Origin of Dolomite in the Majiagou Formation (Ordovician) of the Liujiang Basin, China: Evidence from Crystal Structure, Isotope and Element Geochemistry
Abstract
1. Introduction
2. Geological Setting
3. Methods
4. Results
4.1. Petrological Characteristics
4.2. Geochemical Characteristics of Elements
4.3. Characteristics of Rare Earth Elements
4.4. Isotope Geochemical Characteristics
4.5. Crystal Structure Characteristics of Dolomite
4.6. Microstructural Features
5. Discussion
5.1. Sedimentary Environment
5.2. Characteristics of Dolomitizing Fluids
5.3. Dolomitization Mechanism
6. Conclusions
- The Middle Ordovician Majiagou Formation in the Liujiang Basin, experienced three transgressive–regressive sedimentation stages, primarily in a distal coastal environment. During regression, terrigenous clastics influenced the area, increasing seawater salinity. The environment was predominantly weakly oxygenated to oxidized, with a general decline in sea level throughout sedimentation. The changes in sedimentary environment provided key geological conditions such as shallow water, oxidation, and high salinity for penecontemporaneous evaporative dolomitization.
- Geochemical and isotopic analyses reveal that the dolomitizing fluids of the Majiagou Formation are closely linked to meteoric freshwater. The interaction of meteoric freshwater with seawater creates a mixed fluid system, establishing the necessary material and physicochemical conditions for mixed-water dolomitization.
- The dolomite in the Majiagou Formation has a complex genesis, shaped by the interplay of multiple geological processes over time. Three distinct dolomitization stages can be identified: initially dominated by evaporative dolomitization, transitioning to mixing dolomitization during the diagenetic period, and eventually evolving into burial dolomitization at the sedimentary burial stage. These successive dolomitization events, each with its own characteristics, have collectively contributed to the unique mineralogical and petrological properties of the dolomite in this formation.
- The findings of this study provide valuable insights into the formation of multi-stage dolomite. Subsequent research endeavors may integrate isotope dating and cathodoluminescence techniques to investigate crucial factors like fluid migration and diagenetic conditions that influence dolomite formation, and further unveil the origin of dolomite.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jinghwa, H.S.; Siegenthaler, C. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem. Sedimentology 2010, 12, 11–25. [Google Scholar]
- Roberts, J.A. The problem with dolomite. Nat. Geosci. 2024, 17, 716. [Google Scholar] [CrossRef]
- Machel, H.G. Concepts and models of dolomitization: A critical reappraisal. Geol. Soc. Spec. Publ. 2004, 235, 7–63. [Google Scholar] [CrossRef]
- Zhao, W.Z.; Shen, A.J.; Qiao, Z.F.; Pan, L.Y.; Hu, A.P.; Zhang, J. Genetic types and distinguished characteristics of dolomite and the origin of dolomite reservoirs. Pet. Explor. Dev. 2018, 45, 983–997. [Google Scholar] [CrossRef]
- Huang, S.G.; Hou, M.C.; Chen, A.Q.; Xu, S.L.; Zhang, B.J.; Deng, Y.W.; Yu, Y. Fluid properties and genesis of dolomites in the devonian Guanwushan Formation of Upper Yangtze Platform, SW China. Minerals 2022, 12, 317. [Google Scholar] [CrossRef]
- Machel, H.G.; Mountjoy, E.W. Chemistry and environments of dolomitization-a reappraisal. Earth Sci. Rev. 1986, 23, 175–222. [Google Scholar] [CrossRef]
- Yu, Z.; Luo, X.R.; Wei, L.B.; Shi, P.P.; Yang, N.; Wu, D.X. Genetic mechanism and development model of dolostone reservoirs of the second member of the Ordovician Majiagou Formation in the central-eastern Ordos Basin. Acta Geol. Sin. 2024, 98, 1–18. [Google Scholar]
- Wu, D.X.; Yu, J.; Zhou, J.G.; Wu, X.N.; Yu, Z.; Ding, Z.C.; Wang, S.Y.; Li, W.L.; Cai, J. Sedimentary characteristics and reservoir controlling effect of the Member 4 of Ordovician Majiagou Formation in Ordos Basin. J. Palaeogeogr. (Chin. Ed.) 2021, 23, 1140–1157. [Google Scholar]
- Liu, G.Q.; Su, Z.T.; Hao, Z.L.; Wei, L.B.; Ren, J.F.; Liao, H.H.; Wu, H.W. Microfacies and depositional model of a carbonate-evaporite symbiotic system of the Majiagou Formation in Ordos Basin. J. Palaeogeogr. (Chin. Ed.) 2024, 26, 279–295. [Google Scholar]
- Su, Z.T.; Chen, H.D.; Xu, F.Y.; Wei, L.B.; Li, J. Geochemistry and dolomitization mechanism of Majiagou dolomites in Ordovician, Ordos, China. Acta Petrol. Sin. 2011, 27, 2230–2238. [Google Scholar]
- Feng, Z.Z.; Jin, Z.K. Types and origin of dolostones in the Lower Palaeozoic of the North China Platform. Sediment. Geol. 1994, 93, 279–290. [Google Scholar]
- Xiang, P.F. Sedimentary Microfacies and Dolomitization Mechanism of Ordovician Carbonates in the North-Central North China Platform. Ph.D. Thesis, China University of Petroleum, Qingdao, China, 2022. [Google Scholar]
- Feng, S.H.; Li, H.; Jiang, J.J.; Lei, Y.; Niu, Y.Z.; Yang, R.; Liu, Y.J. The multiple dolomitizations in Ordovician Majiagou carbonate rocks in Liujiang Basin, Qinhuangdao area, North China. Acta Sedimentol. Sin. 2017, 35, 664–680. [Google Scholar]
- Compton, J.S.; Harris, C.; Thompson, S. Pleistocene dolomite from the Namibian Shelf: High 87Sr/86Sr and δ18O values indicate an evaporative, mixed-water origin. J. Sediment. Res. 2001, 71, 800–808. [Google Scholar] [CrossRef]
- Rameil, N. Early diagenetic dolomitization and dedolomitization of Late Jurassic and earliest Cretaceous platform carbonates: A case study from the Jura Mountains (NW Switzerland, E France). Sediment. Geol. 2008, 212, 70–85. [Google Scholar] [CrossRef]
- Veizer, J.; Demovic, R. Strontium as a tool in facies analysis. J. Sediment. Res. 1974, 44, 93–115. [Google Scholar]
- Calvo, J.P.; Jones, B.F.; Bustillo, M.; Fort, R.; Alonso Zarza, A.M.; Kendall, C. Sedimentology and geochemistry of carbonates from lacustrine sequences in the Madrid Basin, central Spain. Chem. Geol. 1995, 123, 173–191. [Google Scholar] [CrossRef]
- Vincent, B.; Rambeau, C.; Emmanuel, L.; Loreau, J.P. Sedimentology and trace element geochemistry of shallow-marine carbonates: An approach to paleoenvironmental analysis along the Pagny-sur-Meuse Section (Upper Jurassic, France). Facies 2006, 52, 69–84. [Google Scholar] [CrossRef]
- Chen, R.K. Application of Stable Oxygen and Carbon isotope in the research of carbonate diagenetic environment. Acta Sedimentol. Sin. 1994, 4, 11–21. [Google Scholar]
- Huang, S.J.; Huang, Y.; Lan, Y.F.; Huang, K.K. A comparative study on strontium isotope composition of dolomites and their coeval seawater in the Late Permian-Early Triassic, NE Sichuan Basin. Acta Petrol. Sin. 2011, 27, 3831–3842. [Google Scholar]
- Keith, M.L.; Weber, J.N. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochim. Cosmochim. Acta 1964, 28, 1787–1816. [Google Scholar] [CrossRef]
- Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.L.; Buhl, D.; Bruhn, F.; Carden, A.F.; Diener, A.; Ebneth, S.; Godderis, Y.; et al. 87Sr/86 Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 1999, 161, 59–88. [Google Scholar] [CrossRef]
- Liu, J.Y.; Wang, Z.Y. Crystal structure characterization and X-ray study of dolomite. Miner. Rocks 1988, 8, 28–33. [Google Scholar]
- Zhong, Q.Q.; Huang, S.J.; Zhou, M.L.; Tong, H.P.; Huang, K.K.; Zhang, X.H. Controlling factors of order degree of dolomite in carbonate rocks: A case study from Lower Paleozoic in Tahe Oilfield and Triassic in northeastern Sichuan Basin. Lithol. Reservoirs 2009, 21, 50–55. [Google Scholar]
- Xiao, K.; Shi, Z.Q.; Wu, B.; Li, Z.Y.; Duan, X. Electron microprobe analysis of the Permian Sinian Dengying Formation in well Lin-1, southeastern Sichuan: Element concentration changing during the hydrothermal dolomitization. Bull. Mineral. Petrol. Geochem. 2017, 36, 289–298. [Google Scholar]
- Wang, Q. North China Craton and global tectonics. Geol. Bull. China 2011, 30, 1–18. [Google Scholar]
- Meng, X.H.; Ge, M.; Tucker, M.E. Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sediment. Geol. 1997, 114, 189–222. [Google Scholar] [CrossRef]
- Scott, M.; Mclennan, B.J.; Fryer, B.J.; Young, G.M. The geochemistry of the carbonate-rich Espanola Formation (Huronian) with emphasis on the rare earth elements. Can. J. Earth Sci. 1979, 16, 230–239. [Google Scholar]
- Esmat, A.A. Composition and origin of the dolostones of Um Bogma Formation, Lower Carboniferous, West Central Sinai, Egypt. Carbonates Evaporites 2014, 29, 239–250. [Google Scholar]
- Marquillas, R.; Sabino, I.; Sial, A.N.; Papa, C.; Ferreira, V.; Matthews, S. Carbon and oxygen isotopes of Maastrichtian–Danian shallow marine carbonates: Yacoraite Formation, northwestern Argentina. J. S. Am. Earth Sci. 2007, 23, 304–320. [Google Scholar] [CrossRef]
- Chang, H.J.; Chu, X.L.; Feng, L.J.; Huang, J.; Zhang, Q.R. Redox sensitive trace elements as paleoenvironments proxies. Geol. Rev. 2009, 55, 91–99. [Google Scholar]
- Wang, J.K.; Li, T.G.; Xiong, Z.F.; Chang, F.M.; Qin, B.B.; Wang, L.M.; Jia, Q. Sedimentary geochemical characteristics of the redox-sensitive elements in Ross Sea, Antarctica: Implications for paleoceanography. Mar. Geol. Quatern. Geol. 2018, 38, 112–121. [Google Scholar]
- Hatch, J.R.; Leventhal, J.S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the dennis limestone, Wabaunsee County, Kansas, U.S.A. Chem. Geol. 1992, 99, 65–82. [Google Scholar] [CrossRef]
- Wignall, P.B.; Twitchett, R.J. Oceanic anoxia and the End Permian mass extinction. Science 1996, 272, 1155–1158. [Google Scholar] [CrossRef]
- Deng, H.W.; Qian, K. Sedimentary Geochemistry and Environmental Analysis, 1st ed.; Gansu Science and Technology Press: Lanzhou, China, 1993; pp. 28–29. [Google Scholar]
- Guo, Z.G.; Yang, Z.S.; Fan, D.J.; Li, B.L. The geochemical characteristics of Ca, Sr, Ba in the surface sediments of the middle continental shelf mud area and its ambient areas in the East China Sea. J. Ocean Univ. Qingdao 1998, 28, 481–488. [Google Scholar]
- Guo, X.Q.; Li, H.B.; Wei, R.Z.; Dong, A.G.; Du, Y.W.; Yang, J.C. Characteristics of elemental geochemistry of the Cambrian carbonate rocks and their palaeoenvironmental implication in western margin of Qinshui Basin, Shanxi Province. J. Palaeogeogr. (Chin. Ed.) 2020, 22, 349–366. [Google Scholar]
- Tian, Y.; Zhao, X.M.; Wang, L.Z.; Tu, B.; Xie, G.G.; Zeng, B.F. Geochemical Characteristics and its paleoenvironmental implication of Permian Qixia Formation in Shizhu, Chongqing. Acta Sedimentol. Sin. 2014, 32, 1035–1045. [Google Scholar]
- Hou, E.G.; Gao, J.H.; Wang, X.L.; Wang, G.H.; Hu, X.R.; Ma, Z.C. Geochemical characteristics and environmental significance of the Upper Triassic Riganpeicuo Formation in Gaize, Tibet. Bull. Mineral. Petrol. Geochem. 2015, 34, 556–563. [Google Scholar]
- Shields, G.A.; Webb, G.E. Has the REE composition of seawater changed over geological time? Chem. Geol. 2004, 204, 103–107. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Wei, W.; Santosh, M.; Hu, J.; Wei, H.T.; Yang, J.; Liu, S.; Zhang, G.L.; Yang, D.D.; Li, S.Z. A review of retrieving pristine rare earth element signatures from carbonates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 586, 110765. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Su-pergroup, South Africa. Precambrian Res. 1996, 79, 37–55. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Greig, A.; Collerson, K.D.; Kamber, B.S. Rare Earth Element and Yttrium variability in south east Queensland Waterways. Aquat. Geochem. 2006, 12, 39–72. [Google Scholar] [CrossRef]
- Mclennan, S.M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Rev. Mineral. Geochem. 1989, 21, 169–200. [Google Scholar]
- Liang, J.T.; Karem, A.; Li, K.Y.; Liu, S.B.; Li, L.P.; Zhou, G.; Qiu, Y.C.; Li, W.Z.; He, Y.; Wen, H.G. Petrographic and geochemical characteristics of the Middle-Upper Cambrian Xixiangchi dolomites in the central Sichuan Basin, southwest China: Implications for dolomite origins and dolomitization mechanisms. Mar. Pet. Geol. 2023, 586, 110765. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Li, S.Z.; Li, D.; Guo, L.L.; Dai, L.M.; Tao, J.L. Rare Earth Element geochemistry of carbonate and its paleoenvironmental implications. Geotect. Metallogen. 2019, 43, 141–167. [Google Scholar]
- Yin, H.S.; Lin, J.H.; Zhao, X.X.; Zhou, K.K.; Li, J.P.; Huang, H.G. Geochemistry of Rare Earth Elements and origin of positive Europium anomaly in Miocene-Oligocene lacustrine cabonates from Tuotuohe Basin of Tibetan Plateau. Acta Sedimentol. Sin. 2008, 26, 1–10. [Google Scholar]
- Li, J.; Sang, S.X.; Lin, H.X.; Chen, S.Y.; Miao, Y.; Yang, Y. REE characteristics and its geological significance of the Permo-Carboniferous in Bohawian basin. Acta Sedimentol. Sin. 2007, 25, 589–596. [Google Scholar]
- Huang, S.J.; Huang, K.K.; Lü, J.; Lan, Y.F. Carbon isotopic composition of Early Triassic marine carbonates, eastern Sichuan Basin, China. Sci. China Earth Sci. 2012, 42, 1508–1522. [Google Scholar] [CrossRef]
- Li, X.D.; Wei, Z.Y.; He, Y.B.; Zhong, J.W. Strontium isotope and restricted marine basin analysis from thinbedded limestone at the top of Xujiajuan Formation, Xiangshan Group in Ningxia, China. Acta Geol. Sin. 2024, 98, 1229–1243. [Google Scholar]
- Prather, B.E.; Goldstein, R.H.; Kopaska-Merkel, D.C.; Heydari, E.; Gill, K.; Minzoni, M. Dolomitization of reservoir rocks in the Smackover Formation, southeastern Gulf Coast, U.S.A. Earth-Sci. Rev. 2023, 244, 104512. [Google Scholar] [CrossRef]
- Wang, S.Q.; Zhao, L.; Chen, X.B.; Fan, Z.F.; He, L. Geochemical characteristics and genetic model of dolomite reservoirs in the eastern margin of the Pre-Caspian Basin. Petrol. Sci. 2012, 9, 161–169. [Google Scholar] [CrossRef]
- Huang, S.J.; Liu, S.G.; Li, G.R.; Zhang, M.; Wu, W.H. Strontium isotope composition of marine carbonate and the influence of diagenetic fluid on it in Ordovician. J. Chengdu Univ. Technol. Sci. Technol. Ed. 2004, 31, 1–7. [Google Scholar]
- Li, Y.S.; Liu, G.D.; Song, Z.Z.; Sun, M.L.; Tian, X.W.; Yang, D.L.; Wang, Y.L.; Zhu, L.Q.; You, F.L. Constraints of C-O-Sr isotope and elemental geochemistry on the origin of dolomite of the deeply buried Ediacaran sedimentary succession, central Sichuan Basin (SW China). J. Asian Earth Sci. 2023, 255, 105780. [Google Scholar] [CrossRef]
- Peryt, T.M. The origin of Upper Permian basinal dolomites in SW Poland: Impact of ascending brines. Terra Nova 2021, 33, 483–493. [Google Scholar] [CrossRef]
- Zhang, J.; Shou, J.F.; Zhang, T.F.; Pan, L.Y.; Zhou, J.G. New approach on the study of dolomite origin: The crystal structure analysis of dolomite. Acta Sedimentol. Sin. 2014, 32, 550–559. [Google Scholar]
- Huang, S.J. The degree of order and forming conditions of the dolomite of the third and fourth members of lower Triassic Jialingjiang Formation in Longmenxia, Quxian, Sichuan. Miner. Rocks 1985, 5, 57–62. [Google Scholar]
- Manche, C.J.; Kaczmarek, S.E. A global study of dolomite stoichiometry and cation ordering through the Phanerozoic. J. Sediment. Res. 2021, 91, 520–546. [Google Scholar] [CrossRef]
- Warren, J. Dolomite: Occurrence, evolution and economically important associations. Earth-Sci. Rev. 2000, 52, 1–81. [Google Scholar] [CrossRef]
- Zheng, J.Z.; Wang, H.; Shen, A.J.; Luo, X.Y.; Zhao, C.; Kun, D. Genesis of dolomite reservoir in Ediacaran Chigbrak Formation of Tarim basin, NW China: Evidence from U–Pb Dating, isotope and element Geochemistry. Minerals 2023, 13, 725. [Google Scholar] [CrossRef]
- Zheng, J.F.; Shen, A.J.; Liu, Y.F.; Chen, Y.Q. Multi-parameter comprehensive identification of the genesis of Lower Paleozoic dolomite in Tarim basin, China. Acta Petrol. Sin. 2012, 33, 145–153. [Google Scholar]
- Krmac, M.Z.; Akdag, K. Origin of dolomite in the Late Cretaceous Paleocene limestone turbidites, eastern Pontides, Turkey. Sediment. Geol. 2005, 181, 39–57. [Google Scholar] [CrossRef]
- Zhao, G.W. Middle-Late Ordovician Sea-Level Changes in the Bachu Area, Tarim Basin, Xinjiang: Carbon, Oxygen and Strontium Isotope Records. Ph.D. Thesis, Jilin University, Changchun, China, 2013. [Google Scholar]
- Banner, J.L.; Hanson, G.N.; Meyers, W.J. Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian); implications for REE mobility during carbonate diagenesis. J. Sediment. Res. 1988, 58, 415–432. [Google Scholar]
- Tribble, J.S.; Arvidson, R.S.; Lane III, M.; Mackenzie, F.T. Crystal chemistry, and thermodynamic and kinetic properties of calcite, dolomite, apatite, and biogenic silica: Applications to petrologic problems. Sediment. Geol. 1995, 95, 11–37. [Google Scholar] [CrossRef]
Sample | Al2O3 | SiO2 | CaO | K2O | TFe2O3 | MgO | MnO | Na2O | P2O5 | TiO2 | FeO |
B1 | 0.41 | 1.42 | 54.14 | 0.09 | 0.2 | 1.15 | 0.01 | 0.05 | 0 | 0.02 | 0.077 |
B2 | 1.16 | 7.58 | 33.17 | 0.45 | 1.03 | 14.28 | 0.01 | 0.12 | 0.02 | 0.04 | 0.38 |
B3 | 0.46 | 3.94 | 52.68 | 0.14 | 0.25 | 0.99 | 0.004 | 0.01 | 0.01 | 0.02 | 0.12 |
B4 | 0.75 | 3.67 | 45.78 | 0.22 | 0.47 | 6.57 | 0.01 | 0.0003 | 0.01 | 0.001 | 0.27 |
B5 | 1.22 | 4.26 | 48.42 | 0.01 | 0.77 | 4.46 | 0.01 | 0.03 | 0.03 | 0.03 | 0.41 |
B6 | 2.26 | 10.59 | 38.16 | 0.82 | 0.9 | 8.56 | 0.01 | 0.05 | 0.03 | 0.07 | 0.36 |
B7 | 1.11 | 9.65 | 27.97 | 0.42 | 1.7 | 17.95 | 0.02 | 0.04 | 0.05 | 0.03 | 0.51 |
B8 | 1.78 | 17.68 | 28.41 | 0.58 | 1.64 | 13.43 | 0.02 | 0.05 | 0.05 | 0.08 | 0.51 |
B9 | 1.19 | 10.19 | 30.42 | 0.41 | 0.96 | 16.11 | 0.01 | 0.03 | 0.04 | 0.04 | 0.46 |
B10 | 0.85 | 8.86 | 28.03 | 0.21 | 0.73 | 18.86 | 0.02 | 0.1 | 0.03 | 0.01 | 0.36 |
Sample | Ti | V | Mn | Ni | Sr | Ba | Th | U | |||
B1 | 97 | 1.28 | 30.41 | 7.06 | 256.61 | 11.4 | 0.48 | 0.19 | |||
B2 | 446.04 | 5.59 | 99.11 | 11.53 | 184.59 | 12.74 | 1.45 | 0.45 | |||
B3 | 127.01 | 1.96 | 35.75 | 9.71 | 259.12 | 8.96 | 0.49 | 0.51 | |||
B4 | 197.12 | 3.44 | 60.35 | 17.75 | 188.52 | 19.94 | 0.62 | 0.61 | |||
B5 | 392.22 | 4.44 | 104.43 | 11.64 | 228.84 | 36.82 | 0.97 | 0.63 | |||
B6 | 574.8 | 8.65 | 88.56 | 6.55 | 157.74 | 25.92 | 1.67 | 0.51 | |||
B7 | 660.95 | 10.09 | 179.08 | 8.57 | 130.06 | 25.52 | 1.91 | 0.66 | |||
B8 | 402.92 | 5.25 | 105.58 | 10.8 | 133.45 | 12.93 | 1.08 | 0.44 | |||
B9 | 414.91 | 5.72 | 114.63 | 11.02 | 140.7 | 12.86 | 1.15 | 0.46 | |||
B10 | 269.78 | 5.21 | 155.07 | 6.6 | 120.32 | 17.73 | 0.76 | 0.72 |
Sample | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Y |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B1 | 2.31 | 4.35 | 0.51 | 2.05 | 0.35 | 0.05 | 0.31 | 0.05 | 0.25 | 0.04 | 0.12 | 0.02 | 0.13 | 0.02 | 1.16 |
B2 | 6.85 | 12.7 | 1.6 | 5.84 | 1.18 | 0.16 | 1.08 | 0.17 | 0.9 | 0.15 | 0.49 | 0.08 | 0.47 | 0.07 | 4.37 |
B3 | 2.35 | 4.26 | 0.47 | 1.92 | 0.33 | 0.05 | 0.31 | 0.04 | 0.22 | 0.04 | 0.12 | 0.02 | 0.13 | 0.02 | 1.17 |
B4 | 2.53 | 4.65 | 0.54 | 2.2 | 0.4 | 0.06 | 0.39 | 0.06 | 0.32 | 0.05 | 0.17 | 0.03 | 0.16 | 0.02 | 1.55 |
B5 | 4.00 | 7.38 | 0.88 | 3.23 | 0.62 | 0.11 | 0.53 | 0.08 | 0.4 | 0.07 | 0.22 | 0.03 | 0.21 | 0.03 | 1.93 |
B6 | 5.35 | 8.86 | 1.2 | 4.68 | 0.94 | 0.14 | 0.91 | 0.14 | 0.76 | 0.13 | 0.41 | 0.06 | 0.42 | 0.06 | 4.24 |
B7 | 5.72 | 9.34 | 1.41 | 5.67 | 1.16 | 0.17 | 1.06 | 0.17 | 0.92 | 0.16 | 0.5 | 0.08 | 0.51 | 0.08 | 5.1 |
B8 | 4.36 | 8.2 | 1.04 | 4.06 | 0.84 | 0.13 | 0.79 | 0.12 | 0.64 | 0.11 | 0.33 | 0.05 | 0.36 | 0.05 | 3.39 |
B9 | 4.48 | 8.17 | 1.08 | 4.29 | 0.87 | 0.14 | 0.8 | 0.13 | 0.68 | 0.12 | 0.33 | 0.06 | 0.39 | 0.05 | 3.62 |
B10 | 2.96 | 6.09 | 0.74 | 3.01 | 0.62 | 0.11 | 0.62 | 0.09 | 0.51 | 0.08 | 0.25 | 0.04 | 0.25 | 0.03 | 2.81 |
Sample | δ13C ‰ (VPDB) | δ18O ‰ (VPDB) | 87Sr/86Sr | Z | Order Degree | Ca (Mol, %) | a0 (Å) | c0 (Å) |
---|---|---|---|---|---|---|---|---|
B1 | −2.1 | −12.5 | 0.709264 | 116.774 | 0.59 | 52.89 | 4.812 | 16.02 |
B2 | −2.1 | −7.1 | 0.709211 | 119.4634 | 0.38 | 55.28 | 4.815 | 16.119 |
B3 | −3.5 | −16.8 | 0.709373 | 111.7656 | 0.34 | 53.91 | 4.808 | 16.02 |
B4 | −3.6 | −13.7 | 0.709072 | 113.1046 | 0.59 | 53.57 | 4.811 | 16.047 |
B5 | −5.6 | −17.3 | 0.709501 | 107.2158 | ||||
B6 | −2.1 | −9.7 | 0.709457 | 118.1686 | 0.41 | 53.91 | 4.812 | 16.02 |
B7 | −2 | −7.3 | 0.709591 | 119.5686 | 0.61 | 51.52 | 4.805 | 16.022 |
B8 | −2.1 | −8 | 0.709567 | 119.0152 | 0.46 | 53.57 | 4.803 | 15.984 |
B9 | −2 | −6.8 | 0.709313 | 119.8176 | 0.4 | 53.57 | 4.805 | 16.022 |
B10 | −6.4 | −7.1 | 0.708946 | 110.657 | 0.61 | 50.83 | 4.812 | 16.02 |
Photo Number | Marked Spot | Dot Number | CaO | MgO |
---|---|---|---|---|
(a) | The edge of dolomite | 1 | 39.35 | 19.34 |
2 | 35.61 | 21.34 | ||
3 | 36.24 | 21.94 | ||
4 | 36.39 | 20.14 | ||
5 | 36.58 | 20.98 | ||
6 | 42.30 | 14.49 | ||
7 | 34.14 | 21.79 | ||
8 | 37.28 | 21.19 | ||
9 | 36.8 | 19.75 | ||
The inside of dolomite | 10 | 37.86 | 21.45 | |
11 | 38.03 | 19.42 | ||
12 | 35.06 | 21.82 | ||
13 | 36.20 | 20.21 | ||
14 | 34.25 | 21.93 | ||
15 | 37.31 | 19.87 | ||
16 | 35.95 | 20.86 | ||
17 | 35.77 | 21.43 | ||
18 | 34.60 | 20.78 | ||
(b) | The edge of dolomite | 1 | 36.42 | 20.12 |
2 | 37.51 | 19.72 | ||
3 | 35.19 | 18.61 | ||
4 | 38.11 | 18.82 | ||
5 | 37.50 | 19.69 | ||
6 | 37.59 | 19.16 | ||
The inside of dolomite | 7 | 36.12 | 19.10 | |
8 | 36.08 | 19.27 | ||
9 | 35.41 | 19.15 | ||
10 | 36.11 | 19.16 | ||
(c) | The edge of dolomite | 1 | 63.51 | 0.75 |
2 | 62.80 | 0.98 | ||
3 | 36.06 | 18.86 | ||
The inside of dolomite | 4 | 35.74 | 18.88 | |
5 | 35.28 | 19.23 | ||
(d) | The edge of dolomite | 1 | 56.35 | 2.36 |
2 | 58.74 | 0.82 | ||
3 | 58.00 | 1.04 | ||
4 | 59.59 | 1.37 | ||
5 | 36.36 | 18.85 | ||
The inside of dolomite | 6 | 34.98 | 19.44 | |
7 | 36.25 | 19.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, H.; Qian, J.; Xu, W. Origin of Dolomite in the Majiagou Formation (Ordovician) of the Liujiang Basin, China: Evidence from Crystal Structure, Isotope and Element Geochemistry. Minerals 2025, 15, 717. https://doi.org/10.3390/min15070717
Xue H, Qian J, Xu W. Origin of Dolomite in the Majiagou Formation (Ordovician) of the Liujiang Basin, China: Evidence from Crystal Structure, Isotope and Element Geochemistry. Minerals. 2025; 15(7):717. https://doi.org/10.3390/min15070717
Chicago/Turabian StyleXue, Huaiyu, Jianping Qian, and Wentan Xu. 2025. "Origin of Dolomite in the Majiagou Formation (Ordovician) of the Liujiang Basin, China: Evidence from Crystal Structure, Isotope and Element Geochemistry" Minerals 15, no. 7: 717. https://doi.org/10.3390/min15070717
APA StyleXue, H., Qian, J., & Xu, W. (2025). Origin of Dolomite in the Majiagou Formation (Ordovician) of the Liujiang Basin, China: Evidence from Crystal Structure, Isotope and Element Geochemistry. Minerals, 15(7), 717. https://doi.org/10.3390/min15070717