Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = dynamic on-resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3091 KB  
Article
High-Performance p-Cu2O/n-β-Ga2O3 Heterojunction Barrier Schottky Diodes with Copper Contact
by Xiaohui Wang, Xuhui Liu, Mujun Li, Haozhe Yu, Kah Wee Ang, Chun Zhang Chen, Yue Geng, Qing Wang and Hongyu Yu
Nanomaterials 2025, 15(24), 1840; https://doi.org/10.3390/nano15241840 - 5 Dec 2025
Viewed by 512
Abstract
This study demonstrates the fabrication of high-performance p-Cu2O/n-β-Ga2O3 heterojunction barrier Schottky (JBS) diodes using copper as a low-work-function anode metal. By optimizing the Cu2O spacing to 4 μm, the device achieves a turn-on voltage of 0.78 [...] Read more.
This study demonstrates the fabrication of high-performance p-Cu2O/n-β-Ga2O3 heterojunction barrier Schottky (JBS) diodes using copper as a low-work-function anode metal. By optimizing the Cu2O spacing to 4 μm, the device achieves a turn-on voltage of 0.78 V, a breakdown voltage of 1700 V, and a specific on-resistance of 5.91 mΩ·cm2, yielding a power figure of merit of 0.49 GW/cm2. The JBS diode also exhibits stable electrical characteristics across the temperature range of 300–425 K. Under a 200 V reverse stress for 5000 s, the JBS diode shows only a 4.16% degradation in turn-on voltage and a 1.15-fold increase in dynamic specific on-resistance variation, highlighting its excellent resistance to stress-induced degradation. These results indicate that Cu2O/Ga2O3 JBS diodes are promising candidates for next-generation high-efficiency and high-voltage power electronic applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

11 pages, 16090 KB  
Article
Impact of OFF-State Stress on Dynamic RON of On-Wafer 100 V p-GaN HEMTs, Studied by Emulating Monolithically Integrated Half-Bridge Operation
by Lorenzo Modica, Nicolò Zagni, Marcello Cioni, Giacomo Cappellini, Giovanni Giorgino, Ferdinando Iucolano, Giovanni Verzellesi and Alessandro Chini
Electronics 2025, 14(23), 4756; https://doi.org/10.3390/electronics14234756 - 3 Dec 2025
Viewed by 353
Abstract
This paper presents the electrical characterization of the on-resistance (RON) of on-wafer 100 V p-GaN power High-Electron-Mobility Transistors (HEMTs). This study assesses device degradation in the context of a monolithically integrated half-bridge circuit, considering both Low-Side (LS) and High-Side (HS) [...] Read more.
This paper presents the electrical characterization of the on-resistance (RON) of on-wafer 100 V p-GaN power High-Electron-Mobility Transistors (HEMTs). This study assesses device degradation in the context of a monolithically integrated half-bridge circuit, considering both Low-Side (LS) and High-Side (HS) configurations. Since on-wafer samples have been characterized, a custom experimental setup was developed to emulate stress conditions experienced by the devices in the half-bridge circuit. A periodic signal (T = 10 µs, TON = 2 µs) switching from the OFF to the ON state was applied for a cumulative duration of 1000 s. Different OFF-state stress conditions were applied by varying the gate-source OFF voltage (VGS,OFF) between 0 V and −10 V. The on-resistance exhibited a positive drift over time for devices in either the LS or the HS configuration, with the latter showing a more pronounced degradation. Measurements at higher temperatures (up to 90 °C) were carried out to characterize the dynamics of the physical mechanism behind the degradation effects. We identified hole emission from C-related acceptor traps in the buffer as the main mechanism for the observed degradation, which is present in both the HS and the LS configurations. The additional degradation observed in the HS case was attributed to the back-gating effect, stemming from the non-null body-to-source voltage. Furthermore, we found that a more negative VGS,OFF further increases RON degradation, likely related to the higher electric field near the gate contact, which enhances hole emission from C-related acceptor traps. Full article
(This article belongs to the Section Semiconductor Devices)
Show Figures

Figure 1

19 pages, 3047 KB  
Article
Thermal Management of Wide-Bandgap Power Semiconductors: Strategies and Challenges in SiC and GaN Power Devices
by Gyuyeon Han, Junseok Kim, Sanghyun Park and Wongyu Bae
Electronics 2025, 14(21), 4193; https://doi.org/10.3390/electronics14214193 - 27 Oct 2025
Cited by 3 | Viewed by 4776
Abstract
Wide-Bandgap (WBG) semiconductors—silicon carbide (SiC) and gallium nitride (GaN)— enable high-power-density conversion, but performance is limited by where heat is generated and how it is removed. This review links device-level loss mechanisms (conduction and switching, including output-capacitance hysteresis and dynamic on-resistance) to structure-driven [...] Read more.
Wide-Bandgap (WBG) semiconductors—silicon carbide (SiC) and gallium nitride (GaN)— enable high-power-density conversion, but performance is limited by where heat is generated and how it is removed. This review links device-level loss mechanisms (conduction and switching, including output-capacitance hysteresis and dynamic on-resistance) to structure-driven hot spots within the ultra-thin (tens of nanometers) two-dimensional electron gas (2DEG) channel of GaN HEMTs and to thermal boundary resistance at layer interfaces. We compare wire-bondless package concepts—double-sided cooling, embedded packaging, and interleaved planar layouts—and survey system-level cooling that shortens the conduction path and raises heat-transfer coefficients. The impact on reliability is discussed using temperature-sensitive electrical parameters (e.g., on-state VDS, threshold voltage, drain leakage, di/dt, and gate current) for real-time junction-temperature estimation and compact electro-thermal RC models for remaining-useful-life prediction. Evidence from recent literature points to interface resistance in GaN-on-SiC as a primary bottleneck, while near-junction cooling and advanced packages are effective mitigations. We argue for integrated co-design—devices, packaging, electromagnetic interference (EMI)-aware layout, and cooling—together with interface engineering and health monitoring to deliver reliable, high-density WBG systems. Full article
(This article belongs to the Topic Wide Bandgap Semiconductor Electronics and Devices)
Show Figures

Figure 1

11 pages, 2232 KB  
Article
Research on Radiation-Hardened RCC Isolated Power Supply for High-Radiation-Field Applications
by Xiaojin Lu, Hong Yin, Youran Wu, Lihong Zhu, Ke Hong, Qifeng He, Ziyu Zhou and Gang Dong
Micromachines 2025, 16(10), 1135; https://doi.org/10.3390/mi16101135 - 30 Sep 2025
Cited by 1 | Viewed by 476
Abstract
A radiation-hardened RCC (Ring Choke Converter) isolated power supply design is proposed, which provides an innovative solution to the challenge of providing stable power to the PWM controller in DC-DC converters under nuclear radiation environments. By optimizing circuit architecture and component selection, and [...] Read more.
A radiation-hardened RCC (Ring Choke Converter) isolated power supply design is proposed, which provides an innovative solution to the challenge of providing stable power to the PWM controller in DC-DC converters under nuclear radiation environments. By optimizing circuit architecture and component selection, and incorporating transformer isolation and dynamic parameter compensation technology, the RCC maintains an 8.9 V output voltage after exposure to neutron irradiation of 3 × 1013 n/cm2, significantly outperforming conventional designs with a failure threshold of 1 × 1013 n/cm2. For the first time, the degradation mechanisms of VDMOS devices under neutron irradiation during switching operations are systematically revealed: a 32–36% reduction in threshold voltage (with the main power transistor dropping from 5 V to 3.4 V) and an increase in on-resistance. Based on these findings, a selection criterion for power transistors is established, enabling the power supply to achieve a 2 W output in extreme environments such as nuclear power plant monitoring and satellite systems. The results provide a comprehensive solution for radiation-hardened power electronics systems, covering device characteristic analysis to circuit optimization, with significant engineering application value. Full article
Show Figures

Figure 1

18 pages, 5521 KB  
Article
Design and TCAD Simulation of GaN P-i-N Diode with Multi-Drift-Layer and Field-Plate Termination Structures
by Zhibo Yang, Guanyu Wang, Yifei Wang, Pandi Mao and Bo Ye
Micromachines 2025, 16(8), 839; https://doi.org/10.3390/mi16080839 - 22 Jul 2025
Viewed by 1675
Abstract
Vertical GaN P-i-N diodes exhibit excellent high-voltage performance, fast switching speed, and low conduction losses, making them highly attractive for power applications. However, their breakdown voltage is severely constrained by electric field crowding at device edges. Using silvaco tcad (2019) tools, this work [...] Read more.
Vertical GaN P-i-N diodes exhibit excellent high-voltage performance, fast switching speed, and low conduction losses, making them highly attractive for power applications. However, their breakdown voltage is severely constrained by electric field crowding at device edges. Using silvaco tcad (2019) tools, this work systematically evaluates multiple edge termination techniques, including deep-etched mesa, beveled mesa, and field-plate configurations with both vertical and inclined mesa structures. We present an optimized multi-drift-layer GaN P-i-N diode incorporating field-plate termination and analyze its electrical performance in detail. This study covers forward conduction characteristics including on-state voltage, on-resistance, and their temperature dependence, reverse breakdown behavior examining voltage capability and electric field distribution under different temperatures, and switching performance addressing both forward recovery phenomena, i.e., voltage overshoot and carrier injection dynamics, and reverse recovery characteristics including peak current and recovery time. The comprehensive analysis offers practical design guidelines for developing high-performance GaN power devices. Full article
Show Figures

Figure 1

15 pages, 2473 KB  
Article
Self-Calibrating TSEP for Junction Temperature and RUL Prediction in GaN HEMTs
by Yifan Cui, Yutian Gan, Kangyao Wen, Yang Jiang, Chunzhang Chen, Qing Wang and Hongyu Yu
Nanomaterials 2025, 15(14), 1102; https://doi.org/10.3390/nano15141102 - 16 Jul 2025
Viewed by 938
Abstract
Gallium nitride high-electron-mobility transistors (GaN HEMTs) are critical for high-power applications like AI power supplies and robotics but face reliability challenges due to increased dynamic ON-resistance (RDS_ON) from electrical and thermomechanical stresses. This paper presents a novel self-calibrating temperature-sensitive electrical parameter [...] Read more.
Gallium nitride high-electron-mobility transistors (GaN HEMTs) are critical for high-power applications like AI power supplies and robotics but face reliability challenges due to increased dynamic ON-resistance (RDS_ON) from electrical and thermomechanical stresses. This paper presents a novel self-calibrating temperature-sensitive electrical parameter (TSEP) model that uses gate leakage current (IG) to estimate junction temperature with high accuracy, uniquely addressing aging effects overlooked in prior studies. By integrating IG, aging-induced degradation, and failure-in-time (FIT) models, the approach achieves a junction temperature estimation error of less than 1%. Long-term hard-switching tests confirm its effectiveness, with calibrated RDS_ON measurements enabling precise remaining useful life (RUL) predictions. This methodology significantly improves GaN HEMT reliability assessment, enhancing their performance in resilient power electronics systems. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

13 pages, 2498 KB  
Article
Evaluation of Dynamic On-Resistance and Trapping Effects in GaN on Si HEMTs Using Rectangular Gate Voltage Pulses
by Pasquale Cusumano, Alessandro Sirchia and Flavio Vella
Electronics 2025, 14(14), 2791; https://doi.org/10.3390/electronics14142791 - 11 Jul 2025
Cited by 2 | Viewed by 2544
Abstract
Dynamic on-resistance (RON) of commercial GaN on Si normally off high-electron-mobility transistor (HEMT) devices is a very important parameter because it is responsible for conduction losses that limit the power conversion efficiency of high-power switching converters. Due to charge trapping effects, [...] Read more.
Dynamic on-resistance (RON) of commercial GaN on Si normally off high-electron-mobility transistor (HEMT) devices is a very important parameter because it is responsible for conduction losses that limit the power conversion efficiency of high-power switching converters. Due to charge trapping effects, dynamic RON is always higher than in DC, a behavior known as current collapse. To study how short-time dynamics of charge trapping and release affects RON we use rectangular 0–5 V gate voltage pulses with durations in the 1 μs to 100 μs range. Measurements are first carried out for single pulses of increasing duration, and it is found that RON depends on both pulse duration and drain current ID, being higher at shorter pulse durations and lower ID. For a train of five pulses, RON decreases with pulse number, reaching a steady state after a time interval of 100 μs. The response to a five pulses train is compared to that of a square-wave signal to study the time evolution of RON toward a dynamic steady state. The DC RON is also measured, and it is a factor of ten smaller than dynamic RON at the same ID. This confirms that a reduction in trapped charges takes place in DC as compared to the square-wave switching operation. Additional off-state stress tests at VDS = 55 V reveal the presence of residual surface traps in the drain access region, leading to four times increase in RON in comparison to pristine devices. Finally, the dynamic RON is also measured by the double-pulse test (DPT) technique with inductive load, giving a good agreement with results from single-pulse measurements. Full article
Show Figures

Figure 1

12 pages, 5077 KB  
Article
Optimization of Low-Voltage p-GaN Gate HEMTs for High-Efficiency Secondary Power Conversion
by Lili Zhai, Xiangdong Li, Jian Ji, Lu Yu, Liang Chen, Yaoming Chen, Haonan Xia, Zhanfei Han, Junbo Wang, Xi Jiang, Song Yuan, Tao Zhang, Yue Hao and Jincheng Zhang
Micromachines 2025, 16(5), 556; https://doi.org/10.3390/mi16050556 - 2 May 2025
Cited by 1 | Viewed by 1657
Abstract
The explosive demand for high-performance secondary power sources in artificial intelligence (AI) has brought significant opportunities for low-voltage GaN devices. This paper focuses on research on high-efficiency and high-reliability low-voltage p-GaN gate HEMTs with a gate–drain distance, LGD, of 1 to [...] Read more.
The explosive demand for high-performance secondary power sources in artificial intelligence (AI) has brought significant opportunities for low-voltage GaN devices. This paper focuses on research on high-efficiency and high-reliability low-voltage p-GaN gate HEMTs with a gate–drain distance, LGD, of 1 to 3 μm in our pilot line, manufactured on 6-inch Si using a CMOS-compatible process, with extraordinary wafer-level uniformity. Specifically, these fabricated p-GaN gate HEMTs with an LGD of 1.5 μm demonstrate a blocking voltage of over 180 V and a high VTH of 1.6 V and exhibit a low RON of 2.8 Ω·mm. It is found that device structure optimization can significantly enhance device reliability. That is, through the dedicated optimization of source field plate structure and interlayer dielectric (ILD) thickness, the dynamic ON-resistance, RON, degradation of devices with an LGD of 1.5 µm was successfully suppressed from 60% to 20%, and the VTH shift was significantly reduced from 1.1 to 0.5 V. Further, the devices also passed preliminary gate bias stress and high-voltage OFF-state stress tests, providing guidance for preparing high-performance, low-voltage p-GaN gate HEMTs in the future. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

14 pages, 3865 KB  
Article
SiC MOSFET with Integrated SBD Device Performance Prediction Method Based on Neural Network
by Xiping Niu, Ling Sang, Xiaoling Duan, Shijie Gu, Peng Zhao, Tao Zhu, Kaixuan Xu, Yawei He, Zheyang Li, Jincheng Zhang and Rui Jin
Micromachines 2025, 16(1), 55; https://doi.org/10.3390/mi16010055 - 31 Dec 2024
Cited by 2 | Viewed by 3116
Abstract
The SiC MOSFET with an integrated SBD (SBD-MOSFET) exhibits excellent performance in power electronics. However, the static and dynamic characteristics of this device are influenced by a multitude of parameters, and traditional TCAD simulation methods are often characterized by their complexity. Due to [...] Read more.
The SiC MOSFET with an integrated SBD (SBD-MOSFET) exhibits excellent performance in power electronics. However, the static and dynamic characteristics of this device are influenced by a multitude of parameters, and traditional TCAD simulation methods are often characterized by their complexity. Due to the increasing research on neural networks in recent years, such as the application of neural networks to the prediction of GaN JBS and Finfet devices, this paper considers the application of neural networks to the performance prediction of SiC MOSFET devices with an integrated SBD. This study introduces a novel approach utilizing neural network machine learning to predict the static and dynamic characteristics of the SBD-MOSFET. In this research, SBD-MOSFET devices are modeled and simulated using Sentaurus TCAD(2017) software, resulting in the generation of 625 sets of device structure and sample data, which serve as the sample set for the neural network. These input variables are then fed into the neural network for prediction. The findings indicate that the mean square error (MSE) values for the threshold voltage (Vth), breakdown voltage (BV), specific on-resistance (Ron), and total switching power dissipation (E) are 0.0051, 0.0031, 0.0065, and 0.0220, respectively, demonstrating a high degree of accuracy in the predicted values. Meanwhile, in the comparison of convolutional neural networks and machine learning, the CNN accuracy is much higher than the machine learning methods. This method of predicting device performance via neural networks offers a rapid means of designing SBD-MOSFETs with specified performance targets, thereby presenting significant advantages in accelerating research on SBD-MOSFET performance prediction. Full article
(This article belongs to the Special Issue Research Progress of Advanced SiC Semiconductors)
Show Figures

Figure 1

11 pages, 801 KB  
Article
Characterization of Trap States in AlGaN/GaN MIS-High-Electron-Mobility Transistors under Semi-on-State Stress
by Ye Liang, Jiachen Duan, Ping Zhang, Kain Lu Low, Jie Zhang and Wen Liu
Nanomaterials 2024, 14(18), 1529; https://doi.org/10.3390/nano14181529 - 20 Sep 2024
Cited by 4 | Viewed by 2703
Abstract
Devices under semi-on-state stress often suffer from more severe current collapse than when they are in the off-state, which causes an increase in dynamic on-resistance. Therefore, characterization of the trap states is necessary. In this study, temperature-dependent transient recovery current analysis determined a [...] Read more.
Devices under semi-on-state stress often suffer from more severe current collapse than when they are in the off-state, which causes an increase in dynamic on-resistance. Therefore, characterization of the trap states is necessary. In this study, temperature-dependent transient recovery current analysis determined a trap energy level of 0.08 eV under semi-on-state stress, implying that interface traps are responsible for current collapse. Multi-frequency capacitance–voltage (C-V) testing was performed on the MIS diode, calculating that interface trap density is in the range of 1.37×1013 to 6.07×1012cm2eV1 from ECET=0.29 eV to 0.45 eV. Full article
(This article belongs to the Special Issue Epitaxial Growth of III-Nitride Hetero- and Nanostructures)
Show Figures

Figure 1

11 pages, 3364 KB  
Article
SiC Fin-Channel MOSFET for Enhanced Gate Shielding Effect
by Ling Sang, Rui Jin, Jiawei Cui, Xiping Niu, Zheyang Li, Junjie Yang, Muqin Nuo, Meng Zhang, Maojun Wang and Jin Wei
Electronics 2024, 13(9), 1701; https://doi.org/10.3390/electronics13091701 - 28 Apr 2024
Cited by 1 | Viewed by 2701
Abstract
A SiC fin-channel MOSFET structure (Fin-MOS) is proposed for an enhanced gate shielding effect. The gates are placed on each side of the narrow fin-channel region, while grounded p-shield regions below the gates provide a strong shielding effect. The device is investigated using [...] Read more.
A SiC fin-channel MOSFET structure (Fin-MOS) is proposed for an enhanced gate shielding effect. The gates are placed on each side of the narrow fin-channel region, while grounded p-shield regions below the gates provide a strong shielding effect. The device is investigated using Sentaurus TCAD. For a narrow fin-channel region, there is difficulty in forming an Ohmic contact to the p-base; a floating p-base might potentially store negative charges upon high drain voltage, and, thus, causes threshold voltage instabilities. The simulation reveals that, for a fin-width of 0.2 μm, the p-shield regions provide a stringent shielding effect against high drain voltage, and the dynamic threshold voltage shift (∆Vth) is negligible. Compared to conventional trench MOSFET (Trench-MOS) and asymmetric trench MOSFET (Asym-MOS), the proposed Fin-MOS boasts the lowest OFF-state oxide field and reverse transfer capacitance (Crss), while maintaining a similar low ON-resistance. Full article
(This article belongs to the Special Issue Wide Bandgap Semiconductor: From Epilayer to Devices)
Show Figures

Figure 1

24 pages, 10314 KB  
Article
Current Collapse Phenomena Investigation in Automotive-Grade Power GaN Transistors
by Alfio Basile, Filippo Scrimizzi and Santi Agatino Rizzo
Energies 2024, 17(1), 230; https://doi.org/10.3390/en17010230 - 31 Dec 2023
Viewed by 1857
Abstract
This work analyzes the impact of working conditions on the current collapse (CC) phenomenon for an automotive GaN device. For this purpose, some sensing circuits have been compared to find the most suitable for the considered GaN family. Simulations of the testing schematic [...] Read more.
This work analyzes the impact of working conditions on the current collapse (CC) phenomenon for an automotive GaN device. For this purpose, some sensing circuits have been compared to find the most suitable for the considered GaN family. Simulations of the testing schematic have been performed, a prototype board has been created, and some measurements have been taken. Finally, the work has investigated the effect on the CC of the input voltage, current level, switching frequency, and duty cycle. The key outcome is that the temperature increment mitigates the CC phenomenon, which implies that the on-state resistance worsening (dynamic/static ratio), which is due to the CC, reduces with increasing temperature. Therefore, the typical increment of the dynamic on-resistance (RDSON) with increasing temperature is ascribable to the increment of the static one with temperature, while it is not at all an exacerbation of the current collapse phenomenon. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

12 pages, 6622 KB  
Article
A Novel Super-Junction DT-MOS with Floating p Regions to Improve Short-Circuit Ruggedness
by Sujie Yin, Wei Cao, Xiarong Hu, Xinglai Ge and Dong Liu
Micromachines 2023, 14(10), 1962; https://doi.org/10.3390/mi14101962 - 21 Oct 2023
Cited by 1 | Viewed by 2758
Abstract
A novel super-junction (SJ) double-trench metal oxide semiconductor field effect transistor (DT-MOS) is proposed and studied using Synopsys Sentaurus TCAD in this article. The simulation results show that the proposed MOSFET has good static performance and a longer short-circuit withstand time (t [...] Read more.
A novel super-junction (SJ) double-trench metal oxide semiconductor field effect transistor (DT-MOS) is proposed and studied using Synopsys Sentaurus TCAD in this article. The simulation results show that the proposed MOSFET has good static performance and a longer short-circuit withstand time (tsc). The super-junction structure enables the device to possess an excellent compromise of breakdown voltage (BV) and specific on-resistance (Ron,sp). Under short-circuit conditions, the depletion of p-pillar, p-shield, and floating p regions can effectively reduce saturation current and improve short-circuit capability. The proposed device has minimum gate-drain charge (Qgd) and gate-drain capacitance (Cgd) compared with other devices. Moreover, the formation of floating p regions will not lead to an increase in process complexity. Therefore, the proposed MOSFET can maintain good dynamic and static performance and short-circuit ability together without increasing the difficulty of the process. Full article
(This article belongs to the Special Issue High-Reliability Semiconductor Devices and Integrated Circuits)
Show Figures

Figure 1

17 pages, 3760 KB  
Article
An Analytical Model of Dynamic Power Losses in eGaN HEMT Power Devices
by Jianming Lei, Yangyi Liu, Zhanmin Yang, Yalin Chen, Dunjun Chen, Liang Xu and Jing Yu
Micromachines 2023, 14(8), 1633; https://doi.org/10.3390/mi14081633 - 18 Aug 2023
Viewed by 2121
Abstract
In this work, we present an analytical model of dynamic power losses for enhancement-mode AlGaN/GaN high-electron-mobility transistor power devices (eGaN HEMTs). To build this new model, the dynamic on-resistance (Rdson) is first accurately extracted via our extraction circuit based on [...] Read more.
In this work, we present an analytical model of dynamic power losses for enhancement-mode AlGaN/GaN high-electron-mobility transistor power devices (eGaN HEMTs). To build this new model, the dynamic on-resistance (Rdson) is first accurately extracted via our extraction circuit based on a double-diode isolation (DDI) method using a high operating frequency of up to 1 MHz and a large drain voltage of up to 600 V; thus, the unique problem of an increase in the dynamic Rdson is presented. Then, the impact of the current operation mode on the on/off transition time is evaluated via a dual-pulse-current-mode test (DPCT), including a discontinuous conduction mode (DCM) and a continuous conduction mode (CCM); thus, the transition time is revised for different current modes. Afterward, the discrepancy between the drain current and the real channel current is qualitative investigated using an external shunt capacitance (ESC) method; thus, the losses due to device parasitic capacitance are also taken into account. After these improvements, the dynamic model will be more compatible for eGaN HEMTs. Finally, the dynamic power losses calculated via this model are found to be in good agreement with the experimental results. Based on this model, we propose a superior solution with a quasi-resonant mode (QRM) to achieve lossless switching and accelerated switching speeds. Full article
(This article belongs to the Special Issue GaN-Based Semiconductor Devices, Volume II)
Show Figures

Figure 1

10 pages, 9365 KB  
Article
Non-Buffer Epi-AlGaN/GaN on SiC for High-Performance Depletion-Mode MIS-HEMTs Fabrication
by Penghao Zhang, Luyu Wang, Kaiyue Zhu, Qiang Wang, Maolin Pan, Ziqiang Huang, Yannan Yang, Xinling Xie, Hai Huang, Xin Hu, Saisheng Xu, Min Xu, Chen Wang, Chunlei Wu and David Wei Zhang
Micromachines 2023, 14(8), 1523; https://doi.org/10.3390/mi14081523 - 29 Jul 2023
Cited by 1 | Viewed by 2469
Abstract
A systematic study of epi-AlGaN/GaN on a SiC substrate was conducted through a comprehensive analysis of material properties and device performance. In this novel epitaxial design, an AlGaN/GaN channel layer was grown directly on the AlN nucleation layer, without the conventional doped thick [...] Read more.
A systematic study of epi-AlGaN/GaN on a SiC substrate was conducted through a comprehensive analysis of material properties and device performance. In this novel epitaxial design, an AlGaN/GaN channel layer was grown directly on the AlN nucleation layer, without the conventional doped thick buffer layer. Compared to the conventional epi-structures on the SiC and Si substrates, the non-buffer epi-AlGaN/GaN structure had a better crystalline quality and surface morphology, with reliable control of growth stress. Hall measurements showed that the novel structure exhibited comparable transport properties to the conventional epi-structure on the SiC substrate, regardless of the buffer layer. Furthermore, almost unchanged carrier distribution from room temperature to 150 °C indicated excellent two-dimensional electron gas (2DEG) confinement due to the pulling effect of the conduction band from the nucleation layer as a back-barrier. High-performance depletion-mode MIS-HEMTs were demonstrated with on-resistance of 5.84 Ω·mm and an output current of 1002 mA/mm. The dynamic characteristics showed a much smaller decrease in the saturation current (only ~7%), with a quiescent drain bias of 40 V, which was strong evidence of less electron trapping owing to the high-quality non-buffer AlGaN/GaN epitaxial growth. Full article
(This article belongs to the Special Issue Advanced Micro- and Nano-Manufacturing Technologies)
Show Figures

Figure 1

Back to TopTop