Design and Analysis of an Electro-Hydraulic Servo Loading System for a Pavement Mechanical Properties Test Device
Abstract
1. Introduction
2. Pavement Mechanical Properties Test Device
3. Design of the Electro-Hydraulic Servo Loading System
4. Model Establishment and Simulation Analysis of the Electro-Hydraulic Servo Loading System
4.1. Model Establishment of the Electro-Hydraulic Servo Loading System
4.2. Simulation Analysis of the Electro-Hydraulic Servo Loading System
5. Test of the Electro-Hydraulic Servo Loading System
5.1. Static Loading Test
5.2. Dynamic Loading Test
6. Fast Terminal Sliding Mode Control with ESO
6.1. Design of ESO
6.2. Design of the Tracking Differentiator
6.3. Design and Analysis of Fast Terminal Sliding Mode Controller
7. Simulation Verification
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Symbol | Representative Significance |
---|---|
load flow | |
servo valve flow gain | |
valve core displacement of servo valve | |
servo valve flow-pressure coefficient | |
load pressure drop | |
effective area of hydraulic cylinder piston | |
hydraulic cylinder piston displacement | |
total leakage coefficient of hydraulic cylinder | |
total volume of hydraulic cylinder oil chamber | |
effective bulk elastic modulus | |
output force of hydraulic cylinder | |
load mass | |
viscous friction coefficient | |
elastic load stiffness | |
total flow-pressure coefficient | |
voltage signal of the given signal | |
voltage signal of the feedback signal | |
servo amplifier gain | |
servo amplifier output current signal | |
servo valve gain | |
servo valve natural frequency | |
servo valve damping ratio | |
force sensor gain | |
system output | |
system output differential value | |
system total disturbance | |
compensation factor | |
system input control quantity | |
observed value of system output | |
observed value of system output differential value | |
observed value of system total disturbance | |
adjustable parameters for ESO | |
sampling period | |
convergence time |
References
- Nielsen, C.P. Deriving pavement deflection indices from layered elastic theory. Transp. Res. Rec. 2020, 2674, 278–290. [Google Scholar] [CrossRef]
- Yao, Y.; Qian, J.; Li, J.; Zhang, A.; Peng, J. Calculation and control methods for equivalent resilient modulus of subgrade based on nonuniform distribution of stress. Adv. Civ. Eng. 2019, 2019, 1–11. [Google Scholar] [CrossRef]
- Chai, G.W.; Van Staden, R.; Loo, Y.C. In situ assessment of pavement subgrade using falling weight deflectometer. J. Test. Eval. 2015, 43, 140–148. [Google Scholar] [CrossRef]
- Bahrani, N.; Blanc, J.; Hornych, P.; Menant, F. Alternate method of pavement assessment using geophones and accelerometers for measuring the pavement response. Infrastructures 2020, 5, 25. [Google Scholar] [CrossRef]
- Han, B.; Polaczyk, P.; Gong, H.; Ma, R.; Ma, Y.; Wei, F.; Huang, B. Accelerated pavement testing to evaluate the reinforcement effect of geogrids in flexible pavements. Transp. Res. Rec. 2020, 2674, 134–145. [Google Scholar] [CrossRef]
- Singh, G.; Jain, S.; Tiwari, D. Assessment of modulus using falling weight deflectometer and cores for stabilized layer. Mater. Today Proc. 2020, 32, 698–705. [Google Scholar] [CrossRef]
- George, V.; Kumar, A. Studies on modulus of resilience using cyclic tri-axial test and correlations to PFWD, DCP, and CBR. Int. J. Pavement Eng. 2016, 19, 976–985. [Google Scholar] [CrossRef]
- George, V.; Kumar, A. Effect of soil parameters on modulus of resilience based on portable falling weight deflectometer tests on lateritic sub-grade soils. Int. J. Geotech. Eng. 2020, 14, 55–61. [Google Scholar] [CrossRef]
- Ding, X.; Shen, G.; Li, X.; Tang, Y. Delay compensation position tracking control of electro-hydraulic servo systems based on a delay observer. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2020, 234, 622–633. [Google Scholar] [CrossRef]
- Xu, X.; Liang, J.; Xu, W.; Liang, R.; Li, J.; Jiang, L. Reinforced concrete wind turbine towers: Damage mode and model testing. Sustainability 2022, 14, 4410. [Google Scholar] [CrossRef]
- Sang, Y.; Sun, W.Q.; Wang, X.D. Study on nonlinear friction compensation control in the electro-hydraulic servo loading system of triaxial apparatus. Int. J. Eng. Syst. Model. Simul. 2018, 10, 142–150. [Google Scholar] [CrossRef]
- Sheng, Z.Q.; Li, Y.H. Hybrid robust control law with disturbance observer for high-frequency response electro-hydraulic servo loading system. Appl. Sci. 2016, 6, 98. [Google Scholar] [CrossRef]
- Xu LP and Yao, S. Electro-hydraulic servo loading system for the pumping unit. Appl. Mech. Mater. 2015, 3744, 829–832. [Google Scholar] [CrossRef]
- Ahn, K.K.; Dinh, Q.T. Self-tuning of quantitative feedback theory for force control of an electro-hydraulic test machine. Control. Eng. Pract. 2009, 17, 1291–1306. [Google Scholar] [CrossRef]
- Cao, F.L. PID controller optimized by genetic algorithm for direct-drive servo system. Neural Comput. Applic 2020, 32, 23–30. [Google Scholar] [CrossRef]
- Feng, H.; Ma, W.; Yin, C.; Cao, D. Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller. Autom. Constr. 2021, 127, 103722. [Google Scholar] [CrossRef]
- Zaare, S.; Soltanpour, M.R. Optimal robust adaptive fuzzy backstepping control of electro-hydraulic servo position system. Trans. Inst. Meas. Control. 2022, 44, 1247–1262. [Google Scholar] [CrossRef]
- Yang, X.B.; Zheng, X.L.; Chen, Y.H. Position tracking control law for an electro-hydraulic servo system based on backstepping and extended differentiator. IEEE/ASME Trans. Mechatron. 2017, 23, 132–140. [Google Scholar] [CrossRef]
- Han, J.Q. Form PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Gao, Z.Q. Scaling and bandwidth-parameterization based controller tuning. In Proceedings of the 2003 American Control Conference, Denver, CO, USA, 4–6 June 2003; pp. 4989–4996. [Google Scholar]
- Gao, B.W.; Shao, J.P.; Yang, X.D. A compound control strategy combining velocity compensation with ADRC of electro-hydraulic position servo control system. ISA Trans. 2014, 53, 1910–1918. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Feng, Y.M.; Sun, Y.W. Research on improved active disturbance rejection control of continuous rotary motor electro-hydraulic servo system. J. Cent. South Univ. 2020, 27, 3733–3743. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Liu, S.Y.; Chen, Y.; Gu, C.-C. Neural direct adaptive active disturbance rejection controller for electro-hydraulic servo system. Int. J. Control. Autom. Syst. 2022, 20, 2402–2412. [Google Scholar] [CrossRef]
- Edwards, C.; Spurgeon, S.K.; Patton, R.J. Sliding mode observers for fault detection and isolation. Automatica 2000, 36, 541–553. [Google Scholar] [CrossRef]
- Basin, M.; Rodriguez-Ramirez, P. Sliding mode controller design for linear systems with unmeasured states. J. Frankl. Inst. 2012, 349, 1337–1349. [Google Scholar] [CrossRef]
- Feng, Y.; Han, F.L.; Yu, X.H. Chattering free full-order sliding-mode control. Automatica 2014, 50, 1310–1314. [Google Scholar] [CrossRef]
- Din, S.U.; Khan, Q.; Rehman, F.U.; Akmeliawanti, R. A comparative experimental study of robust sliding mode control strategies for underactuated systems. IEEE Access 2018, 6, 1927–1939. [Google Scholar] [CrossRef]
- Cerman, O.; Hušek, P. Adaptive fuzzy sliding mode control for electro-hydraulic servo mechanism. Expert Syst. Appl. 2012, 39, 10269–10277. [Google Scholar] [CrossRef]
- Du, H.; Cheng, Y.; Huang, S.; Wu, M.; Huang, H.; Li, Y. Pressure control of electro-hydraulic servo loading system in heavy vehicle steering testboard based on integral sliding mode control. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2020, 234, 458–468. [Google Scholar] [CrossRef]
- Chen, G.; Jia, P.; Yan, G.; Liu, H.; Chen, W.; Jia, C.; Ai, C. Research on feedback-linearized sliding mode control of direct-drive volume control electro-hydraulic servo system. Processes 2021, 9, 1676. [Google Scholar] [CrossRef]
- Xu, L.P.; Cai, L.J.; Li, J.; Hu, D.F.; Ma, H.Y. Control strategy of electro-hydraulic position servo system for milling machine tool based on self disturbance rejection control. Comput. Integr. Manuf. Syst. 2018, 24, 2770–2778. [Google Scholar]
- Wang, L.X.; Zhao, D.X.; Liu, F.C.; Meng, F.L.; Liu, Q. Electro hydraulic proportional servo force loading self disturbance rejection control. J. Mech. Eng. 2020, 56, 216–225. [Google Scholar]
- Fu, Y.L.; Chen, H.; Liu, H.S.; Qi, X.Y. Research on Missile Electro Hydraulic Servo System Based on Active Disturbance Rejection Control. Acta Astronaut. Sin. 2010, 31, 1051–1055. [Google Scholar]
- Xie, Y.D.; Long, Z.Q. High precision and fast nonlinear discrete tracking differentiator. Control. Theory Appl. 2009, 26, 127–132. [Google Scholar]
- Jin, B.Q. Research on Fuzzy Sliding Mode Control Method for Electro Hydraulic Position Servo Control System. Ph.D. Dissertation, Taiyuan University of Technology, Taiyuan, China, 2010. [Google Scholar]
Loading waveform | Customizable static and dynamic loading waveforms |
Loading amplitude | 0 kN–50 kN |
Loading direction | Vertical direction |
Dynamic loading frequency range | 0 Hz–15 Hz |
Loading amplitude accuracy | 0.5 kN |
Parameter Name | Value |
---|---|
servo amplifier gain/(A·V−1) | 7 × 10−3 |
servo valve gain/(m3·s−1·A−1) | 2.5 × 10−2 |
servo valve natural frequency/(rad·s−1) | 647 |
servo valve damping ratio | 0.85 |
servo valve flow gain/(m2·s−1) | 0.1 |
effective area of hydraulic cylinder piston/m2 | 4 × 10−3 |
load mass/kg | 120 |
total flow-pressure coefficient/(m3·s−1·Pa−1) | 2.5 × 10−8 |
elastic load stiffness/(N·m−1) | 1.2 × 109 |
total volume of hydraulic cylinder oil chamber/m3 | 7.9 × 10−4 |
effective bulk elastic modulus/Pa | 9 × 108 |
force sensor gain/(V·N−1) | 9 × 10−4 |
Load Signal | Absolute Value of Maximum Error/kN | Value of Mean Absolute Deviation/kN |
---|---|---|
Ramp | 0.189 | 0.064 |
Step-by-step | 0.443 | 0.187 |
0.240 | 0.130 | |
0.444 | 0.257 | |
Triangular wave 1 | 0.237 | 0.189 |
Triangular wave 2 | 0.434 | 0.363 |
Load Signal | Absolute Value of Maximum Error/kN | Value of Mean Absolute Deviation/kN |
---|---|---|
Step-by-step 1 | 0.225 | 0.143 |
Step-by-step 2 | 0.475 | 0.294 |
0.231 | 0.098 | |
0.490 | 0.309 | |
0.485 | 0.155 | |
0.491 | 0.225 | |
0.472 | 0.185 | |
0.482 | 0.212 |
Controller | Parameters |
---|---|
PI | |
ADRC | Tracking differentiator: ESO: Nonlinear feedback controller: |
FTSMC-ESO | Tracking differentiator: ESO: Fast terminal sliding mode controller: |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Tang, H. Design and Analysis of an Electro-Hydraulic Servo Loading System for a Pavement Mechanical Properties Test Device. Appl. Sci. 2025, 15, 8277. https://doi.org/10.3390/app15158277
Wu Y, Tang H. Design and Analysis of an Electro-Hydraulic Servo Loading System for a Pavement Mechanical Properties Test Device. Applied Sciences. 2025; 15(15):8277. https://doi.org/10.3390/app15158277
Chicago/Turabian StyleWu, Yufeng, and Hongbin Tang. 2025. "Design and Analysis of an Electro-Hydraulic Servo Loading System for a Pavement Mechanical Properties Test Device" Applied Sciences 15, no. 15: 8277. https://doi.org/10.3390/app15158277
APA StyleWu, Y., & Tang, H. (2025). Design and Analysis of an Electro-Hydraulic Servo Loading System for a Pavement Mechanical Properties Test Device. Applied Sciences, 15(15), 8277. https://doi.org/10.3390/app15158277