Effect of Top-Coat Structure on Thermal Stress in GdYb-YSZ/YSZ Double-Ceramic-Layer Thermal Barrier Coatings
Abstract
1. Introduction
2. Materials and Methods
2.1. FEA Process
2.1.1. Geometric Model
2.1.2. Material Properties
2.1.3. Boundary Conditions and Calculations
2.2. Experimental Process
2.2.1. Coating Preparation
2.2.2. Microstructure and Porosity Characterization
2.2.3. Microhardness and Thermal Shock Resistance Testing
3. Results and Discussion
3.1. Thermal Stress Simulation Results
3.1.1. Effect of Top-Coating Porosity on Thermal Stress
3.1.2. Effect of Top-Coating Pore Diameter on Thermal Stress
3.1.3. Effect of Top-Coating Thickness on Thermal Stress
3.2. Coating Performance Test Results
3.2.1. Microstructures
3.2.2. Microhardness and Thermal Shock Performance
4. Conclusions and Future Work
4.1. Conclusions
4.2. Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sezavar, A.; Sajjadi, S.A. A review on the performance and lifetime improvement of thermal barrier coatings. J. Eur. Ceram. Soc. 2025, 45, 117274. [Google Scholar] [CrossRef]
- Mehboob, G.; Liu, M.; Xu, T.; Hussain, S.; Mehboob, G.; Tahir, A. A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime. Ceram. Int. 2020, 46, 8497–8521. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, S.; He, A. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines. J. Mater. Sci. Technol. 2019, 35, 2814–2823. [Google Scholar] [CrossRef]
- Song, X.; Liu, Z.; Kong, M.; Lin, C.; Huang, L.; Zheng, X.; Zeng, Y. Thermal stability of yttria-stabilized zirconia (YSZ) and YSZ-Al2O3 coatings. Ceram. Int. 2017, 43, 14321–14325. [Google Scholar] [CrossRef]
- Yang, K.; Shi, J.; Tian, F.; Chen, X.; Zhang, K.; Zhang, X. Lanthanide co-doped YSZ double-ceramic-layer thermal barrier coatings: Unlocking superior sintering resistance, thermal durability, and insulation for extreme environments. Surf. Coat. Technol. 2025, 504, 132069. [Google Scholar] [CrossRef]
- Shvydyuk, K.O.; Nunes-Pereira, J.; Rodrigues, F.F.; Silva, A.P. Review of ceramic composites in aeronautics and aerospace: A multifunctional approach for TPS, TBC and DBD applications. Ceram. Switz. 2023, 6, 195–230. [Google Scholar] [CrossRef]
- Cheng, B.; Yang, G.J.; Zhang, Q.; Yang, N.; Zhang, M.; Zhang, Y.; Li, C.X.; Li, C.J. Gradient thermal cyclic behaviour of La2Zr2O7/YSZ DCL-TBCs with equivalent thermal insulation performance. J. Eur. Ceram. Soc. 2018, 38, 1888–1896. [Google Scholar] [CrossRef]
- Zhu, R.B.; Zou, J.P.; Mao, J.; Deng, Z.Q.; Zhang, X.F.; Deng, C.M.; Liu, M. A comparison between novel Gd2Zr2O7 and Gd2Zr2O7/YSZ thermal barrier coatings fabricated by plasma spray-physical vapor deposition. Rare Met. 2021, 40, 2244–2253. [Google Scholar] [CrossRef]
- Han, J.; Zou, Y.; Wu, D.; Zhang, Y. Investigating the thermal, mechanical and thermal cyclic properties of plasma-sprayed Al2O3-7YSZ/7YSZ double ceramic layer TBCs. J. Eur. Ceram. Soc. 2023, 43, 4124–4135. [Google Scholar] [CrossRef]
- Xiang, Y.; Yan, K.; Yu, H.; Guo, Y.; Ying, Y.; Li, Z.; Sun, J.; Fang, C. Comparative investigation on the hot corrosion failure of YSZ and GdYb-YSZ double-ceramic-layer thermal barrier coatings under Na2SO4+V2O5 molten salts. Ceram. Int. 2023, 49, 18678–18688. [Google Scholar] [CrossRef]
- Wang, P.; Chen, D.; Wang, Q.; Ma, Z.; Liu, L. Thermal stability and thermal cycling behavior of LGYYSZ/YSZ thermal barrier coatings fabricated by atmospheric plasma spraying. Surf. Coat. Technol. 2025, 505, 132038. [Google Scholar] [CrossRef]
- Diwahar, D.; Manivachakan, V.; Syed, R.B. An overview of rare earth-doped ceramic thermal barrier coatings for high-temperature performance of nickel-based superalloys. High Temp. Corr. Mater. 2025, 102, 17. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, L.; Liu, K.; Qiu, S.; Guo, H.; Xu, H. Mechanical properties and simulated thermal conductivity of biomimetic structured PS-PVD (Gd0.9Yb0.1)2Zr2O7 thermal barrier coatings. J. Mater. Sci. Technol. 2024, 182, 33–40. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Q.; Liu, Y.; Ning, X. Microstructure, thermal characteristics, and thermal cycling behavior of the ternary rare earth oxides (La2O3, Gd2O3, and Yb2O3) co-doped YSZ coatings. Surf. Technol. 2020, 403, 126387. [Google Scholar] [CrossRef]
- Shi, Q.; Yuan, W.; Chao, X.; Zhu, Z. Phase stability, Thermal conductivity and crystal growth behavior of RE2O3 (RE = La, Yb, Ce, Gd) co-doped Y2O3 stabilized ZrO2 powder. J. Sol-Gel Sci. Technol. 2017, 84, 341–348. [Google Scholar] [CrossRef]
- Yang, K.; Shi, J.; Liu, L.; Chen, X.; Xu, W.; Zhao, Z.; Tian, F.; Zhang, X. Ablation behavior and delamination mechanism of air plasma sprayed (Gd, Yb) doped YSZ double ceramic layer thermal barrier coatings at 1500 °C. Surf. Coat. Technol. 2025, 496, 131679. [Google Scholar] [CrossRef]
- Jiang, C.; Hao, W.; Liu, C.; Shi, D.; Song, W. Thermal cycling performance of GYbZ/YSZ thermal barrier coatings with different microstructures based on finite element simulation. J. Alloys. Compd. 2025, 1010, 177185. [Google Scholar] [CrossRef]
- Yang, P.; Yang, D.; Hao, E.; An, Y.; Li, Y.; Wang, Z. Thermal shock resistance and failure analysis of La2(Zr0.75Ce0.25)2O7-based TBCs produced by atmospheric plasma spraying. Surf. Coat. Technol. 2021, 409, 126903. [Google Scholar] [CrossRef]
- Rajabi, M.; Aboutalebi, M.R.; Seyedein, S.H.; Ataie, S.A. Simulation of residual stress in thick thermal barrier coating (TTBC) during thermal shock: A response surface-finite element modeling. Ceram. Int. 2022, 48, 5299–5311. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Zhang, W.Q.; Sun, X.G.; He, J.Q.; Pan, Z.Y.; Wang, C.H. Finite element simulation of stress distribution and development in 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings during thermal shock. Appl. Surf. Sci. 2012, 258, 3540–3551. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, Y.T.; Li, W.G.; Zhao, Z.X.; Liu, W.L.; Wu, Y.P. Research progress on surface materials of zirconia-based dual-ceramic layer thermal barrier coatings. Surf. Technol. 2020, 49, 101–108. [Google Scholar] [CrossRef]
- Liang, L.H.; Liu, X.H.; Chen, L.F.; Wei, Y.G. Effect of ceramic coating thickness on fracture behaviour of coating structure under thermal shock cycles. Ceram. Int. 2022, 48, 11435–11444. [Google Scholar] [CrossRef]
- Pan, H.P.; Yuan, X.D.; Xia, S.L.; Wang, M.J.; Li, X.F. Numerical simulation of the influence of La2Zr2O7 thickness on the thermal insulation performance and initial residual stress of La2Zr2O7-8YSZ dual-ceramic thermal barrier coating. Cast. Technol. 2020, 41, 831–834. [Google Scholar] [CrossRef]
- Li, J.X.; Zhao, W.L.; Yu, J.S.; Yang, Q.; He, D.H.; Wang, L. Thickness optimization and interfacial residual stress of YSZ/YTaO4 double-ceramic-layer thermal barrier coatings fabricated by atmospheric plasma spraying: A finite element simulation study. Ceram. Int. 2025, 51, 13674–13691. [Google Scholar] [CrossRef]
- Li, Z.; Wei, Z.; Li, X.; Wang, L.; Ma, Z.; Dong, L.; Dong, H.; Yao, J.; Zhou, Y.; Li, G. Matching design of porous microstructures for double-layered thermal barrier coatings composed of Gd2Zr2O7 and yttria-stabilized zirconia enables long protection. Ceram. Int. 2025, 51, 35092–35103. [Google Scholar] [CrossRef]
- Liu, L.; Xu, W.; Shi, J.; Zhang, X.; Tu, S. Plasma sprayed thermal barrier coatings with outstanding ultrahigh temperature thermal shock resistances through gradient porosity level optimizations. Ceram. Int. 2025, 51, 17484–17491. [Google Scholar] [CrossRef]
- Montakhabi, F.; Poursaeidi, E.; Rahimi, J.; Sigaroodi, M.R.J. Investigation of the effect of BC layer surface roughness and TC layer porosity on stress values in plasma sprayed coatings based on SEM images. Mater. Today Commun. 2022, 33, 104737. [Google Scholar] [CrossRef]
- Yang, T.; Wang, W.; Tang, Z.; Liu, Y.; Li, K. Structural optimization for porous thermal barrier coating and analysis of thermomechanical properties by experimental and computational investigation. Surf. Technol. 2023, 458, 129347. [Google Scholar] [CrossRef]
- Zhao, K.; Huang, W.; Deng, P.; Zhong, R.; Tan, Z.; Hu, Y.; Li, J.; Mao, W. Mechanical properties, thermal shock resistance and stress evolution of plasma-sprayed 56 wt% Y2O3-stabilized ZrO2 thick thermal barrier coatings. Surf. Coat. Technol. 2024, 494, 131352. [Google Scholar] [CrossRef]
- Liu, P.; Yang, S.; Li, K.; Wang, W.; Liu, Y.; Yang, T. Experimental and simulation studies on thermal shock of multilayer thermal barrier coatings with an intermediate transition layer at 1500 °C. Coatings 2024, 14, 1614. [Google Scholar] [CrossRef]
- Cui, S.; Miao, Q.; Domblesky, J.P.; Liang, W.; Song, Y. Modeling of the temperature field in a porous thermal barrier coating. Ceram. Int. 2019, 45, 12635–12642. [Google Scholar] [CrossRef]
- Hu, S.; Feng, Y.J.; Li, W.H.; Hu, S.Y.; Gong, X.; Xie, Z.W. Numerical simulation of residual thermal stress distribution and thermal stability of LaMgAl11O19 thermal barrier coating during annealing process. Surf. Technol. 2022, 51, 275–282. [Google Scholar] [CrossRef]
- GB/T 13298-2015; Metallic Materials—Micrographic Method for the Determination of Microstructure. Standardization Administration of China: Beijing, China, 2015.
- Abedi, H.R.; Salehi, M.; Shafyei, A. Microstructural, Mechanical and thermal shock properties of triple-layer TBCs with different thicknesses of bond coat and ceramic top coat deposited onto polyimide matrix composite. Ceram. Int. 2018, 44, 6212–6222. [Google Scholar] [CrossRef]
- GB/T 4340.1-2024; Metallic Materials—Vickers Hardness Test—Part 1: Test Method. Standardization Administration of China: Beijing, China, 2024.
- GB/T 42261-2022; Metallic Materials—Sheet and Strip—Determination of Tensile Strain Hardening Exponent. Standardization Administration of China: Beijing, China, 2022.
- Klym, H.; Kostiv, Y.; Kushnir, O.; Konuhova, M.; Kozlovskiy, A.L.; Popov, A.I. Influence of Eu3+ doping on the microstructure and nanoporous transformation of BaGa2O4 ceramics. J. Mater. Sci. 2025, 60, 12662–12672. [Google Scholar] [CrossRef]
Top-Coating Structural Parameters | Values |
---|---|
Porosity/vol.% | 0, 5, 10, 15, 20, 25 |
Pore diameter/mm | 0.01, 0.015, 0.02, 0.025, 0.03 |
Thickness/mm | 0.1, 0.15, 0.2, 0.25, 0.3 |
Material | Temperature /°C | Elasticity Modulus /GPa | Poisson’s Ratio | Density /kg·m−3 | Coefficient of Thermal Expansion / 10−5 °C−1 | Specific Heat /J·kg−1·°C−1 | Thermal Conductivity /W·m−1·K−1 |
---|---|---|---|---|---|---|---|
GH5188 | 25 | 200 | 0.31 | 8500 | 1.13 | 408 | 10.50 |
100 | / | / | / | 1.18 | 415 | 12.23 | |
200 | / | / | / | 1.24 | 425 | 15.32 | |
400 | / | / | / | 1.29 | 484 | 18.30 | |
600 | / | / | / | 1.44 | 534 | 22.90 | |
800 | / | / | / | 1.52 | 571 | 26.50 | |
1000 | / | / | / | 1.62 | 588 | 29.06 | |
NiCoCrAlYHfSi | 25 | 225 | 0.30 | 7320 | 1.20 | 501 | 4.30 |
400 | / | / | / | 1.39 | 592 | 6.40 | |
600 | / | / | / | 1.48 | 670 | 8.00 | |
800 | / | / | / | 1.55 | 781 | 10.20 | |
YSZ | 20 | 53 | 0.10 | 5280 | 1.04 | 450 | 1.80 |
200 | / | / | / | 1.05 | 491 | 1.76 | |
500 | / | / | / | 1.07 | 532 | 1.75 | |
700 | / | / | / | 1.08 | 573 | 1.72 | |
1100 | / | / | / | 1.09 | 615 | 1.69 | |
GYYZ | 25 | 50 | 0.24 | 6900 | 0.67 | 342 | 0.81 |
200 | / | / | / | 0.81 | 384 | 0.79 | |
400 | / | / | / | 0.98 | 415 | 0.73 | |
600 | / | / | / | 1.15 | 437 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, H.; Zhou, Y.; Shi, T.; Wang, Y.; Cai, C.; Pang, X.; Ouyang, P.; Zhang, S. Effect of Top-Coat Structure on Thermal Stress in GdYb-YSZ/YSZ Double-Ceramic-Layer Thermal Barrier Coatings. Coatings 2025, 15, 1141. https://doi.org/10.3390/coatings15101141
Yun H, Zhou Y, Shi T, Wang Y, Cai C, Pang X, Ouyang P, Zhang S. Effect of Top-Coat Structure on Thermal Stress in GdYb-YSZ/YSZ Double-Ceramic-Layer Thermal Barrier Coatings. Coatings. 2025; 15(10):1141. https://doi.org/10.3390/coatings15101141
Chicago/Turabian StyleYun, Haitao, Yuhang Zhou, Tianjie Shi, Yuncheng Wang, Chunhua Cai, Xiaoxiao Pang, Peixuan Ouyang, and Shuting Zhang. 2025. "Effect of Top-Coat Structure on Thermal Stress in GdYb-YSZ/YSZ Double-Ceramic-Layer Thermal Barrier Coatings" Coatings 15, no. 10: 1141. https://doi.org/10.3390/coatings15101141
APA StyleYun, H., Zhou, Y., Shi, T., Wang, Y., Cai, C., Pang, X., Ouyang, P., & Zhang, S. (2025). Effect of Top-Coat Structure on Thermal Stress in GdYb-YSZ/YSZ Double-Ceramic-Layer Thermal Barrier Coatings. Coatings, 15(10), 1141. https://doi.org/10.3390/coatings15101141