Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (472)

Search Parameters:
Keywords = double layer coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1814 KB  
Article
Harnessing an Invasive Seaweed: Mechanical Reinforcement of Simonkolleite Coatings Using Brown Algae as a Sustainable Filler
by Edith Luévano-Hipólito, Emireth A. Mellado-Lira, Luz I. Ibarra-Rodríguez and Leticia M. Torres-Martínez
Coatings 2026, 16(1), 24; https://doi.org/10.3390/coatings16010024 - 25 Dec 2025
Viewed by 93
Abstract
Simonkolleite (Zn5(OH)8Cl2·H2O), a layered double hydroxide, is used as a fast dry coating that can be applied onto different surfaces. Due to its rapid crystallization, some problems remain during its application, e.g., crack formation, low [...] Read more.
Simonkolleite (Zn5(OH)8Cl2·H2O), a layered double hydroxide, is used as a fast dry coating that can be applied onto different surfaces. Due to its rapid crystallization, some problems remain during its application, e.g., crack formation, low hardness, and limited compressive strength. To solve these challenges, we propose the harnessing of brown algae, a natural plague of the Caribbean, as a filler for Simonkolleite coatings. The influence of the addition of brown algae on the structural and morphological properties of the coatings was studied, with particular emphasis on their potential for improved durability and functional performance. The addition of the algae to the coatings favored microstructural compaction, resulting in a denser and mechanically more stable coating that exhibited higher hardness and compressive strength. Also, the presence of chlorophyll in the algae could promote light utilization for other emerging applications. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

16 pages, 18448 KB  
Article
Effects of Temperature on Anti-Seepage Coating During Vapor Phase Aluminizing of K4125 Ni-Based Superalloy
by Xuxian Zhou, Cheng Xie, Yidi Li and Yunping Li
Surfaces 2026, 9(1), 2; https://doi.org/10.3390/surfaces9010002 - 24 Dec 2025
Viewed by 114
Abstract
During the vapor phase aluminizing process, protecting the joint regions of turbine blades remains a critical challenge, as the formation of the aluminide coating can significantly increase the brittleness of these areas. To address this issue, a novel double-layer anti-seepage coating was designed [...] Read more.
During the vapor phase aluminizing process, protecting the joint regions of turbine blades remains a critical challenge, as the formation of the aluminide coating can significantly increase the brittleness of these areas. To address this issue, a novel double-layer anti-seepage coating was designed for the K4125 nickel-based superalloy. The coating employs a self-sealing mechanism, transforming from a porous structure into a dense NiAl/Al2O3 composite barrier at elevated temperatures, thereby suppressing aluminum penetration. Optimal anti-seepage performance is achieved at 1080 °C, reducing the transition zone width to 42 μm, which is a reduction of more than 70% compared to that of 880 °C. These results are attributed to the synergistic action of multiple mechanisms, including high-temperature densification, the formation of NiAl phase, and the growth of an oxide film on the substrate surface. Additionally, the thermal expansion mismatch enables easy mechanical removal of the coating after aluminizing without substrate damage. The coating system offers an effective and practical solution for high-temperature protection during vapor phase aluminizing in aerospace applications. Full article
Show Figures

Figure 1

12 pages, 5286 KB  
Article
Construction of Regular Hexagonal Double-Layer Hollow Nanocages by Defect Orientation and Composite Phase Change Materials with Carbon Nanotubes for Thermal Safety of Power Batteries
by Silong Wang, Wei Yan, Pan Sun and Jun Yuan
Nanomaterials 2026, 16(1), 26; https://doi.org/10.3390/nano16010026 - 24 Dec 2025
Viewed by 159
Abstract
At present, composite phase change materials are widely studied for battery thermal management. However, to ensure the battery’s thermal safety, it is necessary not only to control the temperature during regular operation, but also to prevent sudden thermal runaway. This basic function depends [...] Read more.
At present, composite phase change materials are widely studied for battery thermal management. However, to ensure the battery’s thermal safety, it is necessary not only to control the temperature during regular operation, but also to prevent sudden thermal runaway. This basic function depends on the flame-retardant properties of the composite phase change materials. In this study, a hexagonal double-layer hollow nanocage S2 with defect orientation was prepared and combined with carbon nanotubes (PNT) derived from polypyrrole (PPy) tubes to form a high adsorption mixture. Multifunctional composite phase change material PNT/S2@PEG/TEP was prepared by adsorbing and coating polyethylene glycol 8000 (PEG-8000) and triethyl phosphate (TEP) with microfibrillated cellulose nanofibers (CNF) as the skeleton. The characterization shows that its thermal conductivity is 0.65 W/m·K and its phase transition enthalpy is 146.1 J/g, demonstrating its excellent thermal regulation. Microcalorimetric testing (MCC) confirmed its flame-retardant ability, attributed to the strong adsorption of PNT/S2 on PEG-8000 and TEP, the improvement in PNT’s thermal conductivity, and the contribution of CNF to flexibility. This composite phase change material, with excellent comprehensive properties, has broad application prospects in thermal safety for electronic equipment, significantly expanding its practical scope. Full article
(This article belongs to the Special Issue Carbon Nanocomposites for Energy)
Show Figures

Graphical abstract

18 pages, 8349 KB  
Article
Interfacial Gradient Optimization and Friction-Wear Response of Three Architectures of Ni-Based Cold Metal Transfer Overlays on L415QS Pipeline Steel
by Bowen Li, Min Zhang, Mi Zhou, Keren Zhang and Xiaoyong Zhang
Coatings 2025, 15(12), 1492; https://doi.org/10.3390/coatings15121492 - 18 Dec 2025
Viewed by 202
Abstract
Pipeline steels under cyclic loading in corrosive environments are prone to wear and corrosion–wear synergy. Low-dilution, high-reliability Ni-based Cold Metal Transfer (CMT) overlays are therefore required to ensure structural integrity. In this work, three overlay architectures were deposited on L415QS pipeline steel: a [...] Read more.
Pipeline steels under cyclic loading in corrosive environments are prone to wear and corrosion–wear synergy. Low-dilution, high-reliability Ni-based Cold Metal Transfer (CMT) overlays are therefore required to ensure structural integrity. In this work, three overlay architectures were deposited on L415QS pipeline steel: a single-layer ERNiFeCr-1 coating, a double-layer ERNiFeCr-1/ERNiFeCr-1 coating, and an ERNiCrMo-3 interlayer plus ERNiFeCr-1 working layer. The microstructure, interfacial composition gradients, and dry sliding wear behavior were systematically characterized to clarify the role of interlayer design. The single-layer ERNiFeCr-1 coating shows a graded transition from epitaxial columnar grains to cellular/dendritic and fine equiaxed grains, with smooth Fe dilution, Ni–Cr enrichment, and a high fraction of high-angle grain boundaries, resulting in sound metallurgical bonding and good crack resistance. The double-layer ERNiFeCr-1 coating contains coarse, strongly textured columnar grains and pronounced interdendritic segregation in the upper layer, which promotes adhesive fatigue and brittle spalling and degrades wear resistance and friction stability. The ERNiCrMo-3 interlayer introduces continuous Fe-decreasing and Ni-Cr/Mo-increasing gradients, refines grains, suppresses continuous brittle phases, and generates dispersed second phases that assist crack deflection and load redistribution. Under dry sliding, the tribological performance ranks as follows: interlayer + overlay > single-layer > double-layer. The ERNiCrMo-3 interlayer system maintains the lowest and most stable friction coefficient due to the formation of a dense tribo-oxidative glaze layer. These results demonstrate an effective hierarchical alloy-process design strategy for optimizing Ni-based CMT overlays on pipeline steels. Full article
Show Figures

Figure 1

14 pages, 11633 KB  
Article
Molybdenum Nitride and Oxide Layers Grown on Mo Foil for Supercapacitors
by Dong Hyun Lim and Young-Il Kim
Materials 2025, 18(24), 5649; https://doi.org/10.3390/ma18245649 - 16 Dec 2025
Viewed by 280
Abstract
In this study, thin molybdenum nitride (MoNx) layers were directly synthesized on molybdenum foil via thermal treatment under an NH3 atmosphere, and their phase evolution, structural characteristics, and electrochemical performance were investigated. The thickness and morphology of the MoNx [...] Read more.
In this study, thin molybdenum nitride (MoNx) layers were directly synthesized on molybdenum foil via thermal treatment under an NH3 atmosphere, and their phase evolution, structural characteristics, and electrochemical performance were investigated. The thickness and morphology of the MoNx layers were controlled by varying ammonolysis time and temperature, while subsequent annealing in N2 converted the nitride layer into MoO2. Meanwhile, oxidation in air yielded crystalline MoO3 layers. X-ray diffraction and X-ray photoelectron spectroscopy confirmed progressive oxidation of molybdenum, with Mo 3d binding energies increasing in the sequence of Mo < MoNx < MoO2 < MoO3, consistent with their nominal oxidation states. Electrochemical characterization revealed that both MoNx/Mo and MoO2/Mo electrodes exhibit notable pseudocapacitive behavior in 0.5 M H2SO4 electrolyte, with areal specific capacitances reaching up to 520 mF cm−2 at 10 mV s−1. Increasing layer thickness led to enhanced capacitance, likely due to an increase in the electrochemically accessible surface area and the extension of ion diffusion pathways. MoO2-coated samples showed stronger faradaic contribution and superior rate capability compared to MoNx counterparts, along with a gradual shift from predominantly electric double-layer capacitance toward hybrid pseudocapacitive charge storage mechanisms. Full article
Show Figures

Figure 1

15 pages, 5489 KB  
Article
Steam Coating-Based Synthesis and Corrosion Inhibition Performance of Mg–Al-Layered Double Hydroxide Films with Different Interlayer Anions on Al-Si-Cu Alloys
by Io Matsui, Hikari Ouchi, Yuki Atsuumi, Kota Fukuhara and Takahiro Ishizaki
Materials 2025, 18(23), 5405; https://doi.org/10.3390/ma18235405 - 30 Nov 2025
Viewed by 344
Abstract
Al–Si–Cu alloy is one of the aluminum die-cast alloys widely used in industry. Due to the presence of Si and Cu elements in the Al–Si–Cu alloy, the corrosion resistance of the Al–Si–Cu alloy is lowered. Thus, developing a corrosion-resistant film on the Al–Si–Cu [...] Read more.
Al–Si–Cu alloy is one of the aluminum die-cast alloys widely used in industry. Due to the presence of Si and Cu elements in the Al–Si–Cu alloy, the corrosion resistance of the Al–Si–Cu alloy is lowered. Thus, developing a corrosion-resistant film on the Al–Si–Cu alloy is necessary. A layered double hydroxide (LDH) film is recognized as a promising corrosion-resistant coating. LDHs exhibit a distinct structure where positively charged basic layers (metal hydroxides) are interleaved with intermediate layers that accommodate charge-compensating anions and hydration water. The positively charged layers allow for the exchange of anions as interlayers, enabling the incorporation of various anions into the interlayer. The difference in the anion species in the interlayer of the LDH films can affect corrosion-resistant performance. In this study, we aimed to prepare Mg–Al LDH films intercalated with different anions (NO3, MoO42−, VO43−, and PO43−) and investigate the corrosion resistance of the LDH films. The films were prepared on die-cast Al–Si–Cu alloys using steam coating and immersion processes. The prepared LDH films were characterized by XRD, SEM, FT-IR, and electrochemical measurements. The electrochemical measurements revealed that Mg–Al LDH films intercalated with MoO42− showed the most superior corrosion resistance among all films prepared in this study. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

12 pages, 2023 KB  
Article
Layered Double Hydroxide Nanocomposite Coatings for Improved Flame Retardancy of Polyethylene-Based Copolymers
by Giuseppe Trapani, Rossella Arrigo, Michele Sisani, Maria Bastianini and Alberto Frache
Polymers 2025, 17(23), 3189; https://doi.org/10.3390/polym17233189 - 29 Nov 2025
Viewed by 327
Abstract
This work proposes a coating approach for obtaining flame-retardant ethylene–vinyl acetate (EVA) and ethylene–butyl acrylate (EBA) copolymer-based materials. Nanocomposite films of EVA and EBA were first produced by cast extrusion, with two types of layered double hydroxides (LDHs) differing in the aspect ratio [...] Read more.
This work proposes a coating approach for obtaining flame-retardant ethylene–vinyl acetate (EVA) and ethylene–butyl acrylate (EBA) copolymer-based materials. Nanocomposite films of EVA and EBA were first produced by cast extrusion, with two types of layered double hydroxides (LDHs) differing in the aspect ratio used as nanofillers. Subsequently, the films were applied as a coating to the corresponding neat copolymer substrate, and the combustion behavior of the so-obtained samples was evaluated through cone calorimeter tests. Despite the small amount of nanofillers (0.5 wt.% considering the whole specimen), the application of the coatings significantly improved the time to ignition compared to the pristine copolymers, while the shape of the heat release rate curves and the relative peak values remained relatively unchanged. The effect of the embedded nanofillers in delaying the ignition was more effective for the EVA-based systems than for the EBA ones (showing an increment of 30% and 12%, respectively, compared to the uncoated samples), likely due to the more homogeneous dispersion of the LDHs obtained in the first case. The obtained results demonstrate the effectiveness of the coating approach, since it allows the flame-retardant action to be concentrated on the surface of a polymer system, where combustion specifically takes place, while minimizing the required amount of flame retardant. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

21 pages, 7193 KB  
Article
Influence of YSZ Thermal Barrier Coating on Aerothermal Performance of an Annular Combustor
by Zhixin Zhang, Jiahuan Cui, Qi Zeng, Liang Wang, Rongtao Wang and Feng Liu
Aerospace 2025, 12(12), 1035; https://doi.org/10.3390/aerospace12121035 - 21 Nov 2025
Viewed by 458
Abstract
Based on a realistic three-dimensional geometric model, this study numerically investigates the influence of yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBCs) on the aerothermal performance of an annular combustor by employing a conjugate heat transfer (CHT) and non-premixed reactive flow coupling approach. Considering [...] Read more.
Based on a realistic three-dimensional geometric model, this study numerically investigates the influence of yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBCs) on the aerothermal performance of an annular combustor by employing a conjugate heat transfer (CHT) and non-premixed reactive flow coupling approach. Considering the inner and outer liners, double-wall exhaust bends, and the full configuration of cooling holes, two cases—with and without the TBCs—were analyzed. The results reveal that the application of TBCs markedly modifies the near-wall flow structures and heat transfer characteristics. The cooling air mass flow rate decreases from 0.1211 kg/s to 0.1023 kg/s, corresponding to a 15.5% reduction in cooling load. The main recirculation zone becomes more compact, with enhanced vortex intensity, smoother velocity distribution, and improved flame stability. The high-temperature core region extends further downstream, and the peak temperature increases by approximately 80–100 K, indicating more complete combustion and greater heat retention. The outlet temperature distribution factor (OTDF) decreases from 57.34% to 44.48%, leading to a 22.4% improvement in temperature uniformity. The average wall temperatures of the inner liner, outer liner, and exhaust bend decrease by 3.7%, 8.8%, and 7.5%, respectively, with local peak reductions exceeding 250 K. The study demonstrates that the YSZ TBCs enhances the combustor’s thermal protection capability, flow stability, and temperature uniformity through a coupled mechanism of “thermal insulation–flow reconstruction–energy redistribution.” It should be noted that this study considers only the effect of the ceramic top coat of the TBCs, excluding the metallic bond coat and the thermally grown oxide (TGO) layer. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 12144 KB  
Review
Research Progress on LDH Corrosion-Resistant Films on Magnesium Alloy: A Review
by Huan Li, Xue Bai and Wenjin Chen
Materials 2025, 18(22), 5249; https://doi.org/10.3390/ma18225249 - 20 Nov 2025
Viewed by 675
Abstract
As the lightest structural materials among practical metals, magnesium (Mg) alloys have broad application prospects in various fields, including automobiles, electronics, communications, aerospace and biomaterials. However, the main problem currently limiting their industrial application is poor corrosion resistance. Therefore, improving the corrosion resistance [...] Read more.
As the lightest structural materials among practical metals, magnesium (Mg) alloys have broad application prospects in various fields, including automobiles, electronics, communications, aerospace and biomaterials. However, the main problem currently limiting their industrial application is poor corrosion resistance. Therefore, improving the corrosion resistance of Mg alloys has important practical value and significance. As a type of two-dimensional nanomaterial, layered double hydroxide (LDH) can serve as a micro/nanocarrier for corrosion inhibitors. Through applying LDH to constructing an in situ intelligent protective film on the surface of Mg alloy, the poor corrosion resistance of Mg alloy surfaces can be effectively improved. This paper aims to introduce the structure and properties of LDH films and provide a detailed analysis of the preparation methods and characteristics of LDH films on Mg alloy. Based on summarizing the research progress in the functional modification of LDH films for self-healing, superhydrophobic, slippery liquid-infused porous surfaces (SLIPSs) and wear-resistant coatings, the future development directions and existing challenges are discussed. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

13 pages, 1561 KB  
Article
Hydroelectricity Generation from Fiber-Oriented Waste Paper via Capillary-Driven Charge Separation
by Hyun-Woo Lee, Seung-Hwan Lee, So Hyun Baek, Yongbum Kwon, Mi Hye Lee, Kanghyuk Lee, Inhee Cho, Bum Sung Kim, Haejin Hwang and Da-Woon Jeong
Polymers 2025, 17(21), 2945; https://doi.org/10.3390/polym17212945 - 4 Nov 2025
Viewed by 551
Abstract
Hydroelectricity energy harvesting has emerged as a promising, eco-friendly alternative for addressing the growing demand for sustainable energy solutions. In this study, we present a hydroelectricity energy harvester fabricated from shredded waste printing paper (WPP), offering a novel waste-to-energy conversion strategy that requires [...] Read more.
Hydroelectricity energy harvesting has emerged as a promising, eco-friendly alternative for addressing the growing demand for sustainable energy solutions. In this study, we present a hydroelectricity energy harvester fabricated from shredded waste printing paper (WPP), offering a novel waste-to-energy conversion strategy that requires neither material purification nor complex processing. The device leverages the randomly entangled fiber network of WPP to facilitate capillary-driven moisture diffusion and electric double layer (EDL) formation, thereby enabling efficient electrokinetic energy conversion. The random arrangement of WPP fibers increases the effective EDL area, allowing the waste printing paper generator (WPPG) to achieve an open-circuit voltage of 0.372 V and a short-circuit current of 135 μA at room temperature under optimized electrolyte conditions. This study demonstrates that carbon-black-coated WPP can be effectively upcycled into a high-performance hydroelectricity generator, exhibiting excellent electrical output at ambient conditions. By combining material recycling with efficient energy conversion, this system establishes a practical and sustainable pathway for distributed power generation. Overall, this work not only presents an environmentally responsible approach to device fabrication but also highlights that hydroelectricity energy harvesting using WPPG represents a promising alternative energy route for future applications. Full article
Show Figures

Graphical abstract

11 pages, 9900 KB  
Article
Numerical Simulation of Cutting Performance of Coated Tools for Nickel-Based Superalloys
by Zhaoliang Dou, Liyang Zhao, Hongjuan Yan, Ye Yang and Fengbin Liu
Coatings 2025, 15(11), 1275; https://doi.org/10.3390/coatings15111275 - 3 Nov 2025
Viewed by 400
Abstract
During the machining of nickel-based superalloys using coated tools, a significant amount of cutting heat is generated. This study employs ABAQUS finite element analysis software to establish two-dimensional orthogonal cutting simulation models for three types of coated tools: single-layer AlTiN, double-layer AlTiN/AlCrN, and [...] Read more.
During the machining of nickel-based superalloys using coated tools, a significant amount of cutting heat is generated. This study employs ABAQUS finite element analysis software to establish two-dimensional orthogonal cutting simulation models for three types of coated tools: single-layer AlTiN, double-layer AlTiN/AlCrN, and AlCrN/AlTiN. The research focuses on simulating the cutting temperature and cutting stress of carbide tools with these three different coating types and thicknesses when machining nickel-based superalloy GH4169. The simulation results indicate that the double-layer AlCrN/AlTiN-coated tool exhibits lower maximum cutting temperature and cutting stress on the tool rake face and tool substrate during the cutting process. Compared to the other two coated tools, the cutting temperature and cutting stress on the rake face are reduced by up to 13.2% and 13.3%, respectively. When the AlCrN/AlTiN coating thickness is 2.5 μm with a ratio of 1.5:1, the maximum cutting temperature and cutting stress are minimized. During the cutting process with coated tools, the cutting speed, coating type, and coating thickness significantly influence the maximum cutting temperature and cutting stress. Therefore, investigating the effects of cutting speed, coating type, and coating thickness on carbide-coated tools can reduce tool wear, extend tool life, and thereby improve machining efficiency. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

21 pages, 3273 KB  
Article
The Depression Effect of Micromolecular Depressant Containing Amino and Phosphonic Acid Group on Serpentine in the Flotation of Low-Grade Nickel Sulphide Ore
by Chenxu Zhang, Wei Sun, Zhiyong Gao, Bingang Lu, Xiaohui Su, Chunhua Luo, Xiangan Peng and Jian Cao
Minerals 2025, 15(11), 1116; https://doi.org/10.3390/min15111116 - 27 Oct 2025
Cited by 1 | Viewed by 478
Abstract
Selective depression of serpentine remains a major challenge in the flotation of low-grade nickel sulphide ores because serpentine slimes impair concentrate grade and recovery. In this study, four structurally related micromolecular depressants bearing amino and phosphonic functionalities were designed, synthesized and systematically evaluated. [...] Read more.
Selective depression of serpentine remains a major challenge in the flotation of low-grade nickel sulphide ores because serpentine slimes impair concentrate grade and recovery. In this study, four structurally related micromolecular depressants bearing amino and phosphonic functionalities were designed, synthesized and systematically evaluated. Micro-flotation screening (depressant range: 0–20 mg·L−1) and bench-scale tests identified an operational optimum near pH 9 and a reagent dosage of ≈18 mg·L−1; potassium butyl xanthate (PBX) was used as a collector and methyl isobutyl carbinol (MIBC) as a frother. Phosphonate-containing molecules (PMIDA and GLY) delivered the largest gains in pentlandite recovery and concentrate selectivity compared with carboxylate analogues and a benchmark depressant. Mechanistic studies (zeta potential, adsorption isotherms, FT-IR, and XPS) indicated that selective adsorption of amino and phosphonate groups on serpentine occurs via coordination with surface Mg sites and by altering the electrical double layer. The DLVO modelling showed that these reagents generate an increased repulsive barrier, mitigating slime coating and entrainment. Contact-angle measurements confirmed selective hydrophilization of serpentine while pentlandite remained hydrophobic. These findings demonstrate that incorporating targeted phosphonate chelation into small-molecule depressants is an effective strategy to control serpentine interference and to enhance flotation performance. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

16 pages, 2782 KB  
Article
Defect–Coating–Wavelength Coupling Effects on Nano-Scale Electric Field Modulation in Fused Silica Under Multi-Wavelength Irradiation
by Hongbing Cao, Xing Peng, Feng Shi and Xinjie Zhao
Nanomaterials 2025, 15(21), 1626; https://doi.org/10.3390/nano15211626 - 25 Oct 2025
Viewed by 490
Abstract
Fused silica optical components with antireflection (AR) coatings are key components in high-power laser systems. However, their reliability is severely challenged by multi-wavelength irradiation and the presence of unavoidable matrix surface defects. To investigate the coupling effects of electric field modulation between multi-wavelength [...] Read more.
Fused silica optical components with antireflection (AR) coatings are key components in high-power laser systems. However, their reliability is severely challenged by multi-wavelength irradiation and the presence of unavoidable matrix surface defects. To investigate the coupling effects of electric field modulation between multi-wavelength irradiation, AR coating layers, and defects in AR-coated fused silica, this paper uses the finite-difference time-domain (FDTD) method to simulate the nanoscale electric field intensity distribution in fused silica coated with a double-layer AR coating at three different design wavelengths using multi-wavelength lasers. The effects of electric field coupling between the coating layers and defects are analyzed for three representative scratch geometries. The results show that when the incident wavelength matches the AR design wavelength, the interface field is effectively suppressed, resulting in a smoother field distribution and localized hot spots. Conversely, mismatched wavelengths induce severe field distortion, producing multiple hot spots and lateral interference fringes. Wide, shallow scratches are particularly sensitive to wavelength mismatch, with a 532 nm AR coating exhibiting a global maximum enhancement factor of 1.63442 for 355 nm incident light. These findings highlight the coupling effects of scratch geometry, AR coating dispersion, and laser wavelength on electric field modulation. This research provides valuable insights for optimizing antireflection coatings and improving defect tolerance in multi-wavelength laser applications, helping to improve the reliability of high-power laser systems. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

20 pages, 12909 KB  
Article
Corrosion Behavior and Failure Mechanism of (Sm0.2Gd0.2Dy0.2Er0.2Yb0.2)2(Zr0.7Hf0.3)2O7 Double-Ceramic Thermal Barrier Coatings in Na2SO4 + V2O5 Environment
by Chunman Wang, Hao Mei, Yong Shang, Xunxun Hu, Huidong Wu, Haiyuan Yu, Keke Chang, Jian Sun, Guanghua Liu, Guijuan Zhou, Chunlei Wan and Shengkai Gong
Coatings 2025, 15(10), 1147; https://doi.org/10.3390/coatings15101147 - 2 Oct 2025
Viewed by 541
Abstract
To meet gas turbines’ growing demand for high-performance thermal barrier coatings (TBCs), this study addresses the limitations of traditional single-layer 8% Y2O3-stabilized ZrO2 (YSZ) coatings in high-temperature corrosive environments. Atmospheric plasma spraying (APS) was used to fabricate the [...] Read more.
To meet gas turbines’ growing demand for high-performance thermal barrier coatings (TBCs), this study addresses the limitations of traditional single-layer 8% Y2O3-stabilized ZrO2 (YSZ) coatings in high-temperature corrosive environments. Atmospheric plasma spraying (APS) was used to fabricate the double-ceramic TBCs with (Sm0.2Gd0.2Dy0.2Er0.2Yb0.2)2(Zr0.7Hf0.3)2O7 (RHZ) as the outer layer and YSZ as the inner layer; thermal cycling corrosion tests (1000 °C, Na2SO4 + V2O5 molten salt) were conducted to compare its performance with traditional single-layer YSZ. The results showed that the YSZ corrosion products were m-ZrO2 and YVO4, while RHZ/YSZ produced rare-earth vanadates, m-(Zr,Hf)O2, and t′-(Zr,Hf)O2, and corrosion degree was positively correlated with salt concentration (which was more impactful) and the number of cycles. Both coatings failed via molten salt penetration, thermochemical reaction, and crack-induced spallation. The corrosion mechanism between the RHZ/YSZ coating and the mixed salt can be explained based on the Lewis acid–base theory and the optical basicity. The RHZ layer on the surface of RHZ/YSZ coatings indeed hinders the penetration of corrosive molten salts into the underlying YSZ layer to some extent. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

19 pages, 19633 KB  
Article
Effect of Top-Coat Structure on Thermal Stress in GdYb-YSZ/YSZ Double-Ceramic-Layer Thermal Barrier Coatings
by Haitao Yun, Yuhang Zhou, Tianjie Shi, Yuncheng Wang, Chunhua Cai, Xiaoxiao Pang, Peixuan Ouyang and Shuting Zhang
Coatings 2025, 15(10), 1141; https://doi.org/10.3390/coatings15101141 - 2 Oct 2025
Viewed by 573
Abstract
Investigating the relationship between coating structure and thermal stress is crucial for improving the service performance of double-ceramic-layer (DCL) thermal barrier coatings (TBCs). This study systematically examines a DCL TBC comprising a Gd2O3-Yb2O3-Y2O [...] Read more.
Investigating the relationship between coating structure and thermal stress is crucial for improving the service performance of double-ceramic-layer (DCL) thermal barrier coatings (TBCs). This study systematically examines a DCL TBC comprising a Gd2O3-Yb2O3-Y2O3 co-doped ZrO2 (GYYZ) top layer and Y2O3-stabilized ZrO2 (YSZ) intermediate layer. Using combined finite element analysis and experimental validation, the influence of top-layer structural parameters (porosity, pore size, thickness) on thermal stress distribution under thermal shock conditions and resultant coating performance was investigated. Results indicate that coating interfaces, particularly GYYZ/YSZ and YSZ/bond coat (BC) interfaces, exhibit high sensitivity to top-layer structural parameters. Optimal GYYZ top-layer parameters were identified as: 10–15 vol.% porosity, 10–20 μm pore diameter, and ~0.15 mm thickness. Reducing the top-layer porosity from 20 vol.% to 15 vol.% increased microhardness by 12.8% and extended thermal cycling life by 87.5%. The coating failure mode shifted from the YSZ/BC interface to the GYYZ/YSZ interface, aligning with simulated thermal stress distributions. Full article
Show Figures

Graphical abstract

Back to TopTop