Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,195)

Search Parameters:
Keywords = electro-mechanical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5970 KiB  
Article
Interface Material Modification to Enhance the Performance of a Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS Resonator by Localized Annealing Through Joule Heating
by Adnan Zaman, Ugur Guneroglu, Abdulrahman Alsolami, Liguan Li and Jing Wang
Micromachines 2025, 16(8), 885; https://doi.org/10.3390/mi16080885 - 29 Jul 2025
Viewed by 135
Abstract
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still [...] Read more.
This paper presents a novel approach employing localized annealing through Joule heating to enhance the performance of Thin-Film Piezoelectric-on-Silicon (TPoS) MEMS resonators that are crucial for applications in sensing, energy harvesting, frequency filtering, and timing control. Despite recent advancements, piezoelectric MEMS resonators still suffer from anchor-related energy losses and limited quality factors (Qs), posing significant challenges for high-performance applications. This study investigates interface modification to boost the quality factor (Q) and reduce the motional resistance, thus improving the electromechanical coupling coefficient and reducing insertion loss. To balance the trade-off between device miniaturization and performance, this work uniquely applies DC current-induced localized annealing to TPoS MEMS resonators, facilitating metal diffusion at the interface. This process results in the formation of platinum silicide, modifying the resonator’s stiffness and density, consequently enhancing the acoustic velocity and mitigating the side-supporting anchor-related energy dissipations. Experimental results demonstrate a Q-factor enhancement of over 300% (from 916 to 3632) and a reduction in insertion loss by more than 14 dB, underscoring the efficacy of this method for reducing anchor-related dissipations due to the highest annealing temperature at the anchors. The findings not only confirm the feasibility of Joule heating for interface modifications in MEMS resonators but also set a foundation for advancements of this post-fabrication thermal treatment technology. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

18 pages, 7553 KiB  
Article
Investigating Experimental and Computational Fluid Dynamics of 3D-Printed TPMS and Lattice Porous Structures
by Guru Varun Penubarthi, Kishore Bhaskar Suresh Babu, Senthilkumar Sundararaj and Shung Wen Kang
Micromachines 2025, 16(8), 883; https://doi.org/10.3390/mi16080883 - 29 Jul 2025
Viewed by 99
Abstract
This study investigates the capillary performance and wetting behavior of SLA (Stereolithography) 3D-printed porous structures, focusing on TPMS (triply periodic minimal surfaces)-Gyroid, Octet, Diamond, and Isotruss lattice designs. High-speed imaging was used to analyze droplet interactions, including penetration, spreading, and contact angles, with [...] Read more.
This study investigates the capillary performance and wetting behavior of SLA (Stereolithography) 3D-printed porous structures, focusing on TPMS (triply periodic minimal surfaces)-Gyroid, Octet, Diamond, and Isotruss lattice designs. High-speed imaging was used to analyze droplet interactions, including penetration, spreading, and contact angles, with 16 μL water droplets dropping from 30 mm at 0.77 m/s. Results showed variable contact angles, with Isotruss and Octet having higher angles, while Diamond faced measurement challenges due to surface roughness. Numerical simulations of TPMS-Gyroid of 2 mm3 unit cells validated the experimental results, and Diamond, Octet, and Isotruss structures were simulated. Capillary performance was assessed through deionized (DI) water weight–time (w-t) measurements, identifying that the TPMS-Gyroid structure performed adequately. Structures with 4 mm3 unit cells had low capillary performance, excluding them from permeability testing, whereas smaller 2 mm3 structures demonstrated capillary effects but had printability and cleaning issues. Permeability results indicated that Octet performed best, followed by Isotruss, Diamond, and TPMS-Gyroid. Findings emphasize unit cell size, beam thickness, and droplet positioning as key factors in optimizing fluid dynamics for cooling, filtration, and fluid management. Full article
(This article belongs to the Special Issue Micro Thermal Devices and Their Applications, 2nd Edition)
Show Figures

Figure 1

29 pages, 14906 KiB  
Article
Hydrothermal Engineering of Ferroelectric PZT Thin Films Tailoring Electrical and Ferroelectric Properties via TiO2 and SrTiO3 Interlayers for Advanced MEMS
by Chun-Lin Li and Guo-Hua Feng
Micromachines 2025, 16(8), 879; https://doi.org/10.3390/mi16080879 - 29 Jul 2025
Viewed by 160
Abstract
This work presents an innovative hydrothermal approach for fabricating flexible piezoelectric PZT thin films on 20 μm titanium foil substrates using TiO2 and SrTiO3 (STO) interlayers. Three heterostructures (Ti/PZT, Ti/TiO2/PZT, and Ti/TiO2/STO/PZT) were synthesized to enable low-temperature [...] Read more.
This work presents an innovative hydrothermal approach for fabricating flexible piezoelectric PZT thin films on 20 μm titanium foil substrates using TiO2 and SrTiO3 (STO) interlayers. Three heterostructures (Ti/PZT, Ti/TiO2/PZT, and Ti/TiO2/STO/PZT) were synthesized to enable low-temperature growth and improve ferroelectric performance for advanced flexible MEMS. Characterizations including XRD, PFM, and P–E loop analysis evaluated crystallinity, piezoelectric coefficient d33, and polarization behavior. The results demonstrate that the multilayered Ti/TiO2/STO/PZT structure significantly enhances performance. XRD confirmed the STO buffer layer effectively reduces lattice mismatch with PZT to ~0.76%, promoting stable morphotropic phase boundary (MPB) composition formation. This optimized film exhibited superior piezoelectric and ferroelectric properties, with a high d33 of 113.42 pm/V, representing an ~8.65% increase over unbuffered Ti/PZT samples, and displayed more uniform domain behavior in PFM imaging. Impedance spectroscopy showed the lowest minimum impedance of 8.96 Ω at 10.19 MHz, indicating strong electromechanical coupling. Furthermore, I–V measurements demonstrated significantly suppressed leakage currents in the STO-buffered samples, with current levels ranging from 10−12 A to 10−9 A over ±3 V. This structure also showed excellent fatigue endurance through one million electrical cycles, confirming its mechanical and electrical stability. These findings highlight the potential of this hydrothermally engineered flexible heterostructure for high-performance actuators and sensors in advanced MEMS applications. Full article
(This article belongs to the Special Issue Manufacturing and Application of Advanced Thin-Film-Based Device)
Show Figures

Figure 1

21 pages, 727 KiB  
Article
Cost-Effective Energy Retrofit Pathways for Buildings: A Case Study in Greece
by Charikleia Karakosta and Isaak Vryzidis
Energies 2025, 18(15), 4014; https://doi.org/10.3390/en18154014 - 28 Jul 2025
Viewed by 126
Abstract
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating [...] Read more.
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating needs. The buildings, constructed between 1986 and 2003, exhibited poor insulation, outdated electromechanical systems, and inefficient lighting, resulting in high oil consumption and low energy ratings. A robust methodology is applied, combining detailed on-site energy audits, thermophysical diagnostics based on U-value calculations, and a techno-economic assessment utilizing Net Present Value (NPV), Internal Rate of Return (IRR), and SWOT analysis. The study evaluates a series of retrofit measures, including ceiling insulation, high-efficiency lighting replacements, and boiler modernization, against both technical performance criteria and financial viability. Results indicate that ceiling insulation and lighting system upgrades yield positive economic returns, while wall and floor insulation measures remain financially unattractive without external subsidies. The findings are further validated through sensitivity analysis and policy scenario modeling, revealing how targeted investments, especially when supported by public funding schemes, can maximize energy savings and emissions reductions. The study concludes that selective implementation of cost-effective measures, supported by public grants, can achieve energy targets, improve indoor environments, and serve as a replicable model of targeted retrofits across the region, though reliance on external funding and high upfront costs pose challenges. Full article
Show Figures

Figure 1

14 pages, 6801 KiB  
Article
Effect of Zr Doping on BNT–5BT Lead-Free Ceramics: Substitutional and Excess Incorporation Analysis
by Mauro Difeo, Miriam Castro and Leandro Ramajo
Micro 2025, 5(3), 35; https://doi.org/10.3390/micro5030035 - 28 Jul 2025
Viewed by 86
Abstract
This study evaluates the effect of zirconium (Zr) incorporation on the structural, microstructural, and functional properties of lead-free ceramics based on the 0.95(Bi0.5Na0.5)TiO3–0.05BaTiO3 (BNT–5BT) system. Two distinct doping strategies were investigated: (i) the substitutional incorporation of [...] Read more.
This study evaluates the effect of zirconium (Zr) incorporation on the structural, microstructural, and functional properties of lead-free ceramics based on the 0.95(Bi0.5Na0.5)TiO3–0.05BaTiO3 (BNT–5BT) system. Two distinct doping strategies were investigated: (i) the substitutional incorporation of Zr4+ at the Ti4+ site (BNT–5BT–xZrsub), and (ii) the addition of ZrO2 in excess (BNT–5BT–xZrexc). The samples were synthesized via conventional solid-state reaction and characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM/EDS), and electrical measurements, including dielectric, ferroelectric, and piezoelectric responses. Both doping routes were found to influence phase stability and electromechanical performance. Substitutional doping notably reduced the coercive field while preserving high remanent polarization, resulting in an enhanced piezoelectric coefficient (d33). These results highlight the potential of Zr-modified BNT–5BT ceramics for lead-free energy harvesting applications. Full article
Show Figures

Figure 1

27 pages, 4829 KiB  
Article
Quantitative Analysis of Ginger Maturity and Pulsed Electric Field Thresholds: Effects on Microstructure and Juice’s Nutritional Profile
by Zhong Han, Pan He, Yu-Huan Geng, Muhammad Faisal Manzoor, Xin-An Zeng, Suqlain Hassan and Muhammad Talha Afraz
Foods 2025, 14(15), 2637; https://doi.org/10.3390/foods14152637 - 28 Jul 2025
Viewed by 280
Abstract
This study used fresh (young) and old (mature) ginger tissues as model systems to investigate how plant maturity modulates the response to pulsed electric field (PEF), a non-thermal processing technology. Specifically, the influence of tissue maturity on dielectric behavior and its downstream effect [...] Read more.
This study used fresh (young) and old (mature) ginger tissues as model systems to investigate how plant maturity modulates the response to pulsed electric field (PEF), a non-thermal processing technology. Specifically, the influence of tissue maturity on dielectric behavior and its downstream effect on juice yield and bioactive compound extraction was systematically evaluated. At 2.5 kV/cm, old ginger exhibited a pronounced dielectric breakdown effect due to enhanced electrolyte content and cell wall lignification, resulting in a higher degree of cell disintegration (0.65) compared with fresh ginger (0.44). This translated into a significantly improved juice yield of 90.85% for old ginger, surpassing the 84.16% limit observed in fresh ginger. HPLC analysis revealed that the extraction efficiency of 6-gingerol and 6-shogaol increased from 1739.16 to 2233.60 µg/g and 310.31 to 339.63 µg/g, respectively, in old ginger after PEF treatment, while fresh ginger showed increases from 1257.88 to 1824.05 µg/g and 166.43 to 213.52 µg/g, respectively. Total phenolic content (TPC) and total flavonoid content (TFC) also increased in both tissues, with OG-2.5 reaching 789.57 µg GAE/mL and 336.49 µg RE/mL, compared with 738.19 µg GAE/mL and 329.62 µg RE/mL in FG-2.5. Antioxidant capacity, as measured by ABTS•+ and DPPH inhibition, improved more markedly in OG-2.5 (37.8% and 18.7%, respectively) than in FG-2.5. Moreover, volatile compound concentrations increased by 177.9% in OG-2.5 and 137.0% in FG-2.5 compared with their respective controls, indicating differential aroma intensification and compound transformation. Structural characterization by SEM and FT-IR further corroborated enhanced cellular disruption and biochemical release in mature tissue. Collectively, these results reveal a maturity-dependent mechanism of electro-permeabilization in plant tissues, offering new insights into optimizing non-thermal processing for functional food production. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

21 pages, 4095 KiB  
Article
GNSS-Based Multi-Target RDM Simulation and Detection Performance Analysis
by Jinxing Li, Qi Wang, Meng Wang, Youcheng Wang and Min Zhang
Remote Sens. 2025, 17(15), 2607; https://doi.org/10.3390/rs17152607 - 27 Jul 2025
Viewed by 275
Abstract
This paper proposes a novel Global Navigation Satellite System (GNSS)-based remote sensing method for simulating Radar Doppler Map (RDM) features through joint electromagnetic scattering modeling and signal processing, enabling characteristic parameter extraction for both point and ship targets in multi-satellite scenarios. Simulations demonstrate [...] Read more.
This paper proposes a novel Global Navigation Satellite System (GNSS)-based remote sensing method for simulating Radar Doppler Map (RDM) features through joint electromagnetic scattering modeling and signal processing, enabling characteristic parameter extraction for both point and ship targets in multi-satellite scenarios. Simulations demonstrate that the B3I signal achieves a significantly enhanced range resolution (tens of meters) compared to the B1I signal (hundreds of meters), attributable to its wider bandwidth. Furthermore, we introduce an Unscented Particle Filter (UPF) algorithm for dynamic target tracking and state estimation. Experimental results show that four-satellite configurations outperform three-satellite setups, achieving <10 m position error for uniform motion and <18 m for maneuvering targets, with velocity errors within ±2 m/s using four satellites. The joint detection framework for multi-satellite, multi-target scenarios demonstrates an improved detection accuracy and robust localization performance. Full article
Show Figures

Figure 1

14 pages, 2878 KiB  
Article
A Peak Current Mode Boost DC-DC Converter with Hybrid Spread Spectrum
by Xing Zhong, Jianhai Yu, Yongkang Shen and Jinghu Li
Micromachines 2025, 16(8), 862; https://doi.org/10.3390/mi16080862 - 26 Jul 2025
Viewed by 248
Abstract
The stable operation of micromachine systems relies on reliable power management, where DC-DC converters provide energy with high efficiency to extend operational endurance. However, these converters also constitute significant electromagnetic interference (EMI) sources that may interfere with the normal functioning of micro-electromechanical systems. [...] Read more.
The stable operation of micromachine systems relies on reliable power management, where DC-DC converters provide energy with high efficiency to extend operational endurance. However, these converters also constitute significant electromagnetic interference (EMI) sources that may interfere with the normal functioning of micro-electromechanical systems. This paper proposes a boost converter utilizing Pulse Width Modulation (PWM) with peak current mode control to address the EMI issues inherent in the switching operation of DC-DC converters. The converter incorporates a Hybrid Spread Spectrum (HSS) technique to effectively mitigate EMI noise. The HSS combines a 1.2 MHz pseudo-random spread spectrum with a 9.4 kHz triangular periodic spread spectrum. At a standard switching frequency of 2 MHz, the spread spectrum range is set to ±7.8%. Simulations conducted using a 0.5 μm Bipolar Complementary Metal-Oxide-Semiconductor Double-diffused Metal-Oxide-Semiconductor (BCD) process demonstrate that the HSS technique reduces EMI around the switching frequency by 12.29 dBμV, while the converter’s efficiency decreases by less than 1%. Full article
Show Figures

Figure 1

26 pages, 12786 KiB  
Article
EMB System Design and Clamping Force Tracking Control Research
by Junyi Zou, Haojun Yan, Yunbing Yan and Xianping Huang
Modelling 2025, 6(3), 72; https://doi.org/10.3390/modelling6030072 - 25 Jul 2025
Viewed by 279
Abstract
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active [...] Read more.
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active disturbance rejection controller based on clamping force. This solves the problem of excessive axial distance in traditional EMB and reduces the axial distance by 30%, while concentrating the PCB control board for the wheels on the EMB housing. This enables the ABS and ESP functions to be integrated into the EMB system, further enhancing the integration of line control and active safety functions. A feedforward second-order linear active disturbance rejection controller (LADRC) based on the clamping force of the brake caliper is proposed. Compared with the traditional clamping force control methods three-loop PID and adaptive fuzzy PID, it improves the response speed, steady-state error, and anti-interference ability. Moreover, the LADRC has more advantages in parameter adjustment. Simulation results show that the response speed is increased by 130 ms, the overshoot is reduced by 9.85%, and the anti-interference ability is increased by 41.2%. Finally, the feasibility of this control algorithm was verified through the EMB hardware-in-the-loop test bench. Full article
Show Figures

Figure 1

18 pages, 3750 KiB  
Article
Design and Analysis of an Electro-Hydraulic Servo Loading System for a Pavement Mechanical Properties Test Device
by Yufeng Wu and Hongbin Tang
Appl. Sci. 2025, 15(15), 8277; https://doi.org/10.3390/app15158277 - 25 Jul 2025
Viewed by 106
Abstract
An electro-hydraulic servo loading system for a pavement mechanical properties test device was designed. The simulation analysis and test results showed that the PID control met the design requirements, but the output’s maximum error did not. Therefore, a fast terminal sliding mode control [...] Read more.
An electro-hydraulic servo loading system for a pavement mechanical properties test device was designed. The simulation analysis and test results showed that the PID control met the design requirements, but the output’s maximum error did not. Therefore, a fast terminal sliding mode control strategy with an extended state observer (ESO) was proposed. A tracking differentiator was constructed to obtain smooth differential signals from the input signals. The order of the system was reduced by considering the third and higher orders of the system as the total disturbance, and the states and the total disturbance of the system were estimated using the ESO. The fast terminal sliding mode control achieved fast convergence of the system within a limited time. The simulation results showed that the proposed control strategy improved the system accuracy and anti-disturbance ability, and system control performance was optimized. Full article
Show Figures

Figure 1

24 pages, 6228 KiB  
Article
Quantification of the Mechanical Properties in the Human–Exoskeleton Upper Arm Interface During Overhead Work Postures in Healthy Young Adults
by Jonas Schiebl, Nawid Elsner, Paul Birchinger, Jonas Aschenbrenner, Christophe Maufroy, Mark Tröster, Urs Schneider and Thomas Bauernhansl
Sensors 2025, 25(15), 4605; https://doi.org/10.3390/s25154605 - 25 Jul 2025
Viewed by 344
Abstract
Exoskeletons transfer loads to the human body via physical human–exoskeleton interfaces (pHEI). However, the human–exoskeleton interaction remains poorly understood, and the mechanical properties of the pHEI are not well characterized. Therefore, we present a novel methodology to precisely characterize pHEI interaction stiffnesses under [...] Read more.
Exoskeletons transfer loads to the human body via physical human–exoskeleton interfaces (pHEI). However, the human–exoskeleton interaction remains poorly understood, and the mechanical properties of the pHEI are not well characterized. Therefore, we present a novel methodology to precisely characterize pHEI interaction stiffnesses under various loading conditions. Forces and torques were applied in three orthogonal axes to the upper arm pHEI of 21 subjects using an electromechanical apparatus. Interaction loads and displacements were measured, and stiffness data were derived as well as mathematically described using linear and non-linear regression models, yielding all the diagonal elements of the stiffness tensor. We find that the non-linear nature of pHEI stiffness is best described using exponential functions, though we also provide linear approximations for simplified modeling. We identify statistically significant differences between loading conditions and report median translational stiffnesses between 2.1 N/mm along and 4.5 N/mm perpendicular to the arm axis, as well as rotational stiffnesses of 0.2 N·m/° perpendicular to the arm, while rotations around the longitudinal axis are almost an order of magnitude smaller (0.03 N·m/°). The resulting stiffness models are suitable for use in digital human–exoskeleton models, potentially leading to more accurate estimations of biomechanical efficacy and discomfort of exoskeletons. Full article
Show Figures

Figure 1

22 pages, 6229 KiB  
Article
Damage Classification Approach for Concrete Structure Using Support Vector Machine Learning of Decomposed Electromechanical Admittance Signature via Discrete Wavelet Transform
by Jingwen Yang, Demi Ai and Duluan Zhang
Buildings 2025, 15(15), 2616; https://doi.org/10.3390/buildings15152616 - 23 Jul 2025
Viewed by 235
Abstract
The identification of structural damage types remains a key challenge in electromechanical impedance/admittance (EMI/EMA)-based structural health monitoring realm. This paper proposed a damage classification approach for concrete structures by using integrating discrete wavelet transform (DWT) decomposition of EMA signatures with supervised machine learning. [...] Read more.
The identification of structural damage types remains a key challenge in electromechanical impedance/admittance (EMI/EMA)-based structural health monitoring realm. This paper proposed a damage classification approach for concrete structures by using integrating discrete wavelet transform (DWT) decomposition of EMA signatures with supervised machine learning. In this approach, the EMA signals of arranged piezoelectric ceramic (PZT) patches were successively measured at initial undamaged and post-damaged states, and the signals were decomposed and processed using the DWT technique to derive indicators including the wavelet energy, the variance, the mean, and the entropy. Then these indicators, incorporated with traditional ones including root mean square deviation (RMSD), baseline-changeable RMSD named RMSDk, correlation coefficient (CC), and mean absolute percentage deviation (MAPD), were processed by a support vector machine (SVM) model, and finally damage type could be automatically classified and identified. To validate the approach, experiments on a full-scale reinforced concrete (RC) slab and application to a practical tunnel segment RC slab structure instrumented with multiple PZT patches were conducted to classify severe transverse cracking and minor crack/impact damages. Experimental and application results cogently demonstrated that the proposed DWT-based approach can precisely classify different types of damage on concrete structures with higher accuracy than traditional ones, highlighting the potential of the DWT-decomposed EMA signatures for damage characterization in concrete infrastructure. Full article
Show Figures

Figure 1

40 pages, 1777 KiB  
Review
Nanomaterials for Direct Air Capture of CO2: Current State of the Art, Challenges and Future Perspectives
by Cataldo Simari
Molecules 2025, 30(14), 3048; https://doi.org/10.3390/molecules30143048 - 21 Jul 2025
Viewed by 295
Abstract
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent [...] Read more.
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent materials. The work critically evaluates the characteristics, performance, and limitations of key nanomaterial classes, including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, amine-functionalized polymers, porous carbons, and layered double hydroxides (LDHs), alongside solid-supported ionic liquids, highlighting their varied CO2 uptake capacities, regeneration energy requirements, and crucial water sensitivities. Beyond traditional temperature/pressure swing adsorption, the review delves into innovative DAC methodologies such as Moisture Swing Adsorption (MSA), Electro Swing Adsorption (ESA), Passive DAC, and CO2-Binding Organic Liquids (CO2 BOLs), detailing their unique mechanisms and potential for reduced energy footprints. Despite significant progress, the widespread deployment of DAC faces formidable challenges, notably high capital and operational costs (currently USD 300–USD 1000/tCO2), substantial energy demands (1500–2400 kWh/tCO2), water interference, scalability hurdles, and sorbent degradation. Furthermore, this review comprehensively examines the burgeoning global DAC market, its diverse applications, and the critical socio-economic barriers to adoption, particularly in developing countries. A comparative analysis of DAC within the broader carbon removal landscape (e.g., CCS, BECCS, afforestation) is also provided, alongside an address to the essential, often overlooked, environmental considerations for the sustainable production, regeneration, and disposal of spent nanomaterials, including insights from Life Cycle Assessments. The nuanced techno-economic landscape has been thoroughly summarized, highlighting that commercial viability is a multi-faceted challenge involving material performance, synthesis cost, regeneration energy, scalability, and long-term stability. It has been reiterated that no single ‘best’ material exists, but rather a portfolio of technologies will be necessary, with the ultimate success dependent on system-level integration and the availability of low-carbon energy. The review paper contributes to a holistic understanding of cutting-edge DAC technologies, bridging material science innovations with real-world implementation challenges and opportunities, thereby identifying critical knowledge gaps and pathways toward a net-zero carbon future. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Graphical abstract

15 pages, 3342 KiB  
Article
Fault-Tolerant Control of the Electro-Mechanical Compound Transmission System of Tracked Vehicles Based on the Anti-Windup PID Algorithm
by Qingkun Xing, Ziao Zhang, Xueliang Li, Datong Qin and Zengxiong Peng
Machines 2025, 13(7), 622; https://doi.org/10.3390/machines13070622 - 18 Jul 2025
Viewed by 205
Abstract
The electromechanical composite transmission technology for tracked vehicles demonstrates excellent performance in energy efficiency, mobility, and ride comfort. However, due to frequent operation under harsh conditions, the components of the electric drive system, such as drive motors, are prone to failures. This paper [...] Read more.
The electromechanical composite transmission technology for tracked vehicles demonstrates excellent performance in energy efficiency, mobility, and ride comfort. However, due to frequent operation under harsh conditions, the components of the electric drive system, such as drive motors, are prone to failures. This paper proposes three fault-tolerant control methods for three typical fault scenarios of the electromechanical composite transmission system (ECTS) to ensure the normal operation of tracked vehicles. Firstly, an ECTS and the electromechanical coupling dynamics model of the tracked vehicle are established. Moreover, a double-layer anti-windup PID control for motors and an instantaneous optimal control strategy for the engine are proposed in the fault-free case. Secondly, an anti-windup PID control law for motors and an engine control strategy considering the state of charge (SOC) and driving demands are developed in the case of single-side drive motor failure. Thirdly, a B4 clutch control strategy during starting and a steering brake control strategy are proposed in the case of electric drive system failure. Finally, in the straight-driving condition of the tracked vehicle, the throttle opening is set as 0.6, and the motor failure is triggered at 15 s during the acceleration process. Numerical simulations verify the fault-tolerant control strategies’ feasibility, using the tracked vehicle’s maximum speed and acceleration at 30 s as indicators for dynamic performance evaluation. The simulation results show that under single-motor fault, its straight-line driving power drops by 33.37%; with electric drive failure, the drop reaches 43.86%. The vehicle can still maintain normal straight-line driving and steering under fault conditions. Full article
(This article belongs to the Topic Vehicle Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

28 pages, 3506 KiB  
Review
A Review of Electromagnetic Wind Energy Harvesters Based on Flow-Induced Vibrations
by Yidan Zhang, Shen Li, Weilong Wang, Pengfei Zen, Chunlong Li, Yizhou Ye and Xuefeng He
Energies 2025, 18(14), 3835; https://doi.org/10.3390/en18143835 - 18 Jul 2025
Viewed by 213
Abstract
The urgent demand of wireless sensor nodes for long-life and maintenance-free miniature electrical sources with output power ranging from microwatts to milliwatts has accelerated the development of energy harvesting technologies. For the abundant and renewable nature of wind in environments, flow-induced vibration (FIV)-based [...] Read more.
The urgent demand of wireless sensor nodes for long-life and maintenance-free miniature electrical sources with output power ranging from microwatts to milliwatts has accelerated the development of energy harvesting technologies. For the abundant and renewable nature of wind in environments, flow-induced vibration (FIV)-based wind energy harvesting has emerged as a promising approach. Electromagnetic FIV wind energy harvesters (WEHs) show great potential for realistic applications due to their excellent durability and stability. However, electromagnetic WEHs remain less studied than piezoelectric WEHs, with few dedicated review articles available. This review analyzes the working principle, device structure, and performance characteristics of electromagnetic WEHs based on vortex-induced vibration, galloping, flutter, wake galloping vibration, and Helmholtz resonator. The methods to improve the output power, broaden the operational wind speed range, broaden the operational wind direction range, and enhance the durability are then discussed, providing some suggestions for the development of high-performance electromagnetic FIV WEHs. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

Back to TopTop