Damage Classification Approach for Concrete Structure Using Support Vector Machine Learning of Decomposed Electromechanical Admittance Signature via Discrete Wavelet Transform
Abstract
1. Introduction
2. Methodology
2.1. EMA Technique Incorporated with DWT for Damage Identification
2.2. SVM-Based Damage Classification Approach
3. Experimental Validation and Discussions
3.1. Experimental Procedure
3.2. Damage Classification on Lab-Scale RC Slab
3.2.1. Qualitative Detection of Crack and Shock Damage
3.2.2. Damage Classification Using the Proposed Approach
3.3. Application Process of Practical Tunnel Segment Slab Structure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aktan, A.E.; Catbas, F.N.; Grimmelsman, K.A.; Tsikos, C.J. Issues in infrastructure health monitoring for management. J. Eng. Mech. 2000, 126, 711–724. [Google Scholar] [CrossRef]
- Fülöp, L.; Ferreira, M.; Tuhti, A.; Rapaport, G. Assessing the challenges of condition assessment of steel-concrete composite elements using NDE. Case Stud. Constr. Mater. 2022, 16, e00887. [Google Scholar] [CrossRef]
- Lynch, J.P.; Partridge, A.; Law, K.H.; Kenny, T.W.; Kiremidjian, A.S.; Carryer, E. Design of piezoresistive MEMS-based accelerometer for integration with wireless sensing unit for structural monitoring. J. Aerosp. Eng. 2003, 16, 108–114. [Google Scholar] [CrossRef]
- Shiradhonkar, S.R.; Sinha, R. Seismic damage classification for axially-loaded well-detailed reinforced concrete frame members based on compressive strain. Bull. Earthq. Eng. 2023, 21, 4289–4312. [Google Scholar] [CrossRef]
- Nair, A.; Cai, C.S. Acoustic emission monitoring of bridges: Review and case studies. Eng. Struct. 2010, 32, 1704–1714. [Google Scholar] [CrossRef]
- Sagar, R.V.; Basu, D.J. Damage progression and crack classification in reinforced concrete structures under quasi-static monotonically increasing loading based on acoustic emission waveform parameters. J. Build. Eng. 2023, 76, 107332. [Google Scholar] [CrossRef]
- Saint-Pierre, F.; Philibert, A.; Giroux, B.; Rivard, P. Concrete quality designation based on ultrasonic pulse velocity. Constr. Build. Mater. 2016, 125, 1022–1027. [Google Scholar] [CrossRef]
- Ansari, F. Practical implementation of optical fiber sensors in civil structural health monitoring. J. Intell. Mater. Syst. Struct. 2007, 18, 879–889. [Google Scholar] [CrossRef]
- Ansari, A. Fiber optic health monitoring of civil structures using long gage and acoustic sensors. Smart Mater. Struct. 2005, 14, S1–S7. [Google Scholar] [CrossRef]
- Na, W.S.; Baek, J. A review of the piezoelectric electromechanical impedance based structural health monitoring technique for engineering structures. Sensors 2018, 18, 1307. [Google Scholar] [CrossRef]
- Giurgiutiu, V.; Zagrai, A.N. Embedded self-sensing piezoelectric active sensors for on-line structural identification. J. Vib. Acoust. 2002, 124, 116–125. [Google Scholar] [CrossRef]
- Gomasa, R.; Talakokula, V.; Rama Jyosyula, S.K.; Bansal, T. A review on health monitoring of concrete structures using embedded piezoelectric sensor. Constr. Build. Mater. 2023, 405, 133179. [Google Scholar] [CrossRef]
- Talakokula, V.; Bhalla, S. Reinforcement corrosion assessment capability of surface bonded and embedded piezo sensors for reinforced concrete structures. J. Intell. Mater. Syst. Struct. 2015, 26, 2304–2313. [Google Scholar] [CrossRef]
- Kocherla, A.; Subramaniam, K.V.L. Embedded smart PZT-based sensor for internal damage detection in concrete under applied compression. Measurement 2020, 163, 108018. [Google Scholar] [CrossRef]
- Ai, D.; Zhu, H.; Luo, H.; Wang, C. Mechanical impedance based embedded piezoelectric transducer for reinforced concrete structural impact damage detection: A comparative study. Constr. Build. Mater. 2018, 165, 472–483. [Google Scholar] [CrossRef]
- Kocherla, A.; Duddi, M.; Subramaniam, K.V.L. Smart embedded PZT sensor for in-situ elastic property and vibration measurements in concrete. Measurement 2021, 173, 108629. [Google Scholar] [CrossRef]
- Li, W.; Liu, T.; Zou, D.; Wang, J.; Yi, T. PZT based smart corrosion coupon using electromechanical impedance. Mech. Syst. Signal Process. 2019, 129, 455–469. [Google Scholar] [CrossRef]
- Na, W.S. Possibility of detecting wall thickness loss using a PZT based structural health monitoring method for metal based pipeline facilities. NDT E Int. 2017, 88, 42–50. [Google Scholar] [CrossRef]
- Park, G.; Cudney, H.H.; Inman, D.J. Feasibility of using impedance-based damage assessment for pipeline structures. Earthq. Eng. Struct. Dyn. 2001, 30, 1463–1474. [Google Scholar] [CrossRef]
- Chalioris, C.E.; Papadopoulos, N.A.; Angeli, G.M.; Karayannis, C.G.; Liolios, A.A.; Providakis, C.P. Damage evaluation in shear-critical reinforced concrete beam using piezoelectric transducers as smart aggregates. Open Eng. 2015, 5, 373–384. [Google Scholar] [CrossRef]
- Voutetaki, M.E.; Papadopoulos, N.A.; Angeli, G.M.; Providakis, C.P. Investigation of a new experimental method for damage assessment of RC beams failing in shear using piezoelectric transducers. Eng. Struct. 2016, 114, 226–240. [Google Scholar] [CrossRef]
- Ai, D.; Luo, H.; Zhu, H. Numerical and experimental investigation of flexural performance on pre-stressed concrete structures using electromechanical admittance. Mech. Syst. Signal Process. 2019, 128, 244–265. [Google Scholar] [CrossRef]
- Karayannis, C.G.; Voutetaki, M.E.; Chalioris, C.E.; Providakis, C.P.; Angeli, G.M. Detection of flexural damage stages for RC beams using piezoelectric sensors (PZT). Smart Struct. Syst. 2015, 15, 997–1018. [Google Scholar] [CrossRef]
- Park, S.; Ahmad, S.; Yun, C.B.; Roh, Y. Multiple crack detection of concrete structures using impedance-based structural health monitoring techniques. Exp. Mech. 2006, 46, 609–618. [Google Scholar] [CrossRef]
- Ayres, J.W.; Lalande, F.; Chaudhry, Z.; Rogers, C.A. Qualitative impedance-based health monitoring of civil infrastructures. Smart Mater. Struct. 1998, 7, 599–605. [Google Scholar] [CrossRef]
- Park, G.; Cudney, H.H.; Inman, D.J. Impedance-based health monitoring of civil structural components. J. Infrastruct. Syst. 2000, 6, 153–160. [Google Scholar] [CrossRef]
- Giurgiutiu, V.; Rogers, C.A. Recent advancements in the electro-mechanical (E/M) impedance method for structural health monitoring and NDE. Proc. SPIE Conf. Smart Struct. Mater. 1998, 3329, 536–547. [Google Scholar]
- Ai, D.; Zhu, H.; Luo, H. Sensitivity of embedded active PZT sensor for concrete structural impact damage detection. Constr. Build. Mater. 2016, 111, 348–357. [Google Scholar] [CrossRef]
- Saravanan, T.J.; Balamonica, K.; Priya, C.B.; Reddy, A.L.; Gopalakrishnan, N. Comparative performance of various smart aggregates during strength gain and damage states of concrete. Smart Mater. Struct. 2015, 24, e085016. [Google Scholar] [CrossRef]
- Pham, Q.Q.; Dang, N.L.; Ta, Q.B.; Kim, J. Optimal localization of smart aggregate sensor for concrete damage monitoring in PSC anchorage zone. Sensors 2021, 21, 6337. [Google Scholar] [CrossRef] [PubMed]
- Dang, N.L.; Huynh, T.C.; Pham, Q.Q.; Lee, S.Y.; Kim, J. Damage-sensitive impedance sensor placement on multistrand anchorage based on local stress variation analysis. Struct. Control Health Monit. 2020, 27, e2547. [Google Scholar] [CrossRef]
- Ai, D.; Luo, H.; Wang, C.; Zhu, H. Monitoring of the load-induced RC beam structural tension/compression stress and damage using piezoelectric transducers. Eng. Struct. 2018, 154, 38–51. [Google Scholar] [CrossRef]
- Ai, D.; Li, H.; Zhu, H. Flexure-critical stress and damage identification in RC beam structure using embedded piezoelectric transducers: 2D modelling and experimental investigations. Constr. Build. Mater. 2023, 409, 134017. [Google Scholar] [CrossRef]
- Voutetaki, M.E.; Naoum, M.C.; Papadopoulos, N.A.; Chalioris, C.E. Cracking diagnosis in fiber-reinforced concrete with synthetic fibers using piezoelectric transducers. Fibers 2022, 10, 5. [Google Scholar] [CrossRef]
- Zapris, A.G.; Naoum, M.C.; Kytinou, V.K.; Sapidis, G.M.; Chalioris, C.E. Fiber reinforced polymer debonding failure identification using smart materials in strengthened T-shaped reinforced concrete beams. Polymers 2023, 15, 278. [Google Scholar] [CrossRef] [PubMed]
- Sevillano, E.; Sun, R.; Gil, A.; Perera, R. Interfacial crack-induced debonding identification in FRP strengthened RC beams from PZT signatures using hierarchical clustering analysis. Compos. Part B Eng. 2016, 87, 322–335. [Google Scholar] [CrossRef]
- Meyer, Y. Wavelets: Algorithms & Applications; SIAM: Philadelphia, PA, USA, 1993. [Google Scholar]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef]
- Djebala, A.; Ouelaa, N.; Hamzaoui, N. Detection of rolling bearing defects using discrete wavelet analysis. Meccanica 2008, 43, 339–348. [Google Scholar] [CrossRef]
- Omar, F.K.; Gaouda, A.M. Dynamic wavelet-based tool for gearbox diagnosis. Mech. Syst. Signal Process. 2012, 26, 190–204. [Google Scholar] [CrossRef]
- Wang, C.; Ai, D.; Ren, W. A wavelet transform and substructure algorithm for tracking the abrupt stiffness degradation of shear structure. Adv. Struct. Eng. 2019, 22, 1136–1148. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, M. Outer race defect width measurement in taper roller bearing using discrete wavelet transform of vibration signal. Measurement 2013, 46, 537–545. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, W. Analysis of wavelet decomposition properties of wind turbine signal. Energy Rep. 2021, 7, 873–879. [Google Scholar] [CrossRef]
- Nistane, V.; Harsha, S. Performance evaluation of bearing degradation based on stationary wavelet decomposition and extra trees regression. World J. Eng. 2018, 15, 646–658. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, Z. Grinding wheel wear monitoring based on wavelet analysis and support vector machine. Int. J. Adv. Manuf. Technol. 2012, 62, 107–121. [Google Scholar] [CrossRef]
- Deng, Y.; Mei, X.; Sun, Z. Structural damage identification based on the transmissibility function and support vector machine. Shock Vib. 2018, 2018, 4892428. [Google Scholar]
- Yu, Y.; Dackermann, U.; Li, J.; Niederleithinger, E. Wavelet packet energy-based damage identification of wood utility poles using support vector machine multi-classifier and evidence theory. Struct. Health Monit. 2019, 18, 123–142. [Google Scholar] [CrossRef]
- Satpal, B.S.; Guha, A.; Banerjee, S. Damage identification in aluminum beams using support vector machine: Numerical and experimental studies. Struct. Control Health Monit. 2016, 23, 446–457. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, H.; Hu, L. Damage identification method and uncertainty analysis of beam structures based on SVM and swarm intelligence algorithm. Buildings 2022, 12, 1950. [Google Scholar] [CrossRef]
- Thoriya, A.; Vora, T.; Jadeja, R.; Ali, Y.A.A.; Patel, S.K. Application of wavelet transform techniques for corrosion assessment of embedded rebars in RC elements using electromechanical impedance. Measurement 2024, 226, 114081. [Google Scholar] [CrossRef]
- Civera, M.; Surace, C. Wavelet level decomposition of the seismic response of a historic masonry bell tower with and without simulated structural damage. Procedia Struct. Integr. 2023, 44, 1562–1569. [Google Scholar] [CrossRef]
- Na, S.; Lee, H.K. Neural network approach for damaged area location prediction of a composite plate using electromechanical impedance technique. Compos. Sci. Technol. 2013, 88, 62–68. [Google Scholar] [CrossRef]
- Liu, S.; Du, C.; Mou, J.; Martua, L.; Zhang, J.; Lewis, F.L. Diagnosis of structural cracks using wavelet transform and neural networks. NDT E Int. 2013, 54, 9–18. [Google Scholar] [CrossRef]
- Min, J.; Park, S.; Yun, C.B. Impedance-based structural health monitoring using neural networks for autonomous frequency range selection. Smart Mater. Struct. 2010, 19, 125011. [Google Scholar] [CrossRef]
- Min, J.; Park, S.; Yun, C.B.; Lee, C.G.; Lee, C. Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity. Eng. Struct. 2012, 39, 210–220. [Google Scholar] [CrossRef]
- Naoum, M.C.; Sapidis, G.M.; Papadopoulos, N.A.; Voutetaki, M.E. An electromechanical impedance-based application of realtime monitoring for the load-induced flexural stress and damage in fiber-reinforced concrete. Fibers 2023, 11, 34. [Google Scholar] [CrossRef]
- Selva, P.; Cherrier, O.; Budinger, V.; Lachaud, F.; Morlier, J. Smart monitoring of aeronautical composites plates based on electromechanical impedance measurements and artificial neural network. Eng. Struct. 2013, 56, 794–804. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Chen, F.; Jahanshahi, M.R. NB-CNN: Deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion. IEEE Trans. Ind. Electron. 2018, 65, 4392–4400. [Google Scholar] [CrossRef]
- Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D.J. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 2017, 388, 154–170. [Google Scholar] [CrossRef]
- Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Hussein, M.; Inman, D.J. Wireless and real-time structural damage detection: A novel decentralized method for wireless sensor networks. J. Sound Vib. 2018, 424, 158–172. [Google Scholar] [CrossRef]
- Janssens, O.; Slavkovikj, V.; Vervisch, B.; Stockman, K.; Loccufier, M.; Verstockt, S.; Walle, R.V.; Hoecke, S.V. Convolutional neural network based fault detection for rotating machinery. J. Sound Vib. 2016, 377, 331–345. [Google Scholar] [CrossRef]
- Lu, C.; Wang, Z.; Zhou, B. Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification. Adv. Eng. Inform. 2017, 32, 139–151. [Google Scholar] [CrossRef]
- Rezende, S.; Junior, J.; Neto, R.; Gallo, C.; Junior, V. Convolutional neural network and impedance-based SHM applied to damage detection. Eng. Res. Express 2020, 2, 035031. [Google Scholar] [CrossRef]
- Oliveira, M.A.; Monteiro, A.V.; Filho, J.V. A new structural health monitoring strategy based on PZT sensors and convolutional neural network. Sensors 2018, 18, 2955. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ai, D.; Zhu, H.; Luo, H. Integrated electromechanical impedance technique with convolutional neural network for concrete structural damage quantification under varied temperatures. Mech. Syst. Signal Process. 2021, 152, 107467. [Google Scholar] [CrossRef]
- Ai, D.; Mo, F.; Han, Y.; Wen, J. Automated identification of compressive stress and damage in concrete specimen using convolutional neural network learned electromechanical admittance. Eng. Struct. 2022, 259, 114176. [Google Scholar] [CrossRef]
- Ai, D.; Cheng, J. A deep learning approach for electromechanical impedance based concrete structural damage quantification using two-dimensional convolutional neural network. Mech. Syst. Signal Process. 2023, 183, 109634. [Google Scholar] [CrossRef]
- Ai, D.; Mo, F.; Cheng, J.; Du, L. Deep learning of electromechanical impedance for concrete structural damage identification using 1-D convolutional neural networks. Constr. Build. Mater. 2023, 385, 131423. [Google Scholar] [CrossRef]
- Ta, Q.B.; Pham, Q.Q.; Pham, N.L.; Huynh, T.C.; Kim, J. Smart aggregate-based concrete stress monitoring via 1D CNN deep learning of raw impedance signals. Struct. Control Health Monit. 2024, 2024, 5822653. [Google Scholar] [CrossRef]
- Liao, X.; Yan, Q.; Su, L.; Qiu, Y.; Ren, J.; Zhang, C. Automatic assessment of freeze-thaw damage in concrete structures using piezoelectric-based active sensing approach. Eng. Struct. 2024, 302, 117453. [Google Scholar] [CrossRef]
- Sapidis, G.M.; Kansizoglou, I.; Naoum, M.C.; Papadopoulos, N.A.; Chalioris, C.E. A deep learning approach for autonomous compression damage identification in fiber-reinforced concrete using piezoelectric lead zirconate titanate transducers. Sensors 2024, 24, 386. [Google Scholar] [CrossRef] [PubMed]
- Huynh, T.C.; Hoang, N.D.; Pham, Q.Q.; Truong, G.T.; Nguyen, T.T. Electromechanical admittance-based automatic damage assessment in plate structures via one-dimensional CNN-based deep learning models. Front. Struct. Civ. Eng. 2024, 18, 1730–1751. [Google Scholar] [CrossRef]
- Tenreiro, A.F.G.; Lopes, A.M.; Da Silva, L.F. A review of structural health monitoring of bonded structures using electromechanical impedance spectroscopy. Struct. Health Monit. 2022, 21, 228–249. [Google Scholar] [CrossRef]
- Coifman, R.; Wickerhauser, M. Best adapted wavelet packets bases. In Wavelets and Their Applications; Jones and Bartlett Publishers: Boston, MA, USA, 1990. [Google Scholar]
- Yang, Z.; Mitsui, K.; Wang, J.; Saito, T.; Shibata, S.; Mori, H.; Ueda, G. Non-contact heart-rate measurement method using both transmitted wave extraction and wavelet transform. Sensors 2021, 21, 2735. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, K.; Amir, A.; Masoud, A. Examination of players’ strategies in determining the optimal groundwater exploitation by game theory. Hydrogeol. J. 2024, 32, 691–704. [Google Scholar] [CrossRef]
- Ai, D.; Lin, C.; Luo, H.; Zhu, H. Temperature effect on electromechanical admittance based concrete structural health monitoring. Struct. Health Monit. 2020, 19, 661–692. [Google Scholar] [CrossRef]
- Shelgaonkar, T.; Narayanan, A.; Basappa, U. A Review on the Impact of Thermal Effects on Electro-Mechanical Impedance Technique-Based Structural Health Monitoring. J. Nondestruct. Eval. 2025, 44, 76. [Google Scholar] [CrossRef]
- Civera, M.; Filosi, C.M.; Pugno, N.M.; Silvestrini, M.; Surace, C.; Worden, K. Using Wavelet Level Variance and the Discrete Wavelet Transform to Monitor Postoperative Healing of Vocal Cords. In Proceedings of the 9th European Workshop on Structural Health Monitoring, Manchester, UK, 10–13 July 2018. [Google Scholar]
Item | Density () | Dielectric Constant | Electromechanical Coupling Coefficient | Piezoelectric Coefficients () | Insulation Resistance () | Curie Temperature () |
---|---|---|---|---|---|---|
PZT-5 | 7.86 | 1400 ± 10% | 0.8 | ≥400 × 10−12 | ≥1000 | ≥330 |
Item | Density () | Thickness (mm) | Poisson’s Ratio | Mechanical Loss Factor | Static Shear Modulus () |
---|---|---|---|---|---|
Epoxy adhesive | 1.70 | 0.3 | 0.40 | 0.34 | 1.24 |
PZT1 | RMSD | MAPD | RMSDk | CC | Entropy | Mean | Variance | Energy |
---|---|---|---|---|---|---|---|---|
Case 1 | −1.17 | −1.11 | 0.12 | 0.91 | −1.15 | −1.18 | −1.11 | 1.31 |
Case 2 | −1.12 | −1.15 | 0.19 | 0.90 | −0.82 | −0.92 | −0.39 | −1.43 |
Case 3 | −0.39 | −0.43 | 0.52 | 0.46 | −0.92 | −0.85 | −1.14 | 0.01 |
Case 4 | −0.24 | −0.35 | −1.04 | 0.35 | −0.71 | −0.66 | −0.90 | 0.36 |
Case 5 | −0.01 | 0.05 | −0.31 | 0.23 | 0.39 | 0.42 | 0.45 | 0.75 |
Case 6 | 0.04 | 0.12 | −0.98 | 0.25 | 0.96 | 0.94 | 1.31 | 0.88 |
Case 7 | 1.35 | 1.34 | 2.06 | −1.40 | 1.13 | 1.10 | 0.99 | −0.91 |
Case 8 | 1.54 | 1.52 | −0.56 | −1.71 | 1.14 | 1.15 | 0.79 | −0.96 |
PZT1 | RMSD | MAPD | RMSDk | CC | Entropy | Mean | Variance | Energy |
---|---|---|---|---|---|---|---|---|
Case 1 | −1.88 | −1.80 | −0.50 | 1.51 | −1.83 | −1.87 | −1.85 | 0.56 |
Case 2 | −0.91 | −0.67 | 0.99 | 1.08 | −0.57 | −0.49 | −0.58 | 1.58 |
Case 3 | −0.09 | −0.34 | 1.20 | 0.27 | −0.41 | −0.43 | −0.36 | −0.82 |
Case 4 | −0.02 | −0.29 | −1.48 | 0.18 | −0.37 | −0.37 | −0.36 | −1.07 |
Case 5 | 0.22 | 0.14 | −1.20 | −0.06 | 0.19 | 0.21 | 0.22 | −0.67 |
Case 6 | 0.73 | 0.79 | −0.10 | −0.69 | 1.01 | 1.00 | 1.06 | −0.91 |
Case 7 | 0.73 | 0.87 | 0.74 | −0.73 | 0.89 | 0.94 | 0.77 | 0.98 |
Case 8 | 1.22 | 1.31 | 0.36 | −1.56 | 1.09 | 1.02 | 1.10 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Ai, D.; Zhang, D. Damage Classification Approach for Concrete Structure Using Support Vector Machine Learning of Decomposed Electromechanical Admittance Signature via Discrete Wavelet Transform. Buildings 2025, 15, 2616. https://doi.org/10.3390/buildings15152616
Yang J, Ai D, Zhang D. Damage Classification Approach for Concrete Structure Using Support Vector Machine Learning of Decomposed Electromechanical Admittance Signature via Discrete Wavelet Transform. Buildings. 2025; 15(15):2616. https://doi.org/10.3390/buildings15152616
Chicago/Turabian StyleYang, Jingwen, Demi Ai, and Duluan Zhang. 2025. "Damage Classification Approach for Concrete Structure Using Support Vector Machine Learning of Decomposed Electromechanical Admittance Signature via Discrete Wavelet Transform" Buildings 15, no. 15: 2616. https://doi.org/10.3390/buildings15152616
APA StyleYang, J., Ai, D., & Zhang, D. (2025). Damage Classification Approach for Concrete Structure Using Support Vector Machine Learning of Decomposed Electromechanical Admittance Signature via Discrete Wavelet Transform. Buildings, 15(15), 2616. https://doi.org/10.3390/buildings15152616