Hydroelectricity Generation from Fiber-Oriented Waste Paper via Capillary-Driven Charge Separation
Abstract
1. Introduction
2. Experimental Section
2.1. Fabrication of CB Solution and WPPG
2.2. Electrical Measurements and Data Analysis for WPPG
3. Results and Discussion
3.1. WPPG Characterization
3.2. Optimization of WPPG Performances Through Control of Internal
3.3. Optimization of WPPG-Shred Performance Through Control of CB Concentration
3.4. Optimization of WPPG-Shred Performance Through Control of WPPG-Shred Mass
3.5. Comparison of Output Power of Cellulose and Paper-Based Energy Harvesters Reported in Recent Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Martins, F.; Felgueiras, C.; Smitkova, M.; Caetano, N. Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies 2019, 12, 964. [Google Scholar] [CrossRef]
- Reash, R.J. Energy and the environment: Striking a balance. Integr. Environ. Assess. Manag. 2021, 17, 899–900. [Google Scholar] [CrossRef]
- Suryabhan, M. Environmental Degradation And Renewable Energy. Int. J. Adv. Res. Sci. Commun. Technol. 2024, 4, 160–165. [Google Scholar] [CrossRef]
- Sanders, B.; Davis, M. Effects of Climate Change and Air Pollution on Perinatal Health. J. Midwifery Women’s Health 2023, 68, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Haines, A.; Kovats, R.S.; Campbell-Lendrum, D.; Corvalan, C. Climate change and human health: Impacts, vulnerability and public health. Public Health 2006, 120, 585–596. [Google Scholar] [CrossRef]
- Orsetti, E.; Tollin, N.; Lehmann, M.; Valderrama, V.A.; Morató, J. Building Resilient Cities: Climate Change and Health Interlinkages in the Planning of Public Spaces. Int. J. Environ. Res. Public Health 2022, 19, 1355. [Google Scholar] [CrossRef]
- SPacheco, E.; Guidos-Fogelbach, G.; Annesi-Maesano, I.; Pawankar, R.; Amato, G.D.; Latour-Staffeld, P.; Urrutia-Pereira, M.; Kesic, M.J.; Hernandez, M.L. Climate change and global issues in allergy and immunology. J. Allergy Clin. Immunol. 2021, 148, 1366–1377. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, A.; Deng, S.; Wang, X.; Zhang, H.; Hajat, S.; Ji, J.; Liang, W.; Huang, C. The impact of fossil fuel combustion on children’s health and the associated losses of human capital. Glob. Transit. 2023, 5, 117–124. [Google Scholar] [CrossRef]
- Chen, Z.; Shi, J.; Li, Y.; Ma, B.-C.; Yan, X.; Liu, M.; Jin, H.; Li, D.; Jing, D.; Guo, L. Recent progress of energy harvesting and conversion coupled with atmospheric water gathering. Energy Convers. Manag. 2021, 246, 114668. [Google Scholar] [CrossRef]
- Al-Qadami, E.H.H.; Mustaffa, Z.; Al-Atroush, M.E. Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy. Energies 2022, 15, 1201. [Google Scholar] [CrossRef]
- Sezer, N.; Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2021, 80, 105567. [Google Scholar] [CrossRef]
- Covaci, C.; Gontean, A. Piezoelectric energy harvesting solutions: A review. Sensors 2020, 20, 3512. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Du, S. The advances in conversion techniques in triboelectric energy harvesting: A review. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 3049–3062. [Google Scholar] [CrossRef]
- Ryu, H.; Yoon, H.J.; Kim, S.W. Hybrid energy harvesters: Toward sustainable energy harvesting. Adv. Mater. 2019, 31, 1802898. [Google Scholar] [CrossRef]
- Enescu, D. Thermoelectric energy harvesting: Basic principles and applications. Green Energy Adv. 2019, 1, 38. [Google Scholar]
- Lee, S.-H.; Kwon, Y.; Kim, S.; Yun, J.; Kim, E.; Jang, G.; Song, Y.; Kim, B.S.; Oh, C.-S.; Choa, Y.-H. A novel water electrolysis hydrogen production system powered by a renewable hydrovoltaic power generator. Chem. Eng. J. 2024, 495, 153411. [Google Scholar] [CrossRef]
- Kwon, Y.; Bui-Vinh, D.; Lee, S.-H.; Baek, S.H.; Lee, S.; Yun, J.; Baek, M.; Lee, H.-W.; Park, J.; Kim, M. Evaporation-Driven Energy Generation Using an Electrospun Polyacrylonitrile Nanofiber Mat with Different Support Substrates. Polymers 2024, 16, 1180. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, J.-Y.; Kim, J.; Yun, J.; Youm, J.; Kwon, Y.; Kim, M.-S.; Kim, B.S.; Choa, Y.-H.; Cho, I. Cost-effective moisture-induced electrical power generators for sustainable electrodialysis desalination. Nano Energy 2024, 126, 109683. [Google Scholar] [CrossRef]
- Suvigya, K.; Lalita, S.; Sankar, S.N.; Capasso, A.; Yeh, L.-H.; Gopinadhan, K. Can structure influence hydrovoltaic energy generation? Insights from the metallic 1T′ and semiconducting 2H phases of MoS2. Nanoscale 2025, 17, 3451–3459. [Google Scholar] [CrossRef]
- Duan, W.; Sun, Z.; Jiang, X.; Tang, S.; Wang, X. Carbon Materials for Evaporation-and Moisture-Induced Power Generation. Nano Energy 2024, 134, 110516. [Google Scholar] [CrossRef]
- Almeida, A.P.; Canejo, J.P.; Fernandes, S.N.; Echeverria, C.; Almeida, P.L.; Godinho, M.H. Cellulose-based biomimetics and their applications. Adv. Mater. 2018, 30, 1703655. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zhu, Y.; Cheng, W.; Chen, W.; Wu, Y.; Yu, H. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 2021, 33, 2000619. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.; Zhu, M.; Duan, B.; Zhang, L. Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater. 2021, 33, 2000682. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, J. Self-assembled cellulose materials for biomedicine: A review. Carbohydr. Polym. 2018, 181, 264–274. [Google Scholar] [CrossRef]
- Verma, J.; Petru, M.; Goel, S. Cellulose based materials to accelerate the transition towards sustainability. Ind. Crops Prod. 2024, 210, 118078. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; An, H.; Liang, S.; Li, N. A review on intelligence of cellulose based materials. Carbohydr. Polym. 2024, 338, 122219. [Google Scholar] [CrossRef]
- Monte, M.C.; Fuente, E.; Blanco, A.; Negro, C. Waste management from pulp and paper production in the European Union. Waste Manag. 2009, 29, 293–308. [Google Scholar] [CrossRef]
- Milbrandt, A.; Zuboy, J.; Coney, K.; Badgett, A. Paper and cardboard waste in the United States: Geographic, market, and energy assessment. Waste Manag. Bull. 2023, 2, 21–28. [Google Scholar] [CrossRef]
- Rabl, A.; Spadaro, J.V.; Zoughaib, A. Environmental impacts and costs of solid waste: A comparison of landfill and incineration. Waste Manag. Res. 2008, 26, 147–162. [Google Scholar] [CrossRef]
- Agamuthu, P.; Law, H.J. Do we need landfills? Waste Manag. Res. J. A Sustain. Circ. Econ. 2020, 38, 1075–1077. [Google Scholar]
- Tan, S.T.; Hashim, H.; Lim, J.S.; Ho, W.S.; Lee, C.T.; Yan, J. Energy and emissions benefits of renewable energy derived from municipal solid waste: Analysis of a low carbon scenario in Malaysia. Appl. Energy 2014, 136, 797–804. [Google Scholar] [CrossRef]
- Van Ewijk, S.; Stegemann, J.A.; Ekins, P. Limited climate benefits of global recycling of pulp and paper. Nat. Sustain. 2021, 4, 180–187. [Google Scholar] [CrossRef]
- Del Rio, D.D.F.; Sovacool, B.K.; Griffiths, S.; Bazilian, M.; Kim, J.; Foley, A.M.; Rooney, D. Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options. Renew. Sustain. Energy Rev. 2022, 167, 112706. [Google Scholar] [CrossRef]
- Abushammala, H.; Masood, M.A.; Ghulam, S.T.; Mao, J. On the conversion of paper waste and rejects into high-value materials and energy. Sustainability 2023, 15, 6915. [Google Scholar] [CrossRef]
- Wang, F.; Kumari, S.; Schiller, U.D. Computational characterization of nonwoven fibrous media. II. Analysis of microstructure effects on permeability and tortuosity. Phys. Rev. Mater. 2020, 4, 083804. [Google Scholar] [CrossRef]
- Vinhas, S.; Sarraguça, M.; Moniz, T.; Reis, S.; Rangel, M. A new microwave-assisted protocol for cellulose extraction from eucalyptus and pine tree wood waste. Polymers 2023, 16, 20. [Google Scholar] [CrossRef]
- Kashcheyeva, E.I.; Korchagina, A.A.; Gismatulina, Y.A.; Gladysheva, E.K.; Budaeva, V.V.; Sakovich, G.V. Simultaneous production of cellulose nitrates and bacterial cellulose from lignocellulose of energy crop. Polymers 2023, 16, 42. [Google Scholar] [CrossRef]
- Malepe, L.; Ndungu, P.; Ndinteh, D.T.; Mamo, M.A. Nickel oxide-carbon soot-cellulose acetate nanocomposite for the detection of mesitylene vapour: Investigating the sensing mechanism using an LCR meter coupled to an FTIR spectrometer. Nanomaterials 2022, 12, 727. [Google Scholar] [CrossRef]
- Wang, G.; Brown, W.; Kvetny, M. Structure and dynamics of nanoscale electrical double layer. Curr. Opin. Electrochem. 2019, 13, 112–118. [Google Scholar] [CrossRef]
- Firouznia, M.; Miksis, M.J.; Vlahovska, P.M.; Saintillan, D. Instability of a planar fluid interface under a tangential electric field in a stagnation point flow. J. Fluid Mech. 2022, 931, A25. [Google Scholar] [CrossRef]
- Channon, R.B.; Nguyen, M.P.; Henry, C.S.; Dandy, D.S. Multilayered microfluidic paper-based devices: Characterization, modeling, and perspectives. Anal. Chem. 2019, 91, 8966–8972. [Google Scholar] [CrossRef]
- Wang, F.; Schiller, U.D. Computational characterization of nonwoven fibrous media: I. Pore-network extraction and morphological analysis. Phys. Rev. Mater. 2020, 4, 083803. [Google Scholar] [CrossRef]
- Moreira, K.S.; Lermen, D.; Santos, L.P.D.; Galembeck, F.; Burgo, T.A. Flexible, low-cost and scalable, nanostructured conductive paper-based, efficient hygroelectric generator. Energy Environ. Sci. 2021, 14, 353–358. [Google Scholar] [CrossRef]
- Gao, Y.; Elhadad, A.; Choi, S. A Paper-Based Wearable Moist–Electric Generator for Sustained High-Efficiency Power Output and Enhanced Moisture Capture. Small 2024, 20, 2408182. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Han, W.; Zhao, C.; Wang, S.; Kong, F.; Ji, X.; Li, Z.; Shen, X. Fabrication of transparent paper-based flexible thermoelectric generator for wearable energy harvester using modified distributor printing technology. ACS Appl. Mater. Interfaces 2019, 11, 10301–10309. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Q.; Peng, B.; Xie, Z.; Du, S.; Zhang, L.; Zhu, J. Moist-induced electricity generation by electrospun cellulose acetate membranes with optimized porous structures. ACS Appl. Mater. Interfaces 2020, 12, 57373–57381. [Google Scholar] [CrossRef] [PubMed]
- Thakur, D.; Youn, H.J.; Hyun, J. Heterogeneous bilayer system of cellulose nanofibers for a moisture-enabled electric generator. Cellulose 2025, 32, 3285–3298. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, P.; Wang, J.; Meng, H.; Ge, Y.; Feng, C.; Liu, H.; Meng, Y.; Zhou, Z.; Xuan, N. Paper-Based Hydroelectric Generators for Water Evaporation-Induced Electricity Generation. Adv. Sci. 2023, 10, 2304482. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-W.; Lee, S.-H.; Baek, S.H.; Kwon, Y.; Lee, M.H.; Lee, K.; Cho, I.; Kim, B.S.; Hwang, H.; Jeong, D.-W. Hydroelectricity Generation from Fiber-Oriented Waste Paper via Capillary-Driven Charge Separation. Polymers 2025, 17, 2945. https://doi.org/10.3390/polym17212945
Lee H-W, Lee S-H, Baek SH, Kwon Y, Lee MH, Lee K, Cho I, Kim BS, Hwang H, Jeong D-W. Hydroelectricity Generation from Fiber-Oriented Waste Paper via Capillary-Driven Charge Separation. Polymers. 2025; 17(21):2945. https://doi.org/10.3390/polym17212945
Chicago/Turabian StyleLee, Hyun-Woo, Seung-Hwan Lee, So Hyun Baek, Yongbum Kwon, Mi Hye Lee, Kanghyuk Lee, Inhee Cho, Bum Sung Kim, Haejin Hwang, and Da-Woon Jeong. 2025. "Hydroelectricity Generation from Fiber-Oriented Waste Paper via Capillary-Driven Charge Separation" Polymers 17, no. 21: 2945. https://doi.org/10.3390/polym17212945
APA StyleLee, H.-W., Lee, S.-H., Baek, S. H., Kwon, Y., Lee, M. H., Lee, K., Cho, I., Kim, B. S., Hwang, H., & Jeong, D.-W. (2025). Hydroelectricity Generation from Fiber-Oriented Waste Paper via Capillary-Driven Charge Separation. Polymers, 17(21), 2945. https://doi.org/10.3390/polym17212945

