Electric Propulsion and Hybrid Energy Systems for Solar-Powered UAVs: Recent Advances and Challenges
Abstract
1. Introduction
2. Electric Propulsion System for UAV
2.1. Power Supply for Electric Propulsion in UAV
2.1.1. Battery
State of Charge (SoC)
Charging Techniques for Battery in UAVs
2.1.2. Solar Cells
2.1.3. Hybrid Solar Energy System
2.2. Electric Motor Propulsion System Power Unit
2.2.1. Permanent Magnet Synchronous Motor (PMSM)
2.2.2. Permanent Magnet Brushless DC (PMBLDC) Motor
2.2.3. Superconducting Motors
2.3. The ESC Topology for Energy Optimization
2.4. Propeller
2.4.1. Number, Size, and Pitch
2.4.2. Propeller Material
2.4.3. Combination of Propeller and Motor
3. Propulsion System Modeling and Power Management
3.1. Propulsion System Modeling
3.1.1. Propulsion System Power Modeling (Motor, Propeller, ESC and Voltage Drop Model, and Integrated Power Models)
Motor Model
Propeller Model
ESC and Voltage Drop Model
Integrated Power Model
3.1.2. PV Modules
3.2. Propulsion System Framework
3.3. Power Management System for Hybrid Solar UAV
3.3.1. Management of Solar Cell Type and Configuration
3.3.2. Management of Durability Issues of Solar Cell
3.3.3. Battery Charging Through Charge Controller
MPPT Charge Controller Configuration
MPPT Optimization Algorithms
4. Future Directions
Patent Trends in Solar-Electric UAV
5. Opportunities
6. Conclusion
- (1)
- Propulsion systems consume over 70% of total energy in typical solar UAV missions, highlighting the critical need for efficient BLDC motors and lightweight, aerodynamically optimized propeller designs.
- (2)
- Advanced energy storage technologies, such as lithium–sulfur batteries and hydrogen fuel cells, offer high theoretical energy densities (>500 Wh/kg), but practical adoption is still limited by issues like cycle life, thermal stability, and integration complexity.
- (3)
- Real-world demonstrations such as the Airbus Zephyr S confirm the technical viability of multi-day or multi-week solar-electric flights when energy systems are tightly co-optimized with aerodynamic structures and propulsion components.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdulrahman, G.A.Q.; Qasem, N.A.A.; Abdelrahman, W.G.; Abdallah, A.M. A Review of Powering Unmanned Aerial Vehicles by Clean and Renewable Energy Technologies. Sustain. Energy Technol. Assess. 2025, 73, 104150. [Google Scholar] [CrossRef]
- Ouissaaden, F.I.; Dlimi, S.; Kamel, H.; Khaldi, S.E.; Elmourabit, F.; Khoukh, A. Effect of Partial Shading on a PV System. In Proceedings of the 2024 International Conference on Circuit, Systems and Communication (ICCSC), Fes, Morocco, 28–29 June 2024; pp. 1–6. [Google Scholar]
- Lorenzi, B.; Mariani, P.; Reale, A.; Di Carlo, A.; Chen, G.; Narducci, D. Practical Development of Efficient Thermoelectric—Photovoltaic Hybrid Systems Based on Wide-Gap Solar Cells. Appl. Energy 2021, 300, 117343. [Google Scholar] [CrossRef]
- Gonzalo, J.; López, D.; Domínguez, D.; García, A.; Escapa, A. On the Capabilities and Limitations of High-Altitude Pseudo-Satellites. Prog. Aerosp. Sci. 2018, 98, 37–56. [Google Scholar] [CrossRef]
- Müller, R.; Kiam, J.J.; Mothes, F. Multiphysical Simulation of a Semi-Autonomous Solar Powered High Altitude Pseudo-Satellite. In Proceedings of the IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 3–10 March 2018; Volume 2018-March. [Google Scholar]
- Wu, Y.; Wang, C.; Wang, L.; Ma, R.; Lu, X.; Yao, W. Altitude Control Performance of a Natural Energy Driven Stratospheric Aerostat. Adv. Space Res. 2015, 56, 2508–2514. [Google Scholar] [CrossRef]
- Liu, X.; Chen, L.; Yu, Y.; He, D.; Shai, X.; Zhang, S.; Zhang, Z.; Feng, J.; Yi, J.; Chen, J. Advancements of Highly Efficient Perovskite Based Tandem Solar Cells. Sci. China Mater. 2025, 68, 691–708. [Google Scholar] [CrossRef]
- Deshpande, R.A. Advances in Solar Cell Technology: An Overview. J. Sci. Res. 2021, 65, 72–75. [Google Scholar] [CrossRef]
- Di Sabatino, M.; Hendawi, R.; Garcia, A.S. Silicon Solar Cells: Trends, Manufacturing Challenges, and AI Perspectives. Crystals 2024, 14, 167. [Google Scholar] [CrossRef]
- Chang, X.; Zhao, Y.M.; Yuan, B.; Fan, M.; Meng, Q.; Guo, Y.-G.; Wan, L.-J. Solid-state lithium-ion batteries for grid energy storage: Opportunities and challenges. Sci. China Chem. 2024, 67, 43–66. [Google Scholar] [CrossRef]
- Li, Q.; Chen, J.; Zhang, S.; Liu, R.; Jiang, X.; Zhang, Z.; Wang, C.; Yin, L.; Wang, R. The developments, challenges, and prospects of solid-state Li-Se batteries. Energy Storage Mater. 2024, 65, 103138. [Google Scholar] [CrossRef]
- Torrey, D.; Parizh, M.; Bray, J.; Stautner, W.; Tapadia, N.; Xu, M.; Wu, A.; Zierer, J. Superconducting Synchronous Motors for Electric Ship Propulsion. IEEE Trans. Appl. Supercond. 2020, 30, 5204708. [Google Scholar] [CrossRef]
- Lee, J.Y.; Nam, G.D.; Yu, I.K.; Park, M. Design and Characteristic Analysis of an Axial Flux High-Temperature Superconducting Motor for Aircraft Propulsion. Materials 2023, 16, 3587. [Google Scholar] [CrossRef] [PubMed]
- Dhimish, M.; Tyrrell, A.M. Power Loss and Hotspot Analysis for Photovoltaic Modules Affected by Potential Induced Degradation. NPJ Mater. Degrad. 2022, 6, 11. [Google Scholar] [CrossRef]
- Aboagye, B.; Gyamfi, S.; Ofosu, E.A.; Djordjevic, S. Investigation into the Impacts of Design, Installation, Operation and Maintenance Issues on Performance and Degradation of Installed Solar Photovoltaic (PV) Systems. Energy Sustain. Dev. 2022, 66, 165–176. [Google Scholar] [CrossRef]
- Jamil, Q.; Shahzad, N.; Abdullah Khalid, H.; Iqbal, S.; Waqas, A.; Kamboh, A.H. Experimental Investigation of Potential Induced Degradation of Poly-Crystalline Photovoltaic Modules: Influence of Superstrate and Encapsulant Types. Sustain. Energy Technol. Assess. 2022, 52, 102162. [Google Scholar] [CrossRef]
- Alhmoud, L. Why Does the PV Solar Power Plant Operate Ineffectively? Energies 2023, 16, 4074. [Google Scholar] [CrossRef]
- Guinot, B.; Champel, B.; Montignac, F.; Lemaire, E.; Vannucci, D.; Sailler, S.; Bultel, Y. Techno-Economic Study of a PV-Hydrogen-Battery Hybrid System for off-Grid Power Supply: Impact of Performances’ Ageing on Optimal System Sizing and Competitiveness. Int. J. Hydrogen Energy 2015, 40, 623–632. [Google Scholar] [CrossRef]
- Tian, W.; Liu, L.; Zhang, X.; Shao, J.; Ge, J. Adaptive Hierarchical Energy Management Strategy for Fuel Cell/Battery Hybrid Electric UAVs. Aerosp Sci Technol 2024, 146, 108938. [Google Scholar] [CrossRef]
- Noviati, N.; Maulina, S.; Smith, S. Smart Grids: Integrating AI for Efficient Renewable Energy Utilization. Int. Trans. Artif. Intell. (ITALIC) 2024, 3, 1–10. [Google Scholar] [CrossRef]
- Ali, D.M.T.E.; Motuzienė, V.; Džiugaitė-Tumėnienė, R. AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings. Energies 2024, 17, 4277. [Google Scholar] [CrossRef]
- Sornek, K.; Augustyn-Nadzieja, J.; Rosikoń, I.; Łopusiewicz, R.; Łopusiewicz, M. Status and Development Prospects of Solar-Powered Unmanned Aerial Vehicles—A Literature Review. Energies 2025, 18, 1924. [Google Scholar] [CrossRef]
- Kurt, E.; Arabul, A.Y.; Keskin Arabul, F.; Senol, I. Parallel Hybrid Propulsion System with Integration of Designed Electric Machine for Medium Altitude Long Endurance UAV. Heliyon 2025, 11, e42871. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Zhang, Y.; Wang, M.; Feng, W.; Cao, S.; Wang, G. A Critical Review on the Battery System Reliability of Drone Systems. Drones 2025, 9, 539. [Google Scholar] [CrossRef]
- Shen, Z.; Liu, S.; Zhu, W.; Ren, D.; Xu, Q.; Feng, Y. A Review on Key Technologies and Developments of Hydrogen Fuel Cell Multi-Rotor Drones. Energies 2024, 17, 4193. [Google Scholar] [CrossRef]
- Tian, W.; Zhang, X.; Zhou, P.; Guo, R. Review of Energy Management Technologies for Unmanned Aerial Vehicles Powered by Hydrogen Fuel Cell. Energy 2025, 323, 135751. [Google Scholar] [CrossRef]
- Al Dhafari, L.S.; Afzal, A.; Al Abri, O.K.; Khan, A. Solar-Powered UAVs: A Systematic Literature Review. In Proceedings of the 2024 2nd International Conference on Unmanned Vehicle Systems-Oman (UVS), Muscat, Oman, 12–14 February 2024; pp. 1–8. [Google Scholar]
- Mohammed, A.A.; Shinkafi, A.A.; Isah, A.; Ajayi, J.A.; Pedro, P.T.; Asooto, B.C.; Ejakita, J.O.; Johnson-Anamemena, N. Prospects and Challenges of Propulsion Technologies of Unmanned Aerial Vehicles: A Review. Niger. J. Technol. 2022, 40, 1063–1071. [Google Scholar] [CrossRef]
- El-Atab, N.; Mishra, R.B.; Alshanbari, R.; Hussain, M.M. Solar Powered Small Unmanned Aerial Vehicles: A Review. Energy Technol. 2021, 9, 2100587. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, D.; Li, W.; Wang, Z.; Huang, Y.; You, Y.; Becker, S. Current Technologies and Challenges of Applying Fuel Cell Hybrid Propulsion Systems in Unmanned Aerial Vehicles. Prog. Aerosp. Sci. 2020, 116, 100620. [Google Scholar] [CrossRef]
- Xu, L.; Huangfu, Y.; Ma, R.; Xie, R.; Song, Z.; Zhao, D.; Yang, Y.; Wang, Y.; Xu, L. A Comprehensive Review on Fuel Cell UAV Key Technologies: Propulsion System, Management Strategy, and Design Procedure. IEEE Trans. Transp. Electrif. 2022, 8, 4118–4139. [Google Scholar] [CrossRef]
- Marto, D.; Brójo, F. Hybrid-Electric Propulsion Solutions for UAV Application. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), Columbus, OH, USA, 30 October–3 November 2022; Volume 3. [Google Scholar]
- Babu, B.H.; Kumar, I.; Naveen; Singh, M.K.; Sarojwal, A.; Vidhya, R.G. Propelling the Future: Advanced Electric Propulsion Systems for Unmanned Aerial Vehicles. In Proceedings of the 2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS), Coimbatore, India, 10–12 July 2024; pp. 5–9. [Google Scholar]
- Farajollahi, A.H.; Rostami, M.; Marefati, M. A Hybrid-Electric Propulsion System for an Unmanned Aerial Vehicle Based on Proton Exchange Membrane Fuel Cell, Battery, and Electric Motor. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 934–950. [Google Scholar] [CrossRef]
- Zhang, B.; Song, Z.; Zhao, F.; Liu, C. Overview of Propulsion Systems for Unmanned Aerial Vehicles. Energies 2022, 15, 455. [Google Scholar] [CrossRef]
- Morton, S.; D’Sa, R.; Papanikolopoulos, N. Solar Powered UAV: Design and Experiments. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–2 October 2015; Volume 2015-December. [Google Scholar]
- Joshi, D.; Deb, D.; Muyeen, S.M. Comprehensive Review on Electric Propulsion System of Unmanned Aerial Vehicles. Front. Energy Res. 2022, 10, 752012. [Google Scholar] [CrossRef]
- Mohiuddin, A.; Tarek, T.; Zweiri, Y.; Gan, D. A Survey of Single and Multi-UAV Aerial Manipulation. Unmanned Syst. 2020, 8, 119–147. [Google Scholar] [CrossRef]
- Pham, K.L.; Leuchter, J.; Bystricky, R.; Andrle, M.; Pham, N.N.; Pham, V.T. The Study of Electrical Energy Power Supply System for UAVs Based on the Energy Storage Technology. Aerospace 2022, 9, 500. [Google Scholar] [CrossRef]
- Joshi, P.S.; Sutrave, D.S. A Brief Study of Cyclic Voltammetry and Electrochemical Analysis. Int. J. Chemtech Res. 2018, 11, 77–88. [Google Scholar]
- Rajendran, P.; Smith, H. Review of Solar and Battery Power System Development for Solar-Powered Electric Unmanned Aerial Vehicles. Adv. Mat. Res. 2015, 1125, 641–647. [Google Scholar]
- Gong, A.; Verstraete, D. Fuel Cell Propulsion in Small Fixed-Wing Unmanned Aerial Vehicles: Current Status and Research Needs. Int. J. Hydrogen Energy 2017, 42, 1311–21333. [Google Scholar] [CrossRef]
- Townsend, A.; Gouws, R. A Comparative Review of Lead-Acid, Lithium-Ion and Ultra-Capacitor Technologies and Their Degradation Mechanisms. Energies 2022, 15, 4930. [Google Scholar] [CrossRef]
- Mendis, N.; Muttaqi, K.M.; Perera, S. Management of Low- and High-Frequency Power Components in Demand-Generation Fluctuations of a DFIG-Based Wind-Dominated RAPS System Using Hybrid Energy Storage. IEEE Trans. Ind. Appl. 2013, 50, 2258–2268. [Google Scholar] [CrossRef]
- Shiau, J.K.; Ma, D.M.; Yang, P.Y.; Wang, G.F.; Gong, J.H. Design of a Solar Power Management System for an Experimental UAV. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 1350–1360. [Google Scholar] [CrossRef]
- Boukoberine, M.N.; Zhou, Z.; Benbouzid, M. A Critical Review on Unmanned Aerial Vehicles Power Supply and Energy Management: Solutions, Strategies, and Prospects. Appl. Energy 2019, 255, 113823. [Google Scholar] [CrossRef]
- Kim, T.; Kwon, S. Design and Development of a Fuel Cell-Powered Small Unmanned Aircraft. Int. J. Hydrogen Energy 2012, 37, 615–622. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Khan, M.A.; Noor, F.; Ullah, I.; Alsharif, M.H. Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones 2022, 6, 147. [Google Scholar] [CrossRef]
- Dwivedi, V.S.; Patrikar, J.; Addamane, A.; Ghosh, A.K. MARAAL: A Low Altitude Long Endurance Solar Powered UAV for Surveillance and Mapping Applications. In Proceedings of the 2018 23rd International Conference on Methods and Models in Automation and Robotics, MMAR 2018, Miedzyzdroje, Poland, 7–30 August 2018. [Google Scholar]
- Weiss, M.; Ruess, R.; Kasnatscheew, J.; Levartovsky, Y.; Levy, N.R.; Minnmann, P.; Stolz, L.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Aurbach, D.; et al. Fast Charging of Lithium-Ion Batteries: A Review of Materials Aspects. Adv. Energy Mater. 2021, 11, 2101126. [Google Scholar] [CrossRef]
- Lei, S.; Zeng, Z.; Cheng, S.; Xie, J. Fast-Charging of Lithium-Ion Batteries: A Review of Electrolyte Design Aspects. Battery Energy 2023, 2, 20230018. [Google Scholar] [CrossRef]
- Saravanakumar, Y.N.; Sultan, M.T.H.; Shahar, F.S.; Giernacki, W.; Łukaszewicz, A.; Nowakowski, M.; Holovatyy, A.; Stępień, S. Power Sources for Unmanned Aerial Vehicles: A State-of-the Art. Appl. Sci. 2023, 13, 11932. [Google Scholar] [CrossRef]
- Cano, Z.P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and Fuel Cells for Emerging Electric Vehicle Markets. Nat. Energy 2018, 3, 279–289. [Google Scholar] [CrossRef]
- Townsend, A.; Jiya, I.N.; Martinson, C.; Bessarabov, D.; Gouws, R. A Comprehensive Review of Energy Sources for Unmanned Aerial Vehicles, Their Shortfalls and Opportunities for Improvements. Heliyon 2020, 6, e05285. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.-H.; Chen, X.; Zhang, Q. Review on the Lithium Transport Mechanism in Solid-State Battery Materials. WIREs Comput. Mol. Sci. 2023, 13, e1621. [Google Scholar] [CrossRef]
- Shchurov, N.I.; Dedov, S.I.; Malozyomov, B.V.; Shtang, A.A.; Martyushev, N.V.; Klyuev, R.V.; Andriashin, S.N. Degradation of Lithium-Ion Batteries in an Electric Transport Complex. Energies 2021, 14, 8072. [Google Scholar] [CrossRef]
- Rimsha; Murawwat, S.; Gulzar, M.M.; Alzahrani, A.; Hafeez, G.; Khan, F.A.; Abed, A.M. State of Charge Estimation and Error Analysis of Lithium-Ion Batteries for Electric Vehicles Using Kalman Filter and Deep Neural Network. J. Energy Storage 2023, 72, 108039. [Google Scholar] [CrossRef]
- Pillai, P.; Sundaresan, S.; Kumar, P.; Pattipati, K.R.; Balasingam, B. Open-Circuit Voltage Models for Battery Management Systems: A Review. Energies 2022, 15, 6803. [Google Scholar] [CrossRef]
- Zhou, W.; Zheng, Y.; Pan, Z.; Lu, Q. Review on the Battery Model and SOC Estimation Method. Processes 2021, 9, 1685. [Google Scholar] [CrossRef]
- How, D.N.T.; Hannan, M.A.; Hossain Lipu, M.S.; Ker, P.J. State of Charge Estimation for Lithium-Ion Batteries Using Model-Based and Data-Driven Methods: A Review. IEEE Access 2019, 7, 136116–136136. [Google Scholar] [CrossRef]
- Tang, C.Y.; Lin, J.T. Online Autonomous Specific Gravity Measurement Strategy for Lead-Acid Batteries. IEEE Sens. J. 2020, 20, 1980–1987. [Google Scholar] [CrossRef]
- Lin, C.; Tang, A.; Mu, H.; Wang, W.; Wang, C. Aging Mechanisms of Electrode Materials in Lithium-Ion Batteries for Electric Vehicles. J. Chem. 2015, 2015, 104673. [Google Scholar] [CrossRef]
- Duryea, S.; Islam, S.; Lawrance, W. A Battery Management System for Stand-Alone Photovoltaic Energy Systems. IEEE Ind. Appl. Mag. 2001, 7, 67–72. [Google Scholar] [CrossRef]
- Williams, A.; Yakimenko, O. Persistent Mobile Aerial Surveillance Platform Using Intelligent Battery Health Management and Drone Swapping. In Proceedings of the Proceedings-2018 4th International Conference on Control, Automation and Robotics, ICCAR 2018, Auckland, New Zealand, 20–23 April 2018. [Google Scholar]
- Jawad, A.M.; Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Abdullah, N.F.; Abu-Alshaeer, M.J. Wireless Power Transfer with Magnetic Resonator Coupling and Sleep/Active Strategy for a Drone Charging Station in Smart Agriculture. IEEE Access 2019, 7, 139839–139851. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, D.; Zhu, D.; Shi, Q.; Gu, J.; Ai, Y. Design and Experiment for Realization of Laser Wireless Power Transmission for Small Unmanned Aerial Vehicles. In Proceedings of the AOPC 2015: Advances in Laser Technology and Applications, Beijing, China, 15 October 2015; Volume 9671. [Google Scholar]
- Lim, Y.; Choi, Y.W.; Ryoo, J. Study on Laser-Powered Aerial Vehicle: Prolong Flying Time Using 976nm Laser Source. In Proceedings of the International Conference on ICT Convergence, Jeju-si, Republic of Korea, 20–22 October 2021; pp. 1220–1225. [Google Scholar]
- Ouyang, J.; Che, Y.; Xu, J.; Wu, K. Throughput Maximization for Laser-Powered UAV Wireless Communication Systems. In Proceedings of the 2018 IEEE International Conference on Communications Workshops, ICC Workshops 2018-Proceedings, Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar]
- Achtelik, M.C.; Stumpf, J.; Gurdan, D.; Doth, K.-M. Design of a Flexible High Performance Quadcopter Platform Breaking the MAV Endurance Record with Laser Power Beaming. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; IEEE: New York, NY, USA, 2011; pp. 5166–5172. [Google Scholar]
- Bocewicz, G.; Nielsen, P.; Banaszak, Z.; Thibbotuwawa, A. A Declarative Modelling Framework for Routing of Multiple UAVs in a System with Mobile Battery Swapping Stations. In International Conference on Intelligent Systems in Production Engineering and Maintenance; Springer International Publishing: Cham, Switzerland, 2019; pp. 429–441. [Google Scholar]
- Feng, X.; Sun, Y.; Chang, M.; Bai, J. Endurance Improvement by Battery Dumping Strategy Considering Peukert Effect for Electric-Powered Disposable UAVs. Proc. Aeronaut. J. 2021, 125, 42–59. [Google Scholar] [CrossRef]
- Gao, Y.; Qiao, Z.; Pei, X.; Wu, G.; Bai, Y. Design of Energy-Management Strategy for Solar-Powered UAV. Sustainability 2023, 15, 14972. [Google Scholar] [CrossRef]
- Shan, C.; Lv, M.; Sun, K.; Gao, J. Analysis of Energy System Configuration and Energy Balance for Stratospheric Airship Based on Position Energy Storage Strategy. Aerosp. Sci. Technol. 2020, 101, 105844. [Google Scholar] [CrossRef]
- Liao, J.; Jiang, Y.; Li, J.; Liao, Y.; Du, H.; Zhu, W.; Zhang, L. An Improved Energy Management Strategy of Hybrid Photovoltaic/Battery/Fuel Cell System for Stratospheric Airship. Acta Astronaut. 2018, 152, 727–739. [Google Scholar] [CrossRef]
- Sun, M.; Shan, C.; Sun, K.W.; Jia, Y.H. Energy Management Strategy for High-Altitude Solar Aircraft Based on Multiple Flight Phases. Math. Probl. Eng. 2020, 2020, 6655031. [Google Scholar] [CrossRef]
- Norhashim, N.; Kamal, N.L.M.; Shah, S.A.; Sahwee, Z.; Ruzani, A.I.A. A Review of Unmanned Aerial Vehicle Technology Adoption for Precision Agriculture in Malaysia. Unmanned Syst. 2024, 12, 707–725. [Google Scholar] [CrossRef]
- Cestino, E. Design of Solar High Altitude Long Endurance Aircraft for Multi Payload & Operations. Aerosp. Sci. Technol. 2006, 10, 541–550. [Google Scholar] [CrossRef]
- Gao, X.Z.; Hou, Z.X.; Guo, Z.; Chen, X.Q. Reviews of Methods to Extract and Store Energy for Solar-Powered Aircraft. Renew. Sustain. Energy Rev. 2015, 44, 96–108. [Google Scholar] [CrossRef]
- Verstraete, D.; Lehmkuehler, K.; Wong, K.C. Design of a Fuel Cell Powered Blended Wing Body UAV. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), Houston, TX, USA, 9–15 November 2012; Volume 1. [Google Scholar]
- Boukoberine, M.N.; Zhou, Z.; Benbouzid, M. Power Supply Architectures for Drones—A Review. In Proceedings of the IECON Proceedings (Industrial Electronics Conference), Lisbon, Portugal, 14–17 October 2019; Volume 2019-October. [Google Scholar]
- Jansen, R.H.; Bowman, C.; Jankovsky, A. Sizing Power Components of an Electrically Driven Tail Cone Thruster and a Range Extender. In Proceedings of the 16th AIAA Aviation Technology, Integration, and Operations Conference, Washington, DC, USA, 13–17 June 2016. [Google Scholar]
- Yu, J.; Liu, C.; Song, Z.; Zhao, H. Permeance and Inductance Modeling of a Double-Stator Hybrid-Excited Flux-Switching Permanent-Magnet Machine. IEEE Trans. Transp. Electrif. 2020, 6, 1134–1145. [Google Scholar] [CrossRef]
- Dever, T.P.; Duffy, K.P.; Provenza, A.J.; Loyselle, P.L.; Choi, B.B.; Morrison, C.R.; Lowe, A.M. Assessment of Technologies for Noncryogenic Hybrid Electric Propulsion; NASA’s Glenn Research Center: Cleveland, OH, USA, 2015. [Google Scholar]
- Song, Z.; Liu, C.; Liu, S.; Wang, W. Active Harmonic Suppression of Low-Reactance Multiphase Slotless Permanent Magnet Synchronous Machines. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 777–1787. [Google Scholar] [CrossRef]
- Liu, C. Emerging Electric Machines and Drives-An Overview. IEEE Trans. Energy Convers. 2018, 33, 2270–2280. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, Z.; Lu, J.; Li, J.; Yu, L. Review of Electric Power System of Distributed Electric Propulsion Aircraft. Hangkong Xuebao/Acta Aeronaut. Astronaut. Sin. 2018, 39, 21651. [Google Scholar]
- Przeniosło, Ł.; Hołub, M. Efficient Electronic Speed Controller Algorithm for Multirotor Flying Vehicles. In Proceedings of the 2018 Innovative Materials and Technologies in Electrical Engineering, i-MITEL 2018, Sulecin, Poland, 18–20 April 2018. [Google Scholar]
- Masson, P.J.; Luongo, C.A. HTS Machines for Applications in All-Electric Aircraft. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, PES, Tampa, FL, USA, 24–28 June 2007. [Google Scholar]
- Saeidabadi, S.; Parsa, L.; Corzine, K.; Kovacs, C.; Haugan, T.J. A Partially Superconducting Flux Reversal Machine with High Power Density. In Proceedings of the 2023 IEEE International Electric Machines and Drives Conference, IEMDC 2023, San Francisco, CA, USA, 15–18 May 2023. [Google Scholar]
- Saeidabadi, S.; Parsa, L.; Corzine, K.; Kovacs, C.; Haugan, T.J. A Double Rotor Flux Switching Machine With HTS Field Coils for All Electric Aircraft Applications. IEEE Trans. Appl. Supercond. 2023, 33, 5203107. [Google Scholar] [CrossRef]
- Piccoli, M.; Yim, M. Cogging Torque Ripple Minimization via Position-Based Characterization. In Proceedings of the Robotics: Science and Systems, Berkeley, CA, USA, 12–16 July 2014. [Google Scholar]
- Gebauer, J.; Fojtik, D.; Podešva, P. Modeling of the Electronic Variable Pitch Drive. In Proceedings of the 2015 16th International Carpathian Control Conference, ICCC 2015, Szilvasvarad, Hungary, 27–30 May 2015. [Google Scholar]
- Franchi, A.; Mallet, A. Adaptive Closed-Loop Speed Control of BLDC Motors with Applications to Multi-Rotor Aerial Vehicles. In Proceedings of the IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017. [Google Scholar]
- Kristen, N. Mogensen Motor-Control Considerations for Electronic Speed Control in Drones. Analog. Appl. J. 2016, 1–6. [Google Scholar]
- Chan, K.I. Generalized Aerodynamic Optimization of Hovering Coaxial Rotor Blades. J. Am. Helicopter Soc. 2019, 64, 1–13. [Google Scholar] [CrossRef]
- Podsędkowski, M.; Konopiński, R.; Obidowski, D.; Koter, K. Variable Pitch Propeller for UAV-Experimental Tests. Energies 2020, 13, 5264. [Google Scholar] [CrossRef]
- Czyż, Z.; Karpiński, P.; Skiba, K.; Wendeker, M. Wind Tunnel Performance Tests of the Propellers with Different Pitch for the Electric Propulsion System. Sensors 2022, 22, 2. [Google Scholar] [CrossRef]
- Rajendran, P.; Smith, H.; Yahaya, K.I.; Mazlan, N. Electric Propulsion System Sizing for Small Solar-Powered Electric Unmanned Aerial Vehicle. Int. J. Appl. Eng. Res. 2016, 11, 9419–9423. [Google Scholar]
- Palombo, D.; Miller, G.D. A High Efficiency Electric Motor Propeller Propulsion System for Solar Powered UAVs. SAE Tech. Pap. 1998, 8. [Google Scholar] [CrossRef]
- Jangam, S.; Verma, S.; Ramesha, K. Design and Structural Mechanics of a Modified Wood—Composite Integrated Propeller Blade; EAI: Gent, Belgium, 2021. [Google Scholar]
- Dhinnesh, S.; Guru Prasath, K.S.; Venkatesh, N. Design and Analysis of UAV Propeller for Composite Materials. Int. Res. J. Adv. Eng. Hub (IRJAEH) 2024, 2, 20–26. [Google Scholar] [CrossRef]
- Qing, G.; Koucheata, C.; Sharify, M.; Khal, A.; Ketekun, B. Numerical Comparison of Tilt Rotor Propeller Composites Materials of Carbon Fiber-Reinforced Plastic (CFRP), Wood, and Plastic. Int. J. Front. Eng. Technol. Res. 2024, 6, 12–18. [Google Scholar]
- Xie, J.; Zhu, L.; Lee, H.M.; Lee, H.P. Performance of Hybrid Composite Propellers for Drone. J. Aerosp. Eng. 2021, 34, 4021038. [Google Scholar] [CrossRef]
- Rutkay, B.; Laliberté, J. Design and Manufacture of Propellers for Small Unmanned Aerial Vehicles. J. Unmanned Veh. Syst. 2016, 4, 228–245. [Google Scholar] [CrossRef]
- Popișter, F. Experimental Study of Comprehensive Performance Analysis Regarding the Dynamical/Mechanical Aspects of 3D-Printed UAV Propellers and Sound Footprint. Polymers 2025, 17, 1466. [Google Scholar] [CrossRef] [PubMed]
- Toleos, L.R.; Luna, N.J.A.B.D.; Manuel, M.C.E.; Chua, J.M.R.; Sangalang, E.M.A.; So, P.C. Feasibility Study for Fused Deposition Modeling (FDM) 3D-Printed Propellers for Unmanned Aerial Vehicles. Int. J. Mech. Eng. Robot. Res. 2020, 9, 548–558. [Google Scholar] [CrossRef]
- Gupta, G.; Abdallah, S. Propeller Force-Constant Modeling for Multirotor UAVs from Experimental Estimation of Inflow Velocity. Int. J. Aerosp. Eng. 2018, 2018, 9632942. [Google Scholar] [CrossRef]
- Dantsker, O.D.; Caccamo, M.; Imtiaz, S. Electric Propulsion System Optimization for Long-Endurance and Solar-Powered Unmanned Aircraft. In Proceedings of the AIAA Propulsion and Energy Forum and Exposition, Indianapolis, IN, USA, 22–24 August 2019. [Google Scholar]
- Ozer, K.; Yilmaz, M. Design and Analysis of a High-Power Density Brushless DC Motor for a Multi-Rotor Unmanned Aircraft. In Proceedings of the 2021 13th International Conference on Electrical and Electronics Engineering, ELECO 2021, Bursa, Turkey, 25–27 November 2021. [Google Scholar]
- Park, Y.; Kim, H.; Jang, H.; Ham, S.H.; Lee, J.; Jung, D.H. Efficiency Improvement of Permanent Magnet BLDC with Halbach Magnet Array for Drone. IEEE Trans. Appl. Supercond. 2020, 30, 5201405. [Google Scholar] [CrossRef]
- Rodrigues Van Niekerk, D. MTECH Dissertation of Daniel van Niekerk (Final Version). Master’s Thesis, University of Johannesburg, Johannesburg, South Africa, 2024. [Google Scholar]
- Chu, Y.; Ho, C.; Lee, Y.; Li, B. Development of a Solar-Powered Unmanned Aerial Vehicle for Extended Flight Endurance. Drones 2021, 5, 44. [Google Scholar] [CrossRef]
- Safyanu, B.D.; Abdullah, M.N.; Omar, Z. Review of Power Device for Solar-Powered Aircraft Applications. J. Aerosp. Technol. Manag. 2019, 11, e4119. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.P.; Guo, C.W. The Calculation and Analysis of UAV Solar Array Power Generation. Adv. Mater. Res. 2014, 1008–1009, 22–30. [Google Scholar]
- Tian, Z.; Perers, B.; Furbo, S.; Fan, J.; Deng, J.; Dragsted, J. A Comprehensive Approach for Modelling Horizontal Diffuse Radiation, Direct Normal Irradiance and Total Tilted Solar Radiation Based on Global Radiation under Danish Climate Conditions. Energies 2018, 11, 1315. [Google Scholar] [CrossRef]
- Papis, K.; Figaj, R.; Kuś, J.; Zołądek, M.; Zając, M. Application of Photovoltaic Cells as a Source of Energy in Unmanned Aerial Vehicle (UAV)-Case Study. E3S Web Conf. 2020, 173, 2002. [Google Scholar] [CrossRef]
- Amici, C.; Ceresoli, F.; Pasetti, M.; Saponi, M.; Tiboni, M.; Zanoni, S. Review of Propulsion System Design Strategies for Unmanned Aerial Vehicles. Appl. Sci. 2021, 11, 5209. [Google Scholar] [CrossRef]
- Lee, B.; Kwon, S.; Park, P.; Kim, K. Active Power Management System for an Unmanned Aerial Vehicle Powered by Solar Cells, a Fuel Cell, and Batteries. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 3167–3177. [Google Scholar] [CrossRef]
- Gao, X.Z.; Hou, Z.X.; Guo, Z.; Liu, J.X.; Chen, X.Q. Energy Management Strategy for Solar-Powered High-Altitude Long-Endurance Aircraft. Energy Convers. Manag. 2013, 70, 20–30. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Dai, Y.; Lu, T. Experimental Investigation on the Online Fuzzy Energy Management of Hybrid Fuel Cell/Battery Power System for UAVs. Int. J. Hydrogen Energy 2018, 43, 10094–10103. [Google Scholar] [CrossRef]
- Lei, T.; Yang, Z.; Lin, Z.; Zhang, X. State of Art on Energy Management Strategy for Hybrid-Powered Unmanned Aerial Vehicle. Chin. J. Aeronaut. 2019, 32, 1488–1503. [Google Scholar] [CrossRef]
- El-Atab, N.; Khan, S.M.; Hussain, M.M. Flexible High-Efficiency Corrugated Monocrystalline Silicon Solar Cells for Application in Small Unmanned Aerial Vehicles for Payload Transportation. Energy Technol. 2020, 8, 2000670. [Google Scholar] [CrossRef]
- Ovaitt, S.; Mirletz, H.; Seetharaman, S.; Barnes, T. PV in the Circular Economy, a Dynamic Framework Analyzing Technology Evolution and Reliability Impacts. iScience 2022, 25, 103488. [Google Scholar] [CrossRef]
- Benda, V.; Černá, L. PV Cells and Modules—State of the Art, Limits and Trends. Heliyon 2020, 6, e05666. [Google Scholar] [CrossRef]
- Aleksandra, A.; Sara, B.P.; Małgorzata, J.; Brian, B.; Davide, P.; Miguel, C. Role of Solar PV in Net-Zero Growth: An Analysis of International Manufacturers and Policies. Prog. Photovolt. Res. Appl. 2024, 32, 607–622. [Google Scholar] [CrossRef]
- Fazelpour, F.; Vafaeipour, M.; Rahbari, O.; Shirmohammadi, R. Considerable Parameters of Using PV Cells for Solar-Powered Aircrafts. Renew. Sustain. Energy Rev. 2013, 22, 81–91. [Google Scholar] [CrossRef]
- Grano-Romero, C.; Garcia-Juarez, M.; Guerrero-Castellanos, J.F.; Guerrero-Sanchez, W.F.; Ambrosio-Lazaro, R.C.; Mino-Aguilar, G. Modeling and Control of a Fixed-Wing UAV Powered by Solar Energy: An Electric Array Reconfiguration Approach. In Proceedings of the International Power Electronics Congress-CIEP, Guanajuato, Mexico, 20–23 June 2016; Volume 2016-August. [Google Scholar]
- Jin, Y.; Wang, X.; Ma, D.; Jin, S.N. Design and Implementation of an Innovative Series Power Supplies for Solar Unmanned Aerial Vehicles. IOP Conf. Ser. Earth Environ. Sci. 2021, 701, 12023. [Google Scholar] [CrossRef]
- Zhao, B.; Yu, Q.; Sun, W. Extended-Phase-Shift Control of Isolated Bidirectional DC-DC Converter for Power Distribution in Microgrid. IEEE Trans. Power Electron. 2012, 27, 4667–4680. [Google Scholar] [CrossRef]
- El-Atab, N.; Shamsuddin, R.; Bahabry, R.; Hussain, M.M. High-Efficiency Corrugated Monocrystalline Silicon Solar Cells with Multi-Directional Flexing Capabilities. In Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference, Chicago, IL, USA, 16–21 June 2019. [Google Scholar]
- Sahwee, Z.; Abdul Hamid, S.; Mohd Kamal, N.L.; Norhashim, N. Experimental Evaluation of Encapsulated Solar Cells for Unmanned Aerial Vehicle Application. In Proceedings of the 2019 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology, ICARES 2019, Yogyakarta, Indonesia, 17–18 October 2019. [Google Scholar]
- Shah, S.A.; Hamid, S.A.; Kamal, N.L.M.; Norhashim, N.; Sahwee, Z.; Azaldin, A.R.R.; Zolkifli, M.I. Experimental Evaluation of Solar Charge Controller Installed in a Solar-Powered Unmanned Aerial Vehicle (UAV). Def. S T Tech. Bull 2021, 14, 198–210. [Google Scholar]
- Swarnakar, B.; Datta, A. Design and Implementation of PWM Charge Controller and Solar Tracking System. Int. J. Sci. Res. 2015, 5, 1214–1217. [Google Scholar]
- Tabassum, M.; Jahan, M.A.A.; Jahan, N.; Rahman, M.M.; Sadik, M.N. Design and Development of Maximum Power Point Tracker for Solar Module Using Microcontroller. Open Access Libr. J. 2017, 4, 1–12. [Google Scholar] [CrossRef]
- Lokeshreddy, M.; Kumar, P.J.R.P.; Chandra, S.A.M.; Babu, T.S.; Rajasekar, N. Comparative Study on Charge Controller Techniques for Solar PV System. Energy Procedia 2017, 117, 1070–1077. [Google Scholar] [CrossRef]
- Peng, L.; Zheng, S.; Chai, X.; Li, L. A Novel Tangent Error Maximum Power Point Tracking Algorithm for Photovoltaic System under Fast Multi-Changing Solar Irradiances. Appl. Energy 2018, 210, 303–316. [Google Scholar] [CrossRef]
- Suryoatmojo, H.; Hakim, R.M.; Riawan, D.C.; Mardiyanto, R.; Anam, S.; Setijadi, E.; Ashari, M. MPPT Based on Modified Incremental Conductance Algorithm for Solar Powered UAV. In Proceedings of the 2019 International Seminar on Intelligent Technology and Its Application, ISITIA 2019, Surabaya, Indonesia, 28–29 August 2019. [Google Scholar]
- Wang, H.; Shen, J. An Improved Model Combining Evolutionary Algorithm and Neural Networks for PV Maximum Power Point Tracking. IEEE Access 2019, 7, 2823–2827. [Google Scholar] [CrossRef]
- Arther Jain, A.; Rabi, B.J.; Darly, S.S. Application of QOCGWO-RFA for Maximum Power Point Tracking (MPPT) and Power Flow Management of Solar PV Generation System. Int. J. Hydrogen Energy 2020, 45, 4122–4136. [Google Scholar] [CrossRef]
- Mittal, P.; Goel, T.; Gupta, P. Evolution of MPPT Algorithms in Solar Arrays. Mater. Today Proc. 2020, 37, 3154–3158. [Google Scholar] [CrossRef]
- Alenezi, A.; Huang, P.; Enjeti, P. A Hybrid Energy Storage System for EVTOL Unmanned Aerial Vehicles Using Supercapacitors. In Proceedings of the 2025 IEEE Applied Power Electronics Conference and Exposition (APEC), Atlanta, GA, USA, 16–20 March 2025; pp. 1217–1223. [Google Scholar]
- Liller, J.; Goel, R.; Aziz, A.; Hester, J.; Nguyen, P. Development of a Battery Free, Solar Powered, and Energy Aware Fixed Wing Unmanned Aerial Vehicle. Sci. Rep. 2025, 15, 6141. [Google Scholar] [CrossRef]
- Miglani, A.; Ogale, S.B.; Game, O.S. Architectural Innovations in Perovskite Solar Cells. Small 2025, 21, 2411355. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Niu, T.; Liu, Y.; Zhou, Y.; Xia, Y.; Ran, C.; Wu, Z.; Song, L.; Müller-Buschbaum, P.; Chen, Y.; et al. Flexible Perovskite Solar Cells with High Power-Per-Weight: Progress, Application, and Perspectives. ACS Energy Lett. 2021, 6, 2917–2943. [Google Scholar] [CrossRef]
- Raisa, A.T.; Sakib, S.N.; Hossain, M.J.; Rocky, K.A.; Kowsar, A. Advances in Multijunction Solar Cells: An Overview. Sol. Energy Adv. 2025, 5, 100105. [Google Scholar] [CrossRef]
- Mamodiya, U.; Kishor, I.; Garine, R.; Ganguly, P.; Naik, N. Artificial Intelligence Based Hybrid Solar Energy Systems with Smart Materials and Adaptive Photovoltaics for Sustainable Power Generation. Sci. Rep. 2025, 15, 17370. [Google Scholar] [CrossRef]
- Hassan, E.S.; Jabbari, A.; Alharbi, A.A. Smart Irrigation Enhancement Through UAV-Based Clustering and Wireless Charging in Wireless Sensor Networks. Drones 2025, 9, 253. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, Y.; Fang, H.; Li, D.; Cheng, Y.; Qu, R. A Novel Topology With the Combination of Superconducting Magnet and Permanent Magnet for the Propulsion Motor of EVTOL Aircraft. IEEE Trans. Appl. Supercond. 2025, 35, 3600605. [Google Scholar] [CrossRef]
- Li, M. Beyond Conventional Drones: A Review of Unconventional Rotary-Wing UAV Design. Drones 2025, 9, 323. [Google Scholar] [CrossRef]
- Betalo, M.L.; Leng, S.; Seid, A.M.; Abishu, H.N.; Erbad, A.; Bai, X. Dynamic Charging and Path Planning for UAV-Powered Rechargeable WSNs Using Multi-Agent Deep Reinforcement Learning. IEEE Trans. Autom. Sci. Eng. 2025, 22, 15610–15626. [Google Scholar] [CrossRef]
- Shaikh, P.W.; Mouftah, H.T. Edge Computing-Aided Dynamic Wireless Charging and Trip Planning of UAVs. J. Sens. Actuator Netw. 2025, 14, 8. [Google Scholar] [CrossRef]
- Alqudsi, Y.; Makaraci, M. UAV Swarms: Research, Challenges, and Future Directions. J. Eng. Appl. Sci. 2025, 72, 12. [Google Scholar] [CrossRef]
- Du, Z.; Luo, C.; Min, G.; Wu, J.; Luo, C.; Pu, J.; Li, S. A Survey on Autonomous and Intelligent Swarms of Uncrewed Aerial Vehicles (UAVs). IEEE Trans. Intell. Transp. Syst. 2025, 1–24. [Google Scholar] [CrossRef]
- Hasan, Y.J.; Roeser, M.S.; Hepperle, M.; Niemann, S.; Voß, A.; Handojo, V.; Weiser, C. Flight Mechanical Analysis of a Solar-Powered High-Altitude Platform. CEAS Aeronaut J. 2023, 14, 201–223. [Google Scholar] [CrossRef]
- Dinca, L.; Corcau, J.I.; Voinea, D.G. Solar UAVs More Aerodynamic Efficiency or More Electrical Power? Energies 2023, 16, 3778. [Google Scholar] [CrossRef]
- The Lens. The Lens Free and Open Patent and Scholarly Search. Available online: https://www.lens.org/ (accessed on 14 July 2025).
- Sahwee, Z.; Mohd Kamal, N.L.; Norhashim, N.; Shah, S.A.; Hamid, S.A. From Concept to Flight: Developing a Hybrid Solar-Powered UAV Prototype for Malaysian Skies. In Proceedings of the 10th International Conference on Recent Advances in Air and Space Technologies, RAST 2023, Istanbul, Türkiye, 7–9 June 2023. [Google Scholar]
- Ahmed, N.; Zakaria, M.Y.; Kamal, A.M. Investigating Tailless UAV Flight Dynamics through Modeling, Simulation, and Flight Testing. Unmanned Syst. 2024, 13, 455–475. [Google Scholar] [CrossRef]
- Krishnamoorthy, R.R.; Rozani, N.; Marius, D. Chapter Four-Mechanical and Stability Testing of Aerospace Materials. In Aerospace Materials; Sultan, M.T.H., Uthayakumar, M., Korniejenko, K., Mashinini, P.M., Najeeb, M.I., Krishnamoorthy, R.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2025; pp. 75–101. [Google Scholar]
- Xu, Z.; Xue, T.; Guo, Q.; Yao, J.; Li, G.; Du, J.; Zhou, E.; Tan, Z. Emerging Flexible Photovoltaic Technology: From Materials to Devices. Inf. Funct. Mater. 2025, 2, 1–39. [Google Scholar] [CrossRef]
- Tang, G.; Chen, L.; Cao, X.; Wang, Y.; Zhang, H.; Tai, Q. A Review on Recent Advances in Flexible Perovskite Solar Cells. Sol. RRL 2025, 9, 2400844. [Google Scholar] [CrossRef]
- Hadi, G.S.; Ramesh, S.; Chan, M.C. PADrone: Pre-Flight Abnormalities Detection on Drone via Deep RF Sensing. ACM Trans. Internet Things 2025, 6, 1–30. [Google Scholar] [CrossRef]
- Gogolou, V.; Noulis, T.; Pavlidis, V.F. Multi-Source Energy Harvesting Systems Integrated in Silicon: A Comprehensive Review. Electronics 2025, 14, 1951. [Google Scholar] [CrossRef]
- Alqaraleh, M.; Salem Alzboon, M.; Subhi Al-Batah, M. Real-Time UAV Recognition Through Advanced Machine Learning for Enhanced Military Surveillance. Gamification Augment. Real. 2025, 3, 63. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, P.; Zhang, Z.; Sun, Q.; Zhang, J.; Deng, Z. Machine Learning-Enhanced Optimization of Rotor Blades for Rotary-Wing Mars UAVs through Coupled CFD Simulation. Aerosp. Sci. Technol. 2025, 158, 109858. [Google Scholar] [CrossRef]










| Title | Year | Focus and Contribution | Limitation of Prior Work and Contribution of This Review |
|---|---|---|---|
| Solar-Powered UAVs: A Systematic Literature Review [27] | 2024 | Broad overview of solar-powered UAV applications (e.g., surveillance, agriculture). | Lacks system level analysis and modeling. This review provides propulsion modeling, hybrid power system integration, and patent analysis. |
| Prospects and Challenges of UAV Propulsion [28] | 2022 | General UAV propulsion technologies (ICEs and electric). | Not focused on solar UAVs. This review focuses on solar-electric hybrid propulsion and MPPT-based energy strategies. |
| Status and Development Prospects of Solar-Powered Unmanned Aerial Vehicles—A Literature Review [22] | 2023 | Structural and solar integration design aspects. | Limited discussion on power management. This review adds energy optimization, MPPT, and modeling of hybrid energy systems. |
| Solar Powered Small Unmanned Aerial Vehicles: A Review [29] | 2021 | Solar cell technologies, materials, and endurance challenges in small UAVs. | Emphasizes materials and control but lacks full system modeling. This review covers complete propulsion system integration and real-world validation. |
| Advantages | Disadvantages |
|---|---|
|
| Component | Advantages | Disadvantages |
|---|---|---|
| Battery: Converts chemical energy into electrical energy using the electrodes and electrolytes in a cell |
|
|
| FC: Applies electrochemical reaction concerning hydrogen and oxygen to produce water |
|
|
| PV: Apply solar irradiance to produce power |
|
| Parameter | Lead Acid | Nickel-Cadmium | Lithium-Ion | Lithium Polymer |
|---|---|---|---|---|
| Year of discovery | 1970 | 1950 | 1991 | 2001 |
| Type | Acidic | Alkaline | Lithium | Lithium |
| Specific energy (Wh/kg) | 30 | 50 | 90 | 155 |
| Specific power (W/kg) | 250 | 125 | 300 | 315 |
| Nominal cell voltage (V) | 2 | 1.3 | 3.5 | 3.7 |
| Efficiency (%) | 80 | 75 | 99.9 | 99.8 |
| Self-discharge | 2% per day | 0.5% per day | 10% per month | 5% per month |
| Recharge time (h) | 8 (90% in 1 h) | 1 (60% in 20 min) | 2–3 | 1 |
| Number of life cycle | 800, 80% capacity | 1200, 80% capacity | >1000 | >1000 |
| Operating temperature (°C) | Ambient | −40–80 | Ambient | −20–60 |
| Typical Test Condition | 25 °C, 0.2C, 80% DoD | 25 °C, 1C, 100% DoD | 25 °C, 0.5C, 80% DoD | 25 °C, 1C, 100% DoD |
| Example UAV Battery Configuration | - | - | 8 sets in parallel (3 cells per set, 11.1 V, 9600 mAh); 4 charge + 4 discharge modules | 7 sets of 2.6 Ah, 11.1 V in parallel; 1 set = 3 batteries |
| Current Output | - | - | - | 36.4 A |
| Non-EMF-Based Technique | Solution |
|---|---|
| Gust soaring | The UAV alters its trajectory to harness ascending air currents, transforming wind energy into the required operational energy. Zhang et al. suggested performing a quantitative analysis of dynamic soaring, a highly effective technique for fixed-wing UAVs relying heavily on wind conditions [35]. |
| Laser beaming to extend flight times | Chen et al. proposed the potential laser integration onto UAVs to emit a focused and coherent light beam with certain frequency and wavelength characteristics [66]. This laser beam was targeted towards a PV, transforming the laser beam into a form of energy that could be effectively harnessed for recharging the UAV battery [67,68,69]. |
| Battery dumping | This technique potentially extends the mission time of the UAV by facilitating the removal of depleted battery packs, reducing the overall weight of the UAV. The flight duration of the aircraft is prolonged through this strategic removal. Automated battery changing systems replace depleted batteries with fully charged ones installed on specially designed platforms [70,71]. |
| Material | Advantages | Disadvantages | Typical Applications |
|---|---|---|---|
| Wood | Lightweight, low cost, good vibration damping | Moisture sensitive, can deform with humidity | Small UAVs; prototyping |
| Metal (Aluminum, Steel) | Durable, strong | Heavy, fatigue-prone, slow motor response | Rare in UAVs; legacy aircraft |
| Composite (Carbon Fiber, Kevlar) | High strength to weight ratio, aerodynamic shaping | Expensive, complex manufacturing | High performance/endurance UAVs |
| Fiberglass-Reinforced Nylon | Inexpensive, tough, injection-moldable | Lower performance than composite | Commercial small UAVs |
| 3D-Printed (PLA, ABS, Nylon blends) | Rapid prototyping, customizable | Lower durability, inconsistent properties | Prototyping, low-speed test UAVs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, N.; Mohd Kamal, N.L.; Norhashim, N.; Abdul Hamid, S.; Sahwee, Z.; Ahmad Shah, S. Electric Propulsion and Hybrid Energy Systems for Solar-Powered UAVs: Recent Advances and Challenges. Drones 2025, 9, 846. https://doi.org/10.3390/drones9120846
Ismail N, Mohd Kamal NL, Norhashim N, Abdul Hamid S, Sahwee Z, Ahmad Shah S. Electric Propulsion and Hybrid Energy Systems for Solar-Powered UAVs: Recent Advances and Challenges. Drones. 2025; 9(12):846. https://doi.org/10.3390/drones9120846
Chicago/Turabian StyleIsmail, Norliza, Nadhiya Liyana Mohd Kamal, Nurhakimah Norhashim, Sabarina Abdul Hamid, Zulhilmy Sahwee, and Shahrul Ahmad Shah. 2025. "Electric Propulsion and Hybrid Energy Systems for Solar-Powered UAVs: Recent Advances and Challenges" Drones 9, no. 12: 846. https://doi.org/10.3390/drones9120846
APA StyleIsmail, N., Mohd Kamal, N. L., Norhashim, N., Abdul Hamid, S., Sahwee, Z., & Ahmad Shah, S. (2025). Electric Propulsion and Hybrid Energy Systems for Solar-Powered UAVs: Recent Advances and Challenges. Drones, 9(12), 846. https://doi.org/10.3390/drones9120846

