heteroatom doping, and supramolecular functionalization—to improve both energy and power performance while maintaining long-term stability.

The goal of this Special Issue is to highlight the role of nanostructured and hybrid materials in driving innovation in hybrid ESSs. We welcome contributions that span fundamental material design, advanced characterization techniques, mechanistic studies, and device-level applications. By collecting cutting-edge research in this space, we aim to provide a comprehensive overview of current challenges and opportunities in the field of hybrid energy storage systems.

Dr. Verónica Montes García
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanoenergy Advances is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hybrid energy storage systems (HESSs)
  • zinc-ion hybrid supercapacitors (Zn-HSCs)
  • covalent organic frameworks (COFs)
  • metal–organic frameworks (MOFs)
  • nanostructured electrode materials
  • redox-active polymers
  • supramolecular engineering
  • graphene-based cathodes
  • high energy and power density
  • sustainable energy storage

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 1803 KB  
Article
Layer-by-Layer Hybrid Film of PAMAM and Reduced Graphene Oxide–WO3 Nanofibers as an Electroactive Interface for Supercapacitor Electrodes
by Vanderley F. Gomes Junior, Danilo A. Oliveira, Paulo V. Morais and José R. Siqueira Junior
Nanoenergy Adv. 2025, 5(4), 22; https://doi.org/10.3390/nanoenergyadv5040022 - 12 Dec 2025
Viewed by 152
Abstract
Tungsten oxide (WO3) nanostructures have emerged as promising electroactive materials due to their high pseudocapacitance, structural versatility, and chemical stability, while reduced graphene oxide (rGO) provides excellent electrical conductivity and surface area. The strategic combination of these nanomaterials in hybrid electrodes [...] Read more.
Tungsten oxide (WO3) nanostructures have emerged as promising electroactive materials due to their high pseudocapacitance, structural versatility, and chemical stability, while reduced graphene oxide (rGO) provides excellent electrical conductivity and surface area. The strategic combination of these nanomaterials in hybrid electrodes has gained attention for enhancing the energy storage performance of supercapacitors. In this work, we report the fabrication and electrochemical performance of nanostructured multilayer films based on the electrostatic Layer-by-Layer (LbL) self-assembly of poly (amidoamine) (PAMAM) dendrimers alternated with tungsten oxide (WO3) nanofibers dispersed in reduced graphene oxide (rGO). The films were deposited onto indium tin oxide (ITO) substrates and subsequently subjected to electrochemical reduction. UV-Vis spectroscopy confirmed the linear growth of the multilayers, while atomic force microscopy (AFM) revealed homogeneous surface morphology and thickness control. Electrochemical characterization by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) revealed a predominantly electrical double-layer capacitive (EDLC) behavior. From the GCD measurements (PAMAM/rGO-WO3)20 films achieved an areal capacitance of ≈2.20 mF·cm−2, delivering an areal energy density of ≈0.17 µWh·cm−2 and an areal power density of ≈2.10 µW·cm−2, demonstrating efficient charge storage in an ultrathin electrode architecture. These results show that the synergistic integration of PAMAM dendrimers, reduced graphene oxide, and WO3 nanofibers yields a promising strategy for designing high-performance electrode materials for next-generation supercapacitors. Full article
(This article belongs to the Special Issue Hybrid Energy Storage Systems Based on Nanostructured Materials)
Show Figures

Graphical abstract

12 pages, 1750 KB  
Article
Laser-Fabricated GO/ZIF-67 Hybrid Nanocomposites for High-Performance 3D-Printed Supercapacitors
by Mahshid Mokhtarnejad, Erick L. Ribeiro, Karen Y. Patino Jaimes, Mariana Milano-Benitez and Bamin Khomami
Nanoenergy Adv. 2025, 5(4), 20; https://doi.org/10.3390/nanoenergyadv5040020 - 4 Dec 2025
Viewed by 265
Abstract
This study introduces a modified Laser Ablation Synthesis in Solution (LASiS), a surfactant-free and rapid synthesis approach that enables uniform MOF nucleation on graphene oxide (GO) and precise control over crystallinity, for fabricating graphene oxide (GO)-integrated cobalt-based ZIF-67 hybrid nanocomposites tailored for supercapacitor [...] Read more.
This study introduces a modified Laser Ablation Synthesis in Solution (LASiS), a surfactant-free and rapid synthesis approach that enables uniform MOF nucleation on graphene oxide (GO) and precise control over crystallinity, for fabricating graphene oxide (GO)-integrated cobalt-based ZIF-67 hybrid nanocomposites tailored for supercapacitor applications. By tuning LASiS parameters, we precisely controlled framework size, morphology, and crystallinity, enabling sustainable and scalable production. The incorporation of GO during synthesis markedly enhances the uniform dispersion of ZIF-67 frameworks, minimizing aggregation and establishing interconnected conductive pathways via strong π-π stacking interactions. Following thermal reduction at 250 °C, the Co/ZIF-67–rGO composites exhibit outstanding electrochemical performance, achieving a specific capacitance of 1152 Fg−1 at 1 Ag−1 in a three-electrode configuration, driven by the synergistic combination of pseudocapacitive cobalt centers and double-layer capacitance from rGO. Structural analyses confirm the preservation of ZIF crystallinity and robust interfacial integration with the graphene sheets. Embedding these nanocomposites into fully 3D-printed supercapacitors yields a specific capacitance of 875 Fg−1, demonstrating their suitability for additive manufacturing despite minor increases in interfacial resistance. The 3D-printed supercapacitor devices delivered an energy density of 77.7 Wh/kg at a power density of 399.6 W/kg. Collectively, these results highlight the potential of LASiS-engineered MOF-based nanocomposites as scalable, high-performance materials for next-generation energy storage devices. Full article
(This article belongs to the Special Issue Hybrid Energy Storage Systems Based on Nanostructured Materials)
Show Figures

Graphical abstract

25 pages, 4334 KB  
Article
An AI-Driven TiO2-NiFeC-PEM Microbial Electrolyzer for In Situ Hydrogen Generation from POME Using a ZnO/PVA-EDLOSC Nanocomposite Photovoltaic Panel
by Ataur Rahman Md, Mohamad Qatu, Labib Hasan, Rafia Afroz, Mehdi Ghatus and Sany Ihsan
Nanoenergy Adv. 2025, 5(4), 18; https://doi.org/10.3390/nanoenergyadv5040018 - 26 Nov 2025
Viewed by 220
Abstract
Electrolysis and biological processes, such as fermentation and microbial electrolysis cells, offer efficient hydrogen production alongside wastewater treatment. This study presents a novel microbial electrolyzer (ME) comprising a titanium dioxide (TiO2) anode, a nickel–iron–carbon (NiFeC) cathode, and a cellulose nanocrystal proton [...] Read more.
Electrolysis and biological processes, such as fermentation and microbial electrolysis cells, offer efficient hydrogen production alongside wastewater treatment. This study presents a novel microbial electrolyzer (ME) comprising a titanium dioxide (TiO2) anode, a nickel–iron–carbon (NiFeC) cathode, and a cellulose nanocrystal proton exchange membrane (CNC-PEM) designed to generate hydrogen from palm oil mill effluent (POME). The system is powered by a 12 V electric double-layer organic supercapacitor (EDLOSC) integrated with a ZnO/PVA-based solar thin film. Power delivery to the TiO2-NiFeC-PEM electrolyzer is optimized using an Adaptive Neuro-Fuzzy Inference System (ANFIS). Laboratory-scale pilot tests demonstrated effective degradation of POME’s organic content, achieving a hydrogen yield of approximately 60%. Additionally, the nano-structured ZnO/CuO–ZnO/PVA solar film facilitated stable power supply, enhancing in situ hydrogen production. These results highlight the potential of the EDLOSC-encased ZnO/PVA-powered electrolyzer as a sustainable solution for hydrogen generation and industrial wastewater treatment. Full article
(This article belongs to the Special Issue Hybrid Energy Storage Systems Based on Nanostructured Materials)
Show Figures

Figure 1

15 pages, 5127 KB  
Article
Electronic Structure Regulation Enhances the Urea Oxidation Reaction Performance of the NiCo-MOF Catalyst
by Lang Yao, Yanzhi Yang, Sirong Li and Xuechun Xiao
Nanoenergy Adv. 2025, 5(4), 17; https://doi.org/10.3390/nanoenergyadv5040017 - 6 Nov 2025
Viewed by 558
Abstract
In this paper, spherical-shaped catalytic materials with needle-like stacking structures were synthesized in situ on the foam nickel substrate using the hydrothermal method, resulting in the NiM (M = Co, Mn, W, Zn)-MOF series. Furthermore, the catalyst with the best performance was obtained [...] Read more.
In this paper, spherical-shaped catalytic materials with needle-like stacking structures were synthesized in situ on the foam nickel substrate using the hydrothermal method, resulting in the NiM (M = Co, Mn, W, Zn)-MOF series. Furthermore, the catalyst with the best performance was obtained by adjusting the ratio of metal elements. Electrochemical tests show that NiCo-MOF (Ni: Co = 1:2) has the best electrocatalytic performance. During the UOR process, NiCo-MOF exhibits the optimal performance in 1 M KOH and 0.5 M urea solution, with a potential of only 1.33 V at a current density of 10 mA/cm2. The improvement in the activity of NiCo-MOF can be attributed to the synergistic effect between the Ni and Co bimetals, which leads to an increase in the electron transfer rate, the exposure of active sites, and an improvement in conductivity. Moreover, metal–organic framework materials are widely used as electrocatalysts due to their compositional diversity, rich pore structures, and high specific surface areas. Meanwhile, NiCo-MOF was used as a UOR and HER catalyst to assist the overall water decomposition with urea, and it showed relatively excellent performance. Only a voltage of 1.56 V was required to drive the current density of 10 mA/cm2 of the UOR || HER system. Therefore, the synthesized NiCo-MOF catalyst plays an important role in improving the efficiency of hydrogen production from water electrolysis and has promising sustainable application prospects. Full article
(This article belongs to the Special Issue Hybrid Energy Storage Systems Based on Nanostructured Materials)
Show Figures

Figure 1

Back to TopTop