Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (354)

Search Parameters:
Keywords = dolomite formation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 21967 KiB  
Article
Ore Genesis Based on Microtextural and Geochemical Evidence from the Hydrothermal As–Sb Mineralization of the Matra Deposit (Alpine Corsica, France)
by Danis Ionut Filimon, John A. Groff, Emilio Saccani and Maria Di Rosa
Minerals 2025, 15(8), 814; https://doi.org/10.3390/min15080814 - 31 Jul 2025
Viewed by 186
Abstract
The Matra As–Sb deposit (Alpine Corsica, France) is hosted in the normal N–S trending Matra Fault. Sulfide minerals in ore consist of realgar, stibnite, and pyrite with minor orpiment and hörnesite. The gangue includes quartz, dolomite, and calcite. In this study, the microstructural [...] Read more.
The Matra As–Sb deposit (Alpine Corsica, France) is hosted in the normal N–S trending Matra Fault. Sulfide minerals in ore consist of realgar, stibnite, and pyrite with minor orpiment and hörnesite. The gangue includes quartz, dolomite, and calcite. In this study, the microstructural analysis of selected ore samples has been combined with the geochemical characterization of the sulfides. The results depict a succession of events that record the evolution of the ore deposit related to fault movement. In the pre–ore stage, plumose, crustiform, jigsaw, and feathery textures of quartz testify to a short–lived boiling event. The mineral assemblage of the main–ore stage includes an Fe(–Zn) substage dominated by the formation of different textures of pyrite. In general, pyrite samples contain significant concentrations of As (≤32,231 ppm) and Sb (≤10,684 ppm), with lesser amounts of by Tl (≤1257 ppm) and Ni (≤174 ppm). This is followed by an Sb–As–Fe substage of pyrite–stibnite–realgar ±orpiment. The precipitation of the sulfides was mainly driven by changes in ƒS2. The increasing level of oxidation is attributed to a progressive influx of meteoric water resulting from reactivation of the Matra Fault. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Graphical abstract

37 pages, 22971 KiB  
Article
Sedimentary Facies and Geochemical Signatures of the Khewra Sandstone: Reconstructing Cambrian Paleoclimates and Paleoweathering in the Salt Range, Pakistan
by Abdul Bari Qanit, Shahid Iqbal, Azharul Haq Kamran, Muhammad Idrees, Benjamin Sames and Michael Wagreich
Minerals 2025, 15(8), 789; https://doi.org/10.3390/min15080789 - 28 Jul 2025
Viewed by 1068
Abstract
Red sandstones of the Cambrian age are globally distributed and represent an important sedimentation phase during this critical time interval. Their sedimentology and geochemistry can provide key information about the sedimentation style, paleoclimatic conditions, and weathering trends during the Cambrian. In the Salt [...] Read more.
Red sandstones of the Cambrian age are globally distributed and represent an important sedimentation phase during this critical time interval. Their sedimentology and geochemistry can provide key information about the sedimentation style, paleoclimatic conditions, and weathering trends during the Cambrian. In the Salt Range of Pakistan, the Khewra Sandstone constitutes the Lower Cambrian strata and consists of red–maroon sandstones with minor siltstone and shale in the basal part. Cross-bedding, graded bedding, ripple marks, parallel laminations, load casts, ball and pillows, desiccation cracks, and bioturbation are the common sedimentary features of the formation. The sandstones are fine to medium to coarse-grained with subangular to subrounded morphology and display an overall coarsening upward trend. Petrographic analysis indicates that the sandstones are sub-arkose and sub-lithic arenites, and dolomite and calcite are common cementing materials. X-ray Diffraction (XRD) analysis indicates that the main minerals in the formation are quartz, feldspars, kaolinite, illite, mica, hematite, dolomite, and calcite. Geochemical analysis indicates that SiO2 is the major component at a range of 53.3 to 88% (averaging 70.4%), Al2O3 ranges from 3.1 to 19.2% (averaging 9.2%), CaO ranges from 0.4 to 25.3% (averaging 7.4%), K2O ranges from 1.2 to 7.4% (averaging 4.8%), MgO ranges from 0.2 to 7.4% (averaging 3.5%), and Na2O ranges from 0.1 to 0.9% (averaging 0.4%), respectively. The results of the combined proxies indicate that the sedimentation occurred in fluvial–deltaic settings under overall arid to semi-arid paleoclimatic conditions with poor to moderate chemical weathering. The Khewra Sandstone represents the red Cambrian sandstones on the NW Indian Plate margin of Gondwana and can be correlated with contemporaneous red sandstones in the USA, Europe, Africa, Iran, and Turkey (Türkiye). Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

25 pages, 4401 KiB  
Article
Impact of High Energy Milling and Mineral Additives on a Carbonate–Quartz–Apatite System for Ecological Applications
by Vilma Petkova, Katerina Mihaylova, Ekaterina Serafimova, Rositsa Titorenkova, Liliya Tsvetanova and Andres Trikkel
Materials 2025, 18(15), 3508; https://doi.org/10.3390/ma18153508 - 26 Jul 2025
Viewed by 334
Abstract
In this study, high-energy milled (HEM) samples of natural phosphorites from Estonian deposits were investigated. The activation was performed via planetary mill with Cr-Ni grinders with a diameter of 20 mm. This method is an ecological alternative, since it eliminates the disadvantages of [...] Read more.
In this study, high-energy milled (HEM) samples of natural phosphorites from Estonian deposits were investigated. The activation was performed via planetary mill with Cr-Ni grinders with a diameter of 20 mm. This method is an ecological alternative, since it eliminates the disadvantages of conventional acid methods, namely the release of gaseous and solid technogenic products. The aim of the study is to determine the changes in the structure to follow the solid-state transitions and the isomorphic substitutions in the anionic sub-lattice in the structure of the main mineral apatite in the samples from Estonia, under the influence of HEM activation. It is also interesting to investigate the influence of HEM on structural-phase transformations on the structure of impurity minerals-free calcite/dolomite, pyrite, quartz, as well as to assess their influence on the thermal behavior of the main mineral apatite. The effect of HEM is monitored by using a complex of analytical methods, such as chemical analysis, powder X-ray diffraction (PXRD), wavelength-dispersive X-ray fluorescence (WD-XRF) analysis, and Fourier-transformed infrared (FTIR) analysis. The obtained results prove the correlation in the behavior of the studied samples with regard to their quartz content and bonded or non-bonded carbonate ions. After HEM activation of the raw samples, the following is established: (i) anionic isomorphism with formation of A and A-B type carbonate-apatites and hydroxyl-fluorapatite; (ii) solid-phase synthesis of calcium orthophosphate-CaHPO4 (monetite) and dicalcium diphosphate-β-Ca2P2O7; (iii) enhanced chemical reactivity by approximately three times by increasing the solubility via HEM activation. The dry milling method used is a suitable approach for solving technological projects to improve the composition and structure of soils, increasing soil fertility by introducing soluble forms of calcium phosphates. It provides a variety of application purposes depending on the composition, impurities, and processing as a soil improver, natural mineral fertilizer, or activator. Full article
(This article belongs to the Special Issue Advances in Rock and Mineral Materials—Second Edition)
Show Figures

Figure 1

18 pages, 1052 KiB  
Article
Assessment of Tailings Contamination Potential in One of the Most Important Gold Mining Districts of Ecuador
by Daniel Garcés, Samantha Jiménez-Oyola, Yolanda Sánchez-Palencia, Fredy Guzmán-Martínez, Raúl Villavicencio-Espinoza, Sebastián Jaramillo-Zambrano, Victoria Rosado, Bryan Salgado-Almeida and Josué Marcillo-Guillén
Minerals 2025, 15(8), 767; https://doi.org/10.3390/min15080767 - 22 Jul 2025
Viewed by 374
Abstract
Mining waste presents significant environmental and public health risks due to the potential release of toxic substances when improperly managed. In this study, four tailings samples were taken to evaluate the environmental risks in the Ponce Enríquez mining area in Ecuador. Chemical characterization [...] Read more.
Mining waste presents significant environmental and public health risks due to the potential release of toxic substances when improperly managed. In this study, four tailings samples were taken to evaluate the environmental risks in the Ponce Enríquez mining area in Ecuador. Chemical characterization and X-ray Fluorescence Spectrometry (XRF) were used to analyze the content of potentially toxic elements (PTEs) of interest (As, Cd, Cr, Cu, Ni, Pb, and Zn), and X-ray Diffraction (XRD) for mineralogical characterization. The contamination index (IC) was calculated to assess the potential hazard associated with the content of PTEs in the mining wastes. To assess environmental risks, leaching tests were carried out to evaluate the potential release of PTEs, and Acid-Base Accounting (ABA) tests were conducted to determine the likelihood of acid mine drainage formation. The results revealed that the PETs concentration exceeded the maximum permissible limits in all samples, according to Ecuadorian regulations: As, Pb, and Cd were identified as critical contaminants. Mineralogically, quartz was the dominant phase, followed by carbonates (calcite, dolomite and magnesite), phyllosilicates (chlorite and illite), and minor amounts of pyrite and talc. The IC indicated high to very high contamination risk levels, with As being the predominant contributor. Although leaching tests met the established limits for non-hazardous mining waste, the ABA test showed that all samples had a high potential for long-term acid generation. These results underscore the need for implementing management strategies to mitigate the environmental impacts and the development of plans to protect local ecosystems and communities from the adverse effects of mining activities. Full article
Show Figures

Figure 1

18 pages, 11724 KiB  
Article
Hydrogen–Rock Interactions in Carbonate and Siliceous Reservoirs: A Petrophysical Perspective
by Rami Doukeh, Iuliana Veronica Ghețiu, Timur Vasile Chiș, Doru Bogdan Stoica, Gheorghe Brănoiu, Ibrahim Naim Ramadan, Ștefan Alexandru Gavrilă, Marius Gabriel Petrescu and Rami Harkouss
Appl. Sci. 2025, 15(14), 7957; https://doi.org/10.3390/app15147957 - 17 Jul 2025
Viewed by 769
Abstract
Underground hydrogen storage (UHS) in carbonate and siliceous formations presents a promising solution for managing intermittent renewable energy. However, experimental data on hydrogen–rock interactions under representative subsurface conditions remain limited. This study systematically investigates mineralogical and petrophysical alterations in dolomite, calcite-rich limestone, and [...] Read more.
Underground hydrogen storage (UHS) in carbonate and siliceous formations presents a promising solution for managing intermittent renewable energy. However, experimental data on hydrogen–rock interactions under representative subsurface conditions remain limited. This study systematically investigates mineralogical and petrophysical alterations in dolomite, calcite-rich limestone, and quartz-dominant siliceous cores subjected to high-pressure hydrogen (100 bar, 70 °C, 100 days). Distinct from prior research focused on diffraction peak shifts, our analysis prioritizes quantitative changes in mineral concentration (%) as a direct metric of reactivity and structural integrity, offering more robust insights into long-term storage viability. Hydrogen exposure induced significant dolomite dissolution, evidenced by reduced crystalline content (from 12.20% to 10.53%) and accessory phase loss, indicative of partial decarbonation and ankerite-like formation via cation exchange. Conversely, limestone exhibited more pronounced carbonate reduction (vaterite from 6.05% to 4.82% and calcite from 2.35% to 0%), signaling high reactivity, mineral instability, and potential pore clogging from secondary precipitation. In contrast, quartz-rich cores demonstrated exceptional chemical inertness, maintaining consistent mineral concentrations. Furthermore, Brunauer–Emmett–Teller (BET) surface area and Barrett–Joyner–Halenda (BJH) pore distribution analyses revealed enhanced porosity and permeability in dolomite (pore volume increased >10×), while calcite showed declining properties and quartz showed negligible changes. SEM-EDS supported these trends, detailing Fe migration and textural evolution in dolomite, microfissuring in calcite, and structural preservation in quartz. This research establishes a unique experimental framework for understanding hydrogen–rock interactions under reservoir-relevant conditions. It provides crucial insights into mineralogical compatibility and structural resilience for UHS, identifying dolomite as a highly promising host and highlighting calcitic rocks’ limitations for long-term hydrogen containment. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

20 pages, 3672 KiB  
Article
Identification of Complicated Lithology with Machine Learning
by Liangyu Chen, Lang Hu, Jintao Xin, Qiuyuan Hou, Jianwei Fu, Yonggui Li and Zhi Chen
Appl. Sci. 2025, 15(14), 7923; https://doi.org/10.3390/app15147923 - 16 Jul 2025
Viewed by 213
Abstract
Lithology identification is one of the most important research areas in petroleum engineering, including reservoir characterization, formation evaluation, and reservoir modeling. Due to the complex structural environment, diverse lithofacies types, and differences in logging data and core data recording standards, there is significant [...] Read more.
Lithology identification is one of the most important research areas in petroleum engineering, including reservoir characterization, formation evaluation, and reservoir modeling. Due to the complex structural environment, diverse lithofacies types, and differences in logging data and core data recording standards, there is significant overlap in the logging responses between different lithologies in the second member of the Lucaogou Formation in the Santanghu Basin. Machine learning methods have demonstrated powerful nonlinear capabilities that have a strong advantage in addressing complex nonlinear relationships between data. In this paper, based on felsic content, the lithologies in the study area are classified into four categories from high to low: tuff, dolomitic tuff, tuffaceous dolomite, and dolomite. We also study select logging attributes that are sensitive to lithology, such as natural gamma, acoustic travel time, neutron, and compensated density. Using machine learning methods, XGBoost, random forest, and support vector regression were selected to conduct lithology identification and favorable reservoir prediction in the study. The prediction results show that when trained with 80% of the predictors, the prediction performance of all three models has improved to varying degrees. Among them, Random Forest performed best in predicting felsic content, with an MAE of 0.11, an MSE of 0.020, an RMSE of 0.14, and a R2 of 0.43. XGBoost ranked second, with an MAE of 0.12, an MSE of 0.022, an RMSE of 0.15, and an R2 of 0.42. SVR performed the poorest. By comparing the actual core data with the predicted data, it was found that the results are relatively close to the XRD results, indicating that the prediction accuracy is high. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

24 pages, 17095 KiB  
Article
Origin of Dolomite in the Majiagou Formation (Ordovician) of the Liujiang Basin, China: Evidence from Crystal Structure, Isotope and Element Geochemistry
by Huaiyu Xue, Jianping Qian and Wentan Xu
Minerals 2025, 15(7), 717; https://doi.org/10.3390/min15070717 - 8 Jul 2025
Viewed by 320
Abstract
Research on dolomite has long been central in geoscience, yet understanding the origin of Middle Ordovician dolomite in the northeast of the North China Platform remains limited. Based on this, this study focuses on dolomite of Majiagou Formation in Liujiang Basin, and analyzes [...] Read more.
Research on dolomite has long been central in geoscience, yet understanding the origin of Middle Ordovician dolomite in the northeast of the North China Platform remains limited. Based on this, this study focuses on dolomite of Majiagou Formation in Liujiang Basin, and analyzes its genetic process. The research is based on the measured geological section and conducts high-precision analysis and testing, encompassing major and trace elements, rare earth elements, stable carbon and oxygen isotopes, strontium isotopes, crystal structure parameters, and micro-area elements of dolomite. Analysis of V/(V + Ni), Th/U, Sr/Ba, Mn/Sr, (Eu/Eu*) N, (Ce/Ce*) N, and the dolomite crystal parameters indicates that the formation of dolomite is related to evaporation. Furthermore, REE and micro-area characteristics of dolomite, as well as the significant negative deviation of δ13C and δ18O, in conjunction with 87Sr/86Sr deviating from the standard values of Ordovician seawater, suggest an origin of the dolomite in this formation with mixed-water dolomitization and burial dolomitization. A comprehensive assessment of dolomite formation suggests three distinct stages: early-stage evaporation dolomitization, subsequent mixed-water dolomitization, and later-stage burial dolomitization. The research further corroborated that dolomite formation is a complex outcome resulting from the interplay of various geological processes over space and time. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

32 pages, 21563 KiB  
Article
Diagenetic Classification—A New Concept in the Characterization of Heterogeneous Carbonate Reservoirs: Permian–Triassic Successions in the Persian Gulf
by Hamzeh Mehrabi, Saghar Sadat Ghoreyshi, Yasaman Hezarkhani and Kulthum Rostami
Minerals 2025, 15(7), 690; https://doi.org/10.3390/min15070690 - 27 Jun 2025
Viewed by 299
Abstract
Understanding diagenetic processes is fundamental to characterizing heterogeneous carbonate reservoirs, where variations in pore structures and mineralogy significantly influence reservoir quality and fluid flow behavior. This study presents an integrated diagenetic classification approach applied to the upper Dalan and Kangan formations in the [...] Read more.
Understanding diagenetic processes is fundamental to characterizing heterogeneous carbonate reservoirs, where variations in pore structures and mineralogy significantly influence reservoir quality and fluid flow behavior. This study presents an integrated diagenetic classification approach applied to the upper Dalan and Kangan formations in the Persian Gulf. Utilizing extensive core analyses, petrographic studies, scanning electron microscopy (SEM) imaging, and petrophysical data, six distinct diagenetic classes were identified based on the quantification of key processes such as dolomitization, dissolution, cementation, and compaction. The results reveal that dolomitization and dissolution enhance porosity and permeability, particularly in high-energy shoal facies, while cementation and compaction tend to reduce reservoir quality. A detailed petrographic examination and rock typing, including pore type classification and hydraulic flow unit analysis using flow zone indicator methods, allowed the subdivision of the reservoir into hydraulically meaningful units with consistent petrophysical characteristics. The application of the Stratigraphic Modified Lorenz Plot facilitated large-scale reservoir zonation, revealing the complex internal architecture and significant heterogeneity controlled by depositional environments and diagenetic overprints. This diagenetic classification framework improves predictive modeling of reservoir behavior and fluid distribution, supporting the optimization of exploitation strategies in heterogeneous carbonate systems. The approach demonstrated here offers a robust template for similar carbonate reservoirs worldwide, emphasizing the importance of integrating diagenetic quantification with multi-scale petrophysical and geological data to enhance reservoir characterization and management. Full article
(This article belongs to the Special Issue Carbonate Petrology and Geochemistry, 2nd Edition)
Show Figures

Figure 1

22 pages, 11913 KiB  
Article
Research on the Mechanical Behavior and Rockburst Risk of the Deep-Buried Roadway at the Stratigraphical Boundary of Different Lithologies
by Chaoqun Chu, Lei Xia, Shunchuan Wu, Shun Han and Guang Zhang
Appl. Sci. 2025, 15(13), 7026; https://doi.org/10.3390/app15137026 - 22 Jun 2025
Viewed by 479
Abstract
It has been found in engineering practice that the degree of rockburst risk increases when roadway excavation occurs near the stratigraphical boundary of different lithologies. This study uses the 1276 m deep-buried roadway of a lead–zinc mine in Yunnan, China, as its engineering [...] Read more.
It has been found in engineering practice that the degree of rockburst risk increases when roadway excavation occurs near the stratigraphical boundary of different lithologies. This study uses the 1276 m deep-buried roadway of a lead–zinc mine in Yunnan, China, as its engineering background. Based on a numerical analysis of this case, it investigates the mechanical behavior of surrounding rocks in different lithological formations and explores the causes of excavation-induced rockburst. Additionally, by changing the excavation strategy in a numerical simulation, the influence of the direction of roadway excavation on the degree of rockburst risk in the construction of different lithological formations is assessed. The results are summarized as follows: (1) When the tunnel passes from the C1b stratum (limestone) to the D3zg stratum (dolomite), an abnormal stress zone forms in the roof rock strata of the D3zg stratum (the lower plate of the stratum boundary). The rockburst risk level was evaluated by introducing the numerical rockburst index in this abnormal stress zone, which aligns closely with on-site rockburst investigation results. The rockburst risk is the greatest in the abnormal stress zone, which provides an external energy storage environment for the development of rockburst disasters. (2) Near the stratum boundary, the rockburst risk level when excavating from the D3zg stratum to the C1b stratum is greater than that when excavating from the C1b stratum to the D3zg stratum. The direction of tunnel excavation significantly affects the rockburst risk level during construction that crosses different lithological strata. These findings can provide a theoretical basis for the construction design of similar underground projects. Full article
Show Figures

Figure 1

18 pages, 4318 KiB  
Article
The Genesis and Hydrochemical Formation Mechanism of Karst Springs in the Central Region of Shandong Province, China
by Yuanqing Liu, Le Zhou, Xuejun Ma, Dongguang Wen, Wei Li and Zheming Shi
Water 2025, 17(12), 1805; https://doi.org/10.3390/w17121805 - 17 Jun 2025
Viewed by 346
Abstract
With the intensification of human activities, the water resource environment in the karst mountainous area of central Shandong has undergone significant changes, directly manifested in the cessation of karst spring flows and the occurrence of karst collapses within the spring basin in the [...] Read more.
With the intensification of human activities, the water resource environment in the karst mountainous area of central Shandong has undergone significant changes, directly manifested in the cessation of karst spring flows and the occurrence of karst collapses within the spring basin in the Laiwu Basin. To support the scientific development and management of karst water, this study utilizes comprehensive analysis and deuterium-oxygen isotope test data from surveys and sampling of 20 typical karst springs conducted between 2016 and 2018. By integrating mathematical statistics, correlation analysis, and ion component ratio methods, the study analyzes the genesis, hydrochemical ion component sources, and controlling factors of typical karst springs in the Laiwu Basin. The results indicate that the genesis of karst springs in the Laiwu Basin is controlled by three factors: faults, rock masses, and lithology, and can be classified into four types: water resistance controlled by lithology, by faults, by basement, and by rock mass. The karst springs are generally weakly alkaline freshwater, with the main ion components being HCO3 and Ca2+, accounting for approximately 55.02% and 71.52% of the anion and cation components, respectively; about 50% of the sampling points have a hydrochemical type of HCO3·SO4-Ca·Mg. Stable isotope (δ18O and δD) results show that atmospheric precipitation is the primary recharge source for karst springs in the Laiwu Basin. There are varying degrees of evaporative fractionation and water–rock interaction during the groundwater flow process, resulting in significantly higher deuterium excess (d-excess) in the sampling points on the southern side of the basin compared to the northern side, indicating clear differentiation. The hydrochemical composition of the karst groundwater system is predominantly governed by water–rock interactions during flow processes and anthropogenic influences. Carbonate dissolution (primarily calcite) serves as the principal source of HCO3, SO42−, Ca2+, and Mg2+, while evaporite dissolution and reverse cation exchange contribute to the slight enrichment of Ca2+ and Mg2+ alongside depletion of Na+ and K+ in spring waters. Saturation indices (SI) reveal that spring waters are saturated with respect to gypsum, aragonite, calcite, and dolomite, but undersaturated for halite. The mixing of urban domestic sewage, agricultural planting activities, and the use of manure also contributes to the formation of Cl and NO3 ions in karst springs. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

25 pages, 20771 KiB  
Article
Sedimentary and Early Diagenetic Responses to the Huaiyuan Movement During the Early–Middle Ordovician Transition in the Ordos Basin, North China
by Hao Quan, Zhou Yu, Zhanfeng Qiao, Chenqing Li, Pan Xia, Zhongtang Su, Huaguo Wen, Min Qin and Meng Ning
Geosciences 2025, 15(6), 219; https://doi.org/10.3390/geosciences15060219 - 12 Jun 2025
Viewed by 404
Abstract
The early Paleozoic Huaiyuan Movement created a major unconformity in the Ordos Basin, significantly influencing sedimentation and early diagenesis in both the overlying and underlying strata near the unconformity. However, the origins of the associated dolomite and silica near this unconformity remain poorly [...] Read more.
The early Paleozoic Huaiyuan Movement created a major unconformity in the Ordos Basin, significantly influencing sedimentation and early diagenesis in both the overlying and underlying strata near the unconformity. However, the origins of the associated dolomite and silica near this unconformity remain poorly understood. This study aims to reveal how this tectonic event controlled the Early–Middle Ordovician sedimentary environments and early diagenetic processes. The petrological and geochemical results indicate a progressive transition from a dolomitic tidal flat to an intra-platform depression, culminating in a mixed tidal flat during the Early-to-Middle Ordovician, driven by the Huaiyuan Movement. Furthermore, this movement, accompanied by intense weathering and erosion, increased the supply of marine dissolved silica (DSi) and terrestrial nutrients. Consequently, extensive tidal-edge biogenic silica accumulated, which later precipitated as siliceous-cemented dolomite during a shallow-burial stage. We propose a conceptual model of the sedimentary–early diagenetic processes in response to the Huaiyuan Movement, providing novel insights into the regional paleoenvironmental evolution across the Early–Middle Ordovician transition in the Ordos Basin. Full article
Show Figures

Figure 1

23 pages, 7669 KiB  
Article
Classification Evaluation and Genetic Analysis of Source Rocks of Lower Permian Fengcheng Formation in Hashan Area, Junggar Basin, China
by Zhongliang Sun, Zhiming Li, Kuihua Zhang, Zhenxiang Song, Hongzhou Yu, Bin Wang, Meiyuan Song and Tingting Cao
Minerals 2025, 15(6), 606; https://doi.org/10.3390/min15060606 - 4 Jun 2025
Viewed by 347
Abstract
The exploration of shale oil in the Fengcheng Formation of the Permian system in the Hashan area shows considerable promise, with breakthroughs in a number of shale oil exploration wells. This study evaluates the source rocks in the Fengcheng Formation in the Hashan [...] Read more.
The exploration of shale oil in the Fengcheng Formation of the Permian system in the Hashan area shows considerable promise, with breakthroughs in a number of shale oil exploration wells. This study evaluates the source rocks in the Fengcheng Formation in the Hashan area to determine their types, clarify the quality and hydrocarbon potentials of the different types, and analyze the main factors affecting their quality and generation potential based on lithofacies classification. The results indicate that the Fengcheng Formation in the Hashan area contains four types of lithofacies: terrigenous clastic lithofacies, dolomitic mixed lithofacies, tephra-bearing mixed lithofacies, and alkaline mineral-bearing mixed lithofacies. The tephra-bearing mixed lithofacies source rocks have the best source rock quality, followed by terrigenous clastic lithofacies and dolomitic mixed lithofacies. The quality of the source rocks is mainly controlled by their sedimentary environment (including paleoenvironment, alkaline minerals, and volcanic activity), the hydrocarbon-generating properties of the source material, and maturity. Organic matter in the dolomitic mixed lithofacies and the alkaline mineral-bearing mixed lithofacies is more concentrated in deepwater-reducing environments with medium to high salinity and arid conditions. The main biological source material is green algae (Dunaliella), which is characterized by early hydrocarbon generation and the high transformation ratio of oil, allowing for rapid hydrocarbon generation at low maturity. However, as the maturity increases, the hydrocarbon-generating potential of the source rocks decreases rapidly. Organic matter in terrigenous clastic lithofacies is more concentrated in relatively shallow water in oxygen-depleted, low-salinity, arid to semi-arid environments, with cyanobacteria being the main biological source. Cyanobacteria have the characteristics of long hydrocarbon generation periods and high hydrocarbon potential, with the peak of hydrocarbon generation occurring later than green algae (Dunaliella). Therefore, even at a relatively high maturity level, the source rocks still maintain a relatively high hydrocarbon-generating potential. Moderate volcanic activity provides favorable conditions for organic matter accumulation. Full article
(This article belongs to the Special Issue Distribution and Development of Faults and Fractures in Shales)
Show Figures

Figure 1

17 pages, 12538 KiB  
Article
Numerical Simulation of Acid Leakoff in Fracture Walls Based on an Improved Dual-Scale Continuous Model
by Rongxiang Yang, Zhiheng Wang, Weixing Hua, Donghai He, Guoying Pan and Zhaozhong Yang
Processes 2025, 13(6), 1771; https://doi.org/10.3390/pr13061771 - 4 Jun 2025
Viewed by 359
Abstract
Controlling fluid loss during acid fracturing remains challenging, as acid may partially or completely leak into reservoir pores and fractures, preventing effective flow within the formation and thereby reducing stimulation effectiveness. The acid leakoff mechanism is fundamentally distinct from that of non-reactive pad [...] Read more.
Controlling fluid loss during acid fracturing remains challenging, as acid may partially or completely leak into reservoir pores and fractures, preventing effective flow within the formation and thereby reducing stimulation effectiveness. The acid leakoff mechanism is fundamentally distinct from that of non-reactive pad fluid (fracturing fluid), with the most critical distinction manifested through wall-confined acid-etched wormholes formed during reactive flow processes, which exert a dominant influence on acid filtration behavior. To address this challenge, a modified dual-scale continuum model based on the Brinkman equation was developed. This model establishes a numerical simulation framework for acid fracturing–etching processes in dolomite reservoirs of the Xi Xiangchi Formation. The study systematically reveals acid leakoff patterns at fracture walls under the influence of operational parameters (injection rate, acid concentration, acid viscosity) and reservoir characteristics (porosity heterogeneity). For field operations, medium-viscosity acid initially enhances distal fracture communication, followed by viscosity reduction to promote non-uniform etching. Prioritizing acid concentration over injection rate optimizes fracture connectivity, while minimizing leakoff. In high-porosity reservoirs, process parameters require optimization through acid retardation and leakoff control strategies. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 70177 KiB  
Article
Geology, Structure, Geochemistry, and Origin of Iron Oxide Deposits in Dehbid, Southwest Iran
by Abdorrahman Rajabi, Reza Nozaem, Sara Momenipour, Shojaedin Niroomand, Shahrokh Rajabpour, Somaye Rezaei, Pura Alfonso, Carles Canet, Ahmad Kazemi Mehrnia, Pouria Mahmoodi, Amir Mahdavi, Mansoor Kazemirad, Omid Laghari Firouzjaei and Mohammad Amini
Minerals 2025, 15(6), 590; https://doi.org/10.3390/min15060590 - 30 May 2025
Viewed by 925
Abstract
The Dehbid region, located in the southern part of the Sanandaj–Sirjan Zone (SSZ), is a significant iron oxide mining district with over 20 iron oxide deposits (IODs) and reserves of up to 50 million tons of iron oxide ores. The region features a [...] Read more.
The Dehbid region, located in the southern part of the Sanandaj–Sirjan Zone (SSZ), is a significant iron oxide mining district with over 20 iron oxide deposits (IODs) and reserves of up to 50 million tons of iron oxide ores. The region features a NW–SE oriented ductile shear zone, parallel to the Zagros thrust zone, experienced significant deformation. Detailed structural studies indicate that the iron mineralization is primarily stratiform to stratabound and hosted in late Triassic to early Jurassic silicified dolomites and schists. These ore deposits consist of lenticular iron oxide orebodies and exhibit various structures and textures, including banded, laminated, folded, disseminated, and massive forms of magnetite and hematite. The Fe2O3 content in the mineralized layers varies from 30 to 91 wt%, whereas MnO has an average of 3.9 wt%. The trace elements are generally low, except for elevated concentrations of Cu (up to 4350 ppm) and Zn (up to 3270 ppm). Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) analysis of magnetite reveals high concentrations of Mg, Al, Si, Mn, Ti, Cu, and Zn, with significant depletion of elements such as Ga, Ge, As, and Nb. This study refutes the hypothesis of vein-like or hydrothermal genesis, providing evidence for a sedimentary origin based on the trace element geochemistry of magnetite and LA-ICP-MS geochemical data. The Dehbid banded iron ores (BIOs) are thought to have formed under geodynamic conditions similar to those of BIOs in back-arc tectonic settings. The combination of anoxic conditions, submarine hydrothermal iron fluxes, and redox fluctuations is essential for the formation of these deposits, suggesting that similar iron–manganese deposits can form during the Phanerozoic under specific geodynamic and oceanographic conditions, particularly in tectonically active back-arc environments. Full article
(This article belongs to the Special Issue Mineralogy and Geochemistry of Polymetallic Ore Deposits)
Show Figures

Figure 1

26 pages, 32475 KiB  
Article
Geochemistry and Enrichment of Rare Earth Elements in Phosphorite Successions in the Lower Cambrian, Eastern Yun’nan, South China
by Wenhua Mei, Chunfang Cai, Xinyu Ming, Zichen Wang and Lei Jiang
Minerals 2025, 15(6), 581; https://doi.org/10.3390/min15060581 - 29 May 2025
Viewed by 461
Abstract
The South China Block hosts extensive sedimentary phosphorites that offer valuable insights into both paleoenvironmental reconstruction and rare earth element (REE) resource potential. However, the mechanisms governing REE enrichment in these deposits remain poorly understood. This study investigates two distinct phosphorite layers from [...] Read more.
The South China Block hosts extensive sedimentary phosphorites that offer valuable insights into both paleoenvironmental reconstruction and rare earth element (REE) resource potential. However, the mechanisms governing REE enrichment in these deposits remain poorly understood. This study investigates two distinct phosphorite layers from the Lower Cambrian Zhujiaqing (ZJQ) Formation in the Bailongtan (BLT) area of the Yangtze Platform using integrated analyses including petrology, XRD, major and trace elements, δ13C and δ18O isotopes, and LA-ICP-MS. The lower thin-bedded phosphorite, composed of finer phosphatic grains (<300 μm), exhibits significantly higher REE concentrations (883.6 ± 160.9 ppm; n = 48) compared to the upper thick-bedded phosphorite (303.2 ± 82.7 ppm; n = 64), which is dominated by larger, reworked grains (300–600 μm). Intervening strata consist of laminated phosphate-bearing carbonates interbedded with quartz, dolomite, and pyrite. PAAS-normalized REE patterns display MREE–HREE enrichment, negative Ce anomalies (avg. 0.60 ± 0.18; n = 18), and positive Y anomalies—indicative of oxic depositional conditions. The elevated REE content in the lower layer, coupled with the lowest δ13C values (−4.59‰), suggests enrichment linked to organic matter degradation. A proposed two-stage depositional model links REE enrichment to proximity with REE-rich deep-shelf waters, underscoring the critical role of redox and depositional dynamics in phosphorite-hosted REE accumulation. Full article
Show Figures

Figure 1

Back to TopTop