Impact of OFF-State Stress on Dynamic RON of On-Wafer 100 V p-GaN HEMTs, Studied by Emulating Monolithically Integrated Half-Bridge Operation
Abstract
1. Introduction
2. Experimental Setup
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Udabe, A.; Baraia-Etxaburu, I.; Diez, D.G. Gallium Nitride Power Devices: A State of the Art Review. IEEE Access 2023, 11, 48628–48650. [Google Scholar] [CrossRef]
- Wei, J.; Zheng, Z.; Tang, G.; Xu, H.; Lyu, G.; Zhang, L.; Chen, J.; Hua, M.; Feng, S.; Chen, T.; et al. GaN Power Integration Technology and Its Future Prospects. IEEE Trans. Electron. Devices 2023, 71, 1365–1382. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Chen, P.-H.; Zhang, Y.-C.; Wu, C.-W.; Chou, S.-Y.; Wang, Y.-B.; Kuo, H.-M.; Lin, Y.-S.; Chen, Y.-T.; Tsai, Y.-J.; et al. An Approach to Extract the Trap States via the Dynamic Ron Method with Substrate Voltage Applied During the Recovery Time. IEEE Trans. Electron. Devices 2024, 71, 6616–6619. [Google Scholar] [CrossRef]
- Zagni, N.; Chini, A.; Puglisi, F.M.; Meneghini, M.; Meneghesso, G.; Zanoni, E.; Pavan, P.; Verzellesi, G. “Hole Redistribution” Model Explaining the Thermally Activated RON Stress/Recovery Transients in Carbon-Doped AlGaN/GaN Power MIS-HEMTs. IEEE Trans. Electron. Devices 2021, 68, 697–703. [Google Scholar] [CrossRef]
- Li, S.; Yang, S.; Han, S.; Sheng, K. Investigation of Temperature-Dependent Dynamic RON of GaN HEMT with Hybrid-Drain under Hard and Soft Switching. In Proceedings of the 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vienna, Austria, 13–18 September 2020; IEEE: New York, NY, USA, 2020; pp. 306–309. [Google Scholar]
- Chiu, H.-C.; Peng, L.-Y.; Yang, C.-W.; Wang, H.-C.; Hsin, Y.-M.; Chyi, J.-I. Analysis of the Back-Gate Effect in Normally OFF p-GaN Gate High-Electron Mobility Transistor. IEEE Trans. Electron. Devices 2015, 62, 507–511. [Google Scholar] [CrossRef]
- Li, S.; Sheng, K.; Yang, S. Temperature-Dependent Dynamic Ron of GaN E-HEMTs: The Impact of p-GaN Drain. IEEE Trans. Electron. Devices 2023, 70, 3754–3761. [Google Scholar] [CrossRef]
- Meneghini, M.; Vanmeerbeek, P.; Silvestri, R.; Dalcanale, S.; Banerjee, A.; Bisi, D.; Zanoni, E.; Meneghesso, G.; Moens, P. Temperature-Dependent Dynamic RON in GaN-Based MIS-HEMTs: Role of Surface Traps and Buffer Leakage. IEEE Trans. Electron. Devices 2015, 62, 782–787. [Google Scholar] [CrossRef]
- Boito, M.; Fregolent, M.; De Santi, C.; Abbisogni, A.; Smerzi, S.; Rossetto, I.; Iucolano, F.; Meneghesso, G.; Zanoni, E.; Meneghini, M. On-Wafer Dynamic Operation of Power GaN-HEMTs: Degradation Processes Investigated by a Novel Experimental Approach. In Proceedings of the 2024 IEEE International Reliability Physics Symposium (IRPS), Grapevine, TX, USA, 14–18 April 2024; IEEE: New York, NY, USA, 2024; pp. 1–5. [Google Scholar]
- Chen, Y.-H.; Chou, S.-Y.; Chen, M.-C.; Chang, T.-C.; Wang, Y.-B.; Zhang, Y.-C.; Wu, C.-W.; Lin, C.-H.; Hsu, J.-T.; Lee, Y.-H.; et al. Study of Vth Instability During Recovery After Off-State Stress in p-GaN HEMT. IEEE Electron. Device Lett. 2025, 46, 1717–1720. [Google Scholar] [CrossRef]
- Yeh, C.-H.; Chen, P.-H.; Chang, T.-C.; Chang, K.-C.; Wang, Y.-X.; Kuo, T.-T.; Zhang, Y.-C.; Lin, J.-H.; Lee, Y.-H.; Kuo, H.-M.; et al. Abnormal on Current Tendency in Saturation Region Between High and Light Carbon Doped Buffer Layer in p-GaN HEMT. IEEE Electron. Device Lett. 2023, 44, 1164–1167. [Google Scholar] [CrossRef]
- Bisi, D.; Meneghini, M.; Van Hove, M.; Marcon, D.; Stoffels, S.; Wu, T.; Decoutere, S.; Meneghesso, G.; Zanoni, E. Trapping mechanisms in GaN-based MIS-HEMTs grown on silicon substrate. Phys. Status Solidi A 2015, 212, 1122–1129. [Google Scholar] [CrossRef]
- Bisi, D.; Meneghini, M.; De Santi, C.; Chini, A.; Dammann, M.; Bruckner, P.; Mikulla, M.; Meneghesso, G.; Zanoni, E. Deep-Level Characterization in GaN HEMTs-Part I: Advantages and Limitations of Drain Current Transient Measurements. IEEE Trans. Electron. Devices 2013, 60, 3166–3175. [Google Scholar] [CrossRef]
- Benvegnù, A.; Bisi, D.; Laurent, S.; Meneghini, M.; Meneghesso, G.; Barataud, D.; Zanoni, E.; Quere, R. Drain current transient and low-frequency dispersion characterizations in AlGaN/GaN HEMTs. Int. J. Microw. Wirel. Technol. 2016, 8, 663–672. [Google Scholar] [CrossRef]
- Zagni, N.; Modica, L.; Cioni, M.; Cappellini, G.; Castagna, M.E.; Giorgino, G.; Iucolano, F.; Verzellesi, G.; Chini, A. RON Degradation Mechanisms of ON-Wafer 100-V p-GaN HEMTs Emulating Monolithically Integrated Half-Bridge Circuits. In Proceedings of the 2024 IEEE 11th Workshop on Wide Bandgap Power Devices & Applications (WiPDA), Dayton, OH, USA, 4–6 November 2024. [Google Scholar]
- Modica, L.; Zagni, N.; Cioni, M.; Cappellini, G.; Castagna, M.E.; Giorgino, G.; Iucolano, F.; Chini, A. Analysis of Dynamic-Ron and VTH shift in on-wafer 100-V p-GaN HEMTs Emulating Monolithically Integrated Half-Bridge Circuits. IEEE J. Emerg. Sel. Top. Power Electron. 2025. early access. [Google Scholar] [CrossRef]
- Jiang, Z.; Hua, M.; Huang, X.; Li, L.; Chen, J.; Chen, K.J. Impact of OFF-state Gate Bias on Dynamic RON of p-GaN Gate HEMT. In Proceedings of the 2021 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Nagoya, Japan, 30 May–3 June 2021; IEEE: New York, NY, USA, 2021; pp. 47–50. [Google Scholar]
- Yu, R.; Jahdi, S.; Mellor, P. Performance Instability of 650 V p-GaN Gate HEMTs under Temperature-Induced Negative Gate Bias Stresses. In Proceedings of the 2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia), Chengdu, China, 17–20 May 2024; IEEE: New York, NY, USA, 2024; pp. 249–254. [Google Scholar]
- Rossetto, L.; Spiazzi, G. A Fast ON-State Voltage Measurement Circuit for Power Devices Characterization. IEEE Trans. Power Electron. 2022, 37, 4926–4930. [Google Scholar] [CrossRef]
- Giorgino, G.; Cioni, M.; Miccoli, C.; Gervasi, L.; Giuffrida, M.F.S.; Ruvolo, M.; Castagna, M.E.; Cappellini, G.; Luongo, G.; Moschetti, M.; et al. Study of 100V GaN power devices in dynamic condition and GaN RF device performances in sub-6GHz frequencies. E-Prime-Adv. Electr. Eng. Electron. Energy 2023, 6, 100338. [Google Scholar] [CrossRef]
- Cioni, M.; Giorgino, G.; Chini, A.; Miccoli, C.; Castagna, M.E.; Moschetti, M.; Tringali, C.; Iucolano, F. Evidence of Carbon Doping Effect on VTH Drift and Dynamic-RON of 100V p-GaN Gate AlGaN/GaN HEMTs. In Proceedings of the 2023 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 26–30 March 2023; IEEE: New York, NY, USA, 2023; pp. 1–5. [Google Scholar]
- Chen, X.; Zhong, Y.; Zhou, Y.; Gao, H.; Zhan, X.; Su, S.; Guo, X.; Sun, Q.; Zhang, Z.; Bi, W.; et al. Determination of carbon-related trap energy level in (Al)GaN buffers for high electron mobility transistors through a room-temperature approach. Appl. Phys. Lett. 2020, 117, 263501. [Google Scholar] [CrossRef]
- Uren, M.J.; Silvestri, M.; Casar, M.; Hurkx, G.A.M.; Croon, J.A.; Sonsky, J.; Kuball, M. Intentionally Carbon-Doped AlGaN/GaN HEMTs: Necessity for Vertical Leakage Paths. IEEE Electron. Device Lett. 2014, 35, 327–329. [Google Scholar] [CrossRef]
- Wright, A.F. Substitutional and interstitial carbon in wurtzite GaN. J. Appl. Phys. 2002, 92, 2575–2585. [Google Scholar] [CrossRef]
- Huber, M.; Silvestri, M.; Knuuttila, L.; Pozzovivo, G.; Andreev, A.; Kadashchuk, A.; Bonanni, A.; Lundskog, A. Impact of residual carbon impurities and gallium vacancies on trapping effects in AlGaN/GaN metal insulator semiconductor high electron mobility transistors. Appl. Phys. Lett. 2015, 107, 032106. [Google Scholar] [CrossRef]
- Honda, U.; Yamada, Y.; Tokuda, Y.; Shiojima, K. Deep levels in n-GaN Doped with Carbon Studied by Deep Level and Minority Carrier Transient Spectroscopies. Jpn. J. Appl. Phys. 2012, 51, 04DF04. [Google Scholar] [CrossRef]
- Canato, E.; Meneghini, M.; De Santi, C.; Masin, F.; Stockman, A.; Moens, P.; Zanoni, E.; Meneghesso, G. OFF-state trapping phenomena in GaN HEMTs: Interplay between gate trapping, acceptor ionization and positive charge redistribution. Microelectron. Reliab. 2020, 114, 113841. [Google Scholar] [CrossRef]
- Zagni, N.; Cioni, M.; Iucolano, F.; Moschetti, M.; Verzellesi, G.; Chini, A. Experimental and numerical investigation of Poole–Frenkel effect on dynamic RON transients in C-doped p-GaN HEMTs. Semicond. Sci. Technol. 2022, 37, 025006. [Google Scholar] [CrossRef]
- Feng, W.; Shen, L.; Zhou, X.; Tian, Y.; Su, H.; Hu, Y.; Zheng, L.; Cheng, X. Dynamic Performance Analysis of p-GaN HEMTs with Floating Substrates by Substrate Capacitance Coupling Model. IEEE Trans. Electron. Devices 2025, 72, 2201–2206. [Google Scholar] [CrossRef]
- Li, X.; Van Hove, M.; Zhao, M.; Geens, K.; Guo, W.; You, S.; Stoffels, S.; Lempinen, V.-P.; Sormunen, J.; Groeseneken, G.; et al. Suppression of the Backgating Effect of Enhancement-Mode p-GaN HEMTs on 200-mm GaN-on-SOI for Monolithic Integration. IEEE Electron. Device Lett. 2018, 39, 999–1002. [Google Scholar] [CrossRef]
- Bisi, D.; Meneghini, M.; Marino, F.A.; Marcon, D.; Stoffels, S.; Van Hove, M.; Decoutere, S.; Meneghesso, G.; Zanoni, E. Kinetics of Buffer-Related RON-Increase in GaN-on-Silicon MIS-HEMTs. IEEE Electron. Device Lett. 2014, 35, 1004–1006. [Google Scholar] [CrossRef]












| LOW SIDE | |||||
|---|---|---|---|---|---|
| Tau (τ) | VGS = 0 V | VGS = −2 V | VGS = −5 V | VGS = −8 V | VGS = −10 V |
| T = 60 °C | 12.2425 s | 9.7503 s | 9.3168 s | 12.2731 s | 11.5096 s |
| T = 70 °C | 7.7952 s | 6.6061 s | 4.5267 s | 7.7675 s | 9.5766 s |
| T = 80 °C | 3.3383 s | 3.8005 s | 2.9578 s | 4.5387 s | 4.5094 s |
| T = 90 °C | 2.0492 s | 1.6519 s | 1.7821 s | 2.5488 s | 2.3630 s |
| HIGH SIDE | |||||
|---|---|---|---|---|---|
| Tau (τ) | VGS = 0 V | VGS = −2 V | VGS = −5 V | VGS = −8 V | VGS = −10 V |
| T = 60 °C | 14.9764 s | 14.5044 s | 19.0595 s | 17.4038 s | 16.3329 s |
| T = 70 °C | 10.0116 s | 8.7010 s | 9.3086 s | 10.0694 s | 8.7972 s |
| T = 80 °C | 5.1196 s | 4.2657 s | 5.1934 s | 5.4441 s | 5.1049 s |
| T = 90 °C | 2.7645 s | 2.5311 s | 3.2619 s | 3.3459 s | 3.3459 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modica, L.; Zagni, N.; Cioni, M.; Cappellini, G.; Giorgino, G.; Iucolano, F.; Verzellesi, G.; Chini, A. Impact of OFF-State Stress on Dynamic RON of On-Wafer 100 V p-GaN HEMTs, Studied by Emulating Monolithically Integrated Half-Bridge Operation. Electronics 2025, 14, 4756. https://doi.org/10.3390/electronics14234756
Modica L, Zagni N, Cioni M, Cappellini G, Giorgino G, Iucolano F, Verzellesi G, Chini A. Impact of OFF-State Stress on Dynamic RON of On-Wafer 100 V p-GaN HEMTs, Studied by Emulating Monolithically Integrated Half-Bridge Operation. Electronics. 2025; 14(23):4756. https://doi.org/10.3390/electronics14234756
Chicago/Turabian StyleModica, Lorenzo, Nicolò Zagni, Marcello Cioni, Giacomo Cappellini, Giovanni Giorgino, Ferdinando Iucolano, Giovanni Verzellesi, and Alessandro Chini. 2025. "Impact of OFF-State Stress on Dynamic RON of On-Wafer 100 V p-GaN HEMTs, Studied by Emulating Monolithically Integrated Half-Bridge Operation" Electronics 14, no. 23: 4756. https://doi.org/10.3390/electronics14234756
APA StyleModica, L., Zagni, N., Cioni, M., Cappellini, G., Giorgino, G., Iucolano, F., Verzellesi, G., & Chini, A. (2025). Impact of OFF-State Stress on Dynamic RON of On-Wafer 100 V p-GaN HEMTs, Studied by Emulating Monolithically Integrated Half-Bridge Operation. Electronics, 14(23), 4756. https://doi.org/10.3390/electronics14234756

