Assessment of Tailings Contamination Potential in One of the Most Important Gold Mining Districts of Ecuador
Abstract
1. Introduction
2. Study Area
3. Geological Background
4. Materials and Methods
4.1. Sampling Collection
4.2. Characterization of Tailings Samples
4.2.1. Physical Characterization
4.2.2. Chemical and Mineralogical Characterization
4.3. Assessment of the Contamination Potential of Mining Tailings
4.3.1. Index of Contamination (IC)
4.3.2. Leaching Test
4.3.3. Acid-Base Accounting (ABA) Test
5. Results and Discussion
5.1. Physicochemical Characterization
5.2. Mineralogical Characterization
5.3. Assessment of the Potential Contamination of Mining Tailings
5.3.1. Contamination Index
5.3.2. Leaching Test
5.3.3. Acid-Base Accounting (ABA) Test
6. Management Recommendations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yahyaoui, A.; Ben Amor, R. Environmental Contamination and Health Risk Assessment of Heavy Metals in the Stream Sediments of Oued Kasseb (Northerwest of Tunisia) in the Vicinity of Abandoned Pb–Zn Mine. Water Air Soil Pollut. 2024, 235, 230. [Google Scholar] [CrossRef]
- González-Valoys, A.C.; Esbrí, J.M.; Campos, J.A.; Arrocha, J.; García-Noguero, E.M.; Monteza-Destro, T.; Martínez, E.; Jiménez-Ballesta, R.; Gutiérrez, E.; Vargas-Lombardo, M.; et al. Ecological and Health Risk Assessments of an Abandoned Gold Mine (Remance, Panama): Complex Scenarios Need a Combination of Indices. Int. J. Environ. Res. Public Health 2021, 18, 9369. [Google Scholar] [CrossRef] [PubMed]
- López, J.E.; Marín, J.F.; Saldarriaga, J.F. Assessing Pollution Degree and Human Health Risks from Hazardous Element Distribution in Soils near Gold Mines in a Colombian Andean Region: Correlation with Phytotoxicity Biomarkers. Chemosphere 2024, 361, 142471. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xia, T.; Zhang, L.; Chen, Z.; Zhang, H.; Jia, X.; Jia, L.; Zhu, X.; Li, G. Mercury Pollution Risks of Agricultural Soils and Crops in Mercury Mining Areas in Guizhou Province, China: Effects of Large Mercury Slag Piles. Environ. Geochem. Health 2024, 46, 53. [Google Scholar] [CrossRef] [PubMed]
- Lemos, M.; Valente, T.; Reis, P.M.; Fonseca, R.; Delbem, I.; Ventura, J.; Magalhães, M. Mineralogical and Geochemical Characterization of Gold Mining Tailings and Their Potential to Generate Acid Mine Drainage (Minas Gerais, Brazil). Minerals 2020, 11, 39. [Google Scholar] [CrossRef]
- Corzo, A.; Gamboa, N. Environmental Impact of Mining Liabilities in Water Resources of Parac Micro-Watershed, San Mateo Huanchor District, Peru. Environ. Dev. Sustain. 2018, 20, 939–961. [Google Scholar] [CrossRef]
- Fernández-Macías, J.C.; González-Mille, D.J.; García-Arreola, M.E.; Cruz-Santiago, O.; Rivero-Pérez, N.E.; Pérez-Vázquez, F.; Ilizaliturri-Hernández, C.A. Integrated Probabilistic Risk Assessment in Sites Contaminated with Arsenic and Lead by Long-Term Mining Liabilities in San Luis Potosi, Mexico. Ecotoxicol. Environ. Saf. 2020, 197, 110568. [Google Scholar] [CrossRef] [PubMed]
- Rouhani, A.; Azimzadeh, H.; Sotoudeh, A.; Ehdaei, A. Health Risk Assessment of Heavy Metals in Archaeological Soils of Tappe Rivi Impacted by Ancient Anthropogenic Activity. Chem. Afr. 2022, 5, 1751–1764. [Google Scholar] [CrossRef]
- Campoverde, J.; Guaya, D. From Waste to Added-Value Product: Synthesis of Highly Crystalline LTA Zeolite from Ore Mining Tailings. Nanomaterials 2023, 13, 1295. [Google Scholar] [CrossRef] [PubMed]
- Cruzado-Tafur, E.; Bierla, K.; Torró, L.; Szpunar, J. Accumulation of As, Ag, Cd, Cu, Pb, and Zn by Native Plants Growing in Soils Contaminated by Mining Environmental Liabilities in the Peruvian Andes. Plants 2021, 10, 241. [Google Scholar] [CrossRef] [PubMed]
- Elwaleed, A.; Jeong, H.; Abdelbagi, A.H.; Quynh, N.T.; Agusa, T.; Ishibashi, Y.; Arizono, K. Human Health Risk Assessment from Mercury-Contaminated Soil and Water in Abu Hamad Mining Market, Sudan. Toxics 2024, 12, 112. [Google Scholar] [CrossRef] [PubMed]
- Kiwingim, W.; Gormley, A.; Douglas, R.; Arnscheidt, J. Environmental Compliance Assessment for the Desulfurization of Sulfide Mine Waste Tailings: A Case Study of Ok Tedi Mine, Papua New Guinea. Environ. Chall. 2024, 15, 100875. [Google Scholar] [CrossRef]
- Mudd, G.M.; Roche, C.; Northey, S.A.; Jowitt, S.M.; Gamato, G. Mining in Papua New Guinea: A Complex Story of Trends, Impacts and Governance. Sci. Total Environ. 2020, 741, 140375. [Google Scholar] [CrossRef] [PubMed]
- Ministerio del Ambiente del Ecuador. Texto Unificado de Legislación Secundaria Del Ministerio Del Ambiente (TULSMA), Libro VI: De La Calidad Ambiental; Ministerio del Ambiente del Ecuador: Quito, Ecuador, 2015.
- Escobar-Segovia, K.; Jiménez-Oyola, S.; Garcés-León, D.; Paz-Barzola, D.; Navarrete, E.; Romero-Crespo, P.; Salgado, B. Heavy Metals in Rivers Affected by Mining Activities in Ecuador: Pollution and Human Health Implications; WIT Transactions on Ecology and the Environment: Southampton, UK, 2021; pp. 61–72. [Google Scholar]
- González-Vásquez, R.; García-Martínez, M.J.; Bolonio, D. Investigation of Gold Recovery and Mercury Losses in Whole Ore Amalgamation: Artisanal Gold Mining in Nambija, Ecuador. Minerals 2023, 13, 1396. [Google Scholar] [CrossRef]
- Salgado-Almeida, B.; Briones-Escalante, A.; Falquez-Torres, D.; Filián-Haz, K.; Guzmán-Martínez, F.; Escobar-Segovia, K.; Peña-Carpio, E.; Jiménez-Oyola, S. Assessment of Environmental Pollution and Risks Associated with Tailing Dams in a Historical Gold Mining Area of Ecuador. Resources 2024, 13, 105. [Google Scholar] [CrossRef]
- Salgado-Almeida, B.; Falquez-Torres, D.A.; Romero-Crespo, P.L.; Valverde-Armas, P.E.; Guzmán-Martínez, F.; Jiménez-Oyola, S. Risk Assessment of Mining Environmental Liabilities for Their Categorization and Prioritization in Gold-Mining Areas of Ecuador. Sustainability 2022, 14, 6089. [Google Scholar] [CrossRef]
- Peña Carpio, E.; Menendez-Aguado, J.M. Environmental Study of Gold Mining Tailings in the Ponce Enriquez Mining Area (Ecuador). Dyna 2016, 83, 237–245. [Google Scholar] [CrossRef]
- Carling, G.T.; Diaz, X.; Ponce, M.; Perez, L.; Nasimba, L.; Pazmino, E.; Rudd, A.; Merugu, S.; Fernandez, D.P.; Gale, B.K.; et al. Particulate and Dissolved Trace Element Concentrations in Three Southern Ecuador Rivers Impacted by Artisanal Gold Mining. Water Air Soil Pollut. 2013, 224, 1415. [Google Scholar] [CrossRef]
- Hrubá, F.; Strömberg, U.; Černá, M.; Chen, C.; Harari, F.; Harari, R.; Horvat, M.; Koppová, K.; Kos, A.; Krsková, A.; et al. Blood Cadmium, Mercury, and Lead in Children: An International Comparison of Cities in Six European Countries, and China, Ecuador, and Morocco. Environ. Int. 2012, 41, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, V. Ecuador Reports Tailings Dam Breach in Azuay Province [WWW Document]. Mining.Com. Available online: https://www.mining.com/ecuador-reports-tailings-dam-breach-in-azuay-province (accessed on 7 April 2025).
- Appleton, J.; Carrasco, M.; Maldonado, R.; Orbea, H. Assessment of Mercury Contamination in the Ponce Enriquez Artisanal Gold Mining Area, Ecuador; British Geological Survey: Keyworth, UK, 1996. [Google Scholar]
- Tarras-Wahlberg, N.H.; Flachier, A.; Fredriksson, G.; Lane, S.; Lundberg, B.; Sangfors, O. Environmental Impact of Small-Scale and Artisanal Gold Mining in Southern Ecuador. AMBIO A J. Hum. Environ. 2000, 29, 484–491. [Google Scholar] [CrossRef]
- Sierra, C.; Ruíz-Barzola, O.; Menéndez, M.; Demey, J.R.; Vicente-Villardón, J.L. Geochemical Interactions Study in Surface River Sediments at an Artisanal Mining Area by Means of Canonical (MANOVA)-Biplot. J. Geochem. Explor. 2017, 175, 72–81. [Google Scholar] [CrossRef]
- Jiménez-Oyola, S.; Chavez, E.; García-Martínez, M.-J.; Ortega, M.F.; Bolonio, D.; Guzmán-Martínez, F.; García-Garizabal, I.; Romero, P. Probabilistic Multi-Pathway Human Health Risk Assessment Due to Heavy Metal(Loid)s in a Traditional Gold Mining Area in Ecuador. Ecotoxicol. Environ. Saf. 2021, 224, 112629. [Google Scholar] [CrossRef] [PubMed]
- Romero-Crespo, P.; Jiménez-Oyola, S.; Salgado-Almeida, B.; Zambrano-Anchundia, J.; Goyburo-Chávez, C.; González-Valoys, A.; Higueras, P. Trace Elements in Farmland Soils and Crops, and Probabilistic Health Risk Assessment in Areas Influenced by Mining Activity in Ecuador. Environ. Geochem. Health 2023, 45, 4549–4563. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, H.E.; Walker, S.R.; Parsons, M.B. Mineralogical Characterization of Mine Waste. Appl. Geochem. 2015, 57, 85–105. [Google Scholar] [CrossRef]
- Arranz-González, J.C.; Rodríguez-Gómez, V.; del Campo, E.A.; Vadillo-Fernández, L.; Fernández-Naranjo, F.J.; Reyes-Andrés, J.; Rodríguez–Pacheco, R. A Methodology for Ranking Potential Pollution Caused by Abandoned Mining Wastes: Application to Sulfide Mine Tailings in Mazarrón (Southeast Spain). Environ. Earth Sci. 2016, 75, 656. [Google Scholar] [CrossRef]
- Arranz-González, J.C.; Rodríguez-Gómez, V.; Fernández-Naranjo, F.J.; Vadillo-Fernández, L. Assessment of the Pollution Potential of a Special Case of Abandoned Sulfide Tailings Impoundment in Riotinto Mining District (SW Spain). Environ. Sci. Pollut. Res. 2021, 28, 14054–14067. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Martínez, F.; Arranz-González, J.C.; Ortega, M.F.; García-Martínez, M.J.; Rodríguez-Gómez, V. A New Ranking Scale for Assessing Leaching Potential Pollution from Abandoned Mining Wastes Based on the Mexican Official Leaching Test. J. Environ. Manag. 2020, 273, 111139. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Mendiola, E.; Martín Romero, F.; Gutiérrez-Ruiz, M.; Magdaleno Rico, C.A. Solid Phases Controlling the Mobility of Potentially Toxic Elements and the Generation of Acid Drainage in Abandoned Mine Gold Wastes from San Antonio–El Triunfo Mining District, Baja California Sur, México. Environ. Earth Sci. 2016, 75, 969. [Google Scholar] [CrossRef]
- van Wyk, N.; Fosso-Kankeu, E.; Moyakhe, D.; Waanders, F.B.; Le Roux, M.; Campbell, Q.P. Natural Oxidation of Coal Tailings from Middelburg Area (South Africa), and Impact on Acid-Generation Potential. J. S. Afr. Inst. Min. Metall. 2020, 120, 651–658. [Google Scholar] [CrossRef]
- Weber, P.A.; Stewart, W.A.; Skinner, W.M.; Weisener, C.G.; Thomas, J.E.; Smart, R.S.C. Geochemical Effects of Oxidation Products and Framboidal Pyrite Oxidation in Acid Mine Drainage Prediction Techniques. Appl. Geochem. 2004, 19, 1953–1974. [Google Scholar] [CrossRef]
- Hageman, P.L.; Seal, R.R.; Diehl, S.F.; Piatak, N.M.; Lowers, H.A. Evaluation of Selected Static Methods Used to Estimate Element Mobility, Acid-Generating and Acid-Neutralizing Potentials Associated with Geologically Diverse Mining Wastes. Appl. Geochem. 2015, 57, 125–139. [Google Scholar] [CrossRef]
- Camilo Ponce Enríquez Alcadía Camilo Ponce Enríquez—Información General Del Cantón. Available online: https://www.camiloponce.gob.ec/camiloponce2020/index.php/el-canton/historia (accessed on 5 May 2025).
- Sandoval, F. Small-Scale Mining in Ecuador. Environ. Soc. Found. 2001, 75, 28. [Google Scholar]
- Estupiñan, R.; Romero, P.; García, M.; Garcés, D.; Valverde, P. Mining in Ecuador. Past, Present and Future. Bol. Geol. Min. 2021, 132, 533–549. [Google Scholar] [CrossRef]
- ARCERNNR Geoportal de Catastro Minero. Available online: https://arcmineria.maps.arcgis.com/apps/webappviewer/index.html?id=27bfda03ce4342b3834a27010da857e5 (accessed on 9 September 2024).
- Fulignati, P.; Mulas, M.; Villalta Echeverria, M.D.P.; Fornasaro, S.; Larreta, E.; Mendoza Arteaga, P.L.; Menoscal Menoscal, M.A.; Romero-Crespo, P.; Gioncada, A. The Propylitic Alteration in the Ponce Enriquez Gold Mining District, Azuay Province, Ecuador: Genetic Constraints from a Mineral Chemistry and Fluid Inclusions Study. Front. Earth Sci. 2023, 11, 1255712. [Google Scholar] [CrossRef]
- MAE-PRAS. Programa de Reparación Ambiental y Social—Plan de Reparación Integral; Ministerio de Agricultura: Madrid, Spain, 2015.
- Do, T.M.; Laue, J.; Mattsson, H.; Jia, Q. Numerical Analysis of an Upstream Tailings Dam Subjected to Pond Filling Rates. Appl. Sci. 2021, 11, 6044. [Google Scholar] [CrossRef]
- INIGEMM. Diagnóstico de Las Actividades de Beneficio y Extracción de Las Labores Mineras; Sector Minero Ponce Enríquez: Provincia Del Azuay, Quito, Ecuador, 2013. [Google Scholar]
- GAD Cantonal Camilo Ponce Enríquez. Territorial Development and Plan (2014–2030)|Plan de Desarrollo y Ordenamiento Territoral (2014–2030); GAD Cantonal Camilo Ponce Enríquez: Camilo Ponce Enríquez, Ecuador, 2015.
- INEC. Encuesta de Superficie y Producción Agropecuaria Continua ESPAC 2022–Principales Resultados. Instituto Nacional de Estadística y Censos. 2023. Available online: https://www.ecuadorencifras.gob.ec/encuesta-de-superficie-y-produccion-agropecuaria-continua-2022/ (accessed on 6 May 2025).
- Garcés, D.; Sanchez-Palencia, Y.; Jimenez, S.; Llamas, J. Environmental Statistical Analysis of the Basins of the Mining District of Ponce Enriquez; International Multidisciplinary Scientific GeoConference: Albena, Bulgaria, 2024; pp. 61–70. [Google Scholar]
- Pratt, W.T.; Figueroa, J.; Flores, B. Mapa Geológico de La Coordillera Occidental Del Ecuador Entre 3°–4°S; Instituto Geográfico Militar: Santiago, Chile, 1997. [Google Scholar]
- UCP PRODEMINCA. Evaluación de Distritos Mineros Del Ecuador: Depósitos Porfídicos y Epi-Mesotermales Relacionados Con Intrusiones de Las Cordilleras Occidental y Real; UCP PRODEMINCA Proyecto Mem: Quito, Ecuador, 2000; Volume 4, pp. 36–55. [Google Scholar]
- Smith, K.S.; Ramsey, C.A.; Hageman, P.L. Sampling Strategy for the Rapid Screening of Mine-Waste Dumps on Abandoned Mine LandsSampling Strategy for the Rapid Screening of Mine-Waste Dumps on Abandoned Mine Lands; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2000.
- ASTM D2487-17; Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D-1140; Test Methods for Determining the Amount of Material Finer than 75-μm (No. 200) Sieve in Soils by Washing. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D6913; Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International: West Conshohocken, PA, USA, 2009.
- Peech, M. Hydrogen-Ion Activity. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Wiley: Hoboken, NJ, USA, 1965; pp. 914–926. [Google Scholar]
- Gražulis, S.; Chateigner, D.; Downs, R.T.; Yokochi, A.F.T.; Quirós, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A. Crystallography Open Database—An Open-Access Collection of Crystal Structures. J. Appl. Crystallogr. 2009, 42, 726–729. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control.a Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Abrahim, G.M.S.; Parker, R.J. Assessment of Heavy Metal Enrichment Factors and the Degree of Contamination in Marine Sediments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 2007, 136, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9780429192036. [Google Scholar]
- Arranz-González, J.C.; Guzmán-Martínez, F.; Tapia-Téllez, A.; Jiménez-Oyola, S.; García-Martínez, M.J. Polluting Potential from Mining Wastes: Proposal for Application a Global Contamination Index. Environ. Monit. Assess. 2022, 194, 792. [Google Scholar] [CrossRef] [PubMed]
- Hageman, P.L. U.S. Geological Survey Field Leach Test for Assessing Water Reactivity and Leaching Potential of Mine Wastes, Soils, and Other Geologic and Environmental Materials; U.S. Geological Survey Techniques and Methods: Reston, VA, USA, 2007; Volume D3.
- U.S. EPA. Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry; Revision 4.4; U.S. EPA: Washington, DC, UAS, 1994.
- Alberruche del Campo, E. Guía Simplificada de Evaluación de Riesgos de Instalaciones de Residuos de Industrias Cerradas o Abandonadas, 1st ed.; Ministerio de Agricultura: Madrid, Spain, 2014.
- Hageman, P.L. Use of Short-Term (5-Minute) and Long-Term (18-Hour) Leaching Tests to Characterize, Fingerprint, and Rank Mine-Waste Material from Historical Mines in the Deer Creek, Snake River, and Clear Creek Watersheds in and Around the Montezuma Mining District, Colorado; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2004.
- Nieva, N.E.; Borgnino, L.; García, M.G. Long Term Metal Release and Acid Generation in Abandoned Mine Wastes Containing Metal-Sulphides. Environ. Pollut. 2018, 242, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Zobrist, J.; Sima, M.; Dogaru, D.; Senila, M.; Yang, H.; Popescu, C.; Roman, C.; Bela, A.; Frei, L.; Dold, B.; et al. Environmental and Socioeconomic Assessment of Impacts by Mining Activities—A Case Study in the Certej River Catchment, Western Carpathians, Romania. Environ. Sci. Pollut. Res. 2009, 16, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Benahsina, A.; El Haloui, Y.; Taha, Y.; Elomari, M.; Bennouna, M.A. Natural Sand Substitution by Copper Mine Waste Rocks for Concrete Manufacturing. J. Build. Eng. 2022, 47, 103817. [Google Scholar] [CrossRef]
- Aduviri, O. Técnicas de Prevención y Control de La Generación Acida En Minería. Medio Ambiente Minería 2018, 4, 24–31. [Google Scholar]
- Argane, R.; El Adnani, M.; Benzaazoua, M.; Bouzahzah, H.; Khalil, A.; Hakkou, R.; Taha, Y. Geochemical Behavior and Environmental Risks Related to the Use of Abandoned Base-Metal Tailings as Construction Material in the Upper-Moulouya District, Morocco. Environ. Sci. Pollut. Res. 2016, 23, 598–611. [Google Scholar] [CrossRef] [PubMed]
- Animas Torices, D.Y. Caracterización Mineralógica y Geoquímica de Muestras de Talco Industrial y Yacimiento. Bachelor’s Thesis, Universidad Nacional Autónoma de México, Ciudad de México, México, 2017. [Google Scholar]
- Rezaee, M.; Warner, R.C.; Honaker, R.Q. Development of an Electrical Conductivity Screening Test for Mine Waste Assessments. Chemosphere 2016, 160, 13–21. [Google Scholar] [CrossRef] [PubMed]
- SES Swedish Enviromental Systems (SES). Monitoreo Ambiental de Las Áreas Mineras En El Sur Del Ecuador (1996–1998); Informe Inédito, Ministerio de Energía y Minas: Quito, Ecuador, 1998.
- Karlsson, T.; Räisänen, M.L.; Lehtonen, M.; Alakangas, L. Comparison of Static and Mineralogical ARD Prediction Methods in the Nordic Environment. Environ. Monit. Assess. 2018, 190, 719. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, R.W.; Scheske, M. A Method to Calculate the Neutralization Potential of Mining Wastes. Environ. Geol. 1997, 32, 100–106. [Google Scholar] [CrossRef]
- Ardau, C.; Blowes, D.W.; Ptacek, C.J. Comparison of Laboratory Testing Protocols to Field Observations of the Weathering of Sulfide-Bearing Mine Tailings. J. Geochem. Explor. 2009, 100, 182–191. [Google Scholar] [CrossRef]
- Gómez, P.; Garralón, A.; Buil, B.; Turrero, M.J.; Sánchez, L.; de la Cruz, B. Modeling of Geochemical Processes Related to Uranium Mobilization in the Groundwater of a Uranium Mine. Sci. Total Environ. 2006, 366, 295–309. [Google Scholar] [CrossRef] [PubMed]
- Dold, B. Acid Rock Drainage Prediction: A Critical Review. J. Geochem. Explor. 2017, 172, 120–132. [Google Scholar] [CrossRef]
- Paktunc, A.D. Discussion of “A Method to Calculate the Neutralization Potential of Mining Wastes” by Lawrence and Scheske. Environ. Geol. 1999, 38, 82–84. [Google Scholar] [CrossRef]
- González-Fernández, O.; Queralt Mitjans, I.; García, G.; Candela, L. Lixiviación de Metales de Sedimentos Mineros Hacia El Medio Hídrico En El Distrito Minero de Cartagena-La Unión (Murcia). Geo-Temas 2008, 10, 1129–1132. [Google Scholar]
- Mazkiaran Lopez, M.C. Retention of Heavy Metals in Clay Minerals and Oxides of Iron and Manganese. Ph.D. Thesis, Universidad Publica de Navarra, Pamplona, Spain, 1999. [Google Scholar]
- Rivera Vega, J.I. Enriquecimiento de Elementos Del Grupo Del Platino En Suelos Asociados a Los Cuerpos Ultramáficos de La Cabaña. Master’s Thesis, Universidad de Chile, Santiago de Chile, IX Región, Chile, 2018. [Google Scholar]
- Gray, N.F. Environmental Impact and Remediation of Acid Mine Drainage: A Management Problem. Environ. Geol. 1997, 30, 62–71. [Google Scholar] [CrossRef]
- Johnson, D.B.; Hallberg, K.B. Acid Mine Drainage Remediation Options: A Review. Sci. Total Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Kalin, M.; Fyson, A.; Wheeler, W.N. The Chemistry of Conventional and Alternative Treatment Systems for the Neutralization of Acid Mine Drainage. Sci. Total Environ. 2006, 366, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Martín Peinado, F.J. Contaminación de Suelos Por El Vertido de Una Mina de Pirita (Aznalcollar, España). Ph.D. Thesis, Universidad de Granada, Granada, Spain, 2002. [Google Scholar]
- Mihaylova Grantcharova, M. Impacto de Los Depósitos de Pirita Abandonados En El Antiguo Centro Mineralúrgico de Corrales Sobre El Suelo de Las Marismas Del Odiel (Huelva, España). Master’s Thesis, Universidad Internacional de Andalucía, Corrales, Spain, 2020. [Google Scholar]
- Qian, G.; Brugger, J.; Testemale, D.; Skinner, W.; Pring, A. Formation of As(II)-Pyrite during Experimental Replacement of Magnetite under Hydrothermal Conditions. Geochim. Cosmochim. Acta 2013, 100, 1–10. [Google Scholar] [CrossRef]
- Thiombane, M.; De Vivo, B.; Niane, B.; Watts, M.J.; Marriott, A.L.; Di Bonito, M. A New Hazard Assessment Workflow to Assess Soil Contamination from Large and Artisanal Scale Gold Mining. Environ. Geochem. Health 2023, 45, 5067–5091. [Google Scholar] [CrossRef] [PubMed]
- Irwin, R.J.; Stevens, L.; Seese, M.D.; Basham, W. Environmental Contaminants Encyclopedia: Arsenic Entry; National Park Service, Water Resources Division, Water Operations Branch: Fort Collins, CO, USA, 1997; Available online: https://clu-in.org/download/contaminantfocus/arsenic/Arsenic-EcoRisk-1997.pdf (accessed on 5 May 2025).
- Martínez-López, S.; Andreo-Martínez, P.; Pérez-Sirvent, C.M. Martínez-Sánchez Mineralogía y Dinámica Del Arsénico En Suelos de Mina. Afinidad J. Chem. Eng. Theor. Appl. Chem. 2022, 79, 255–263. Available online: https://www.raco.cat/index.php/afinidad/article/view/397490 (accessed on 5 May 2025).
- Jamieson, H.E. Geochemistry and Mineralogy of Solid Mine Waste: Essential Knowledge for Predicting Environmental Impact. Elements 2011, 7, 381–386. [Google Scholar] [CrossRef]
- Modabberi, S. Mineralogical and geochemical characterization of mining wastes: Remining potential and environmental implications, Muteh Gold Deposit, Iran. Environ. Monit. Assess. 2018, 190, 734. [Google Scholar] [CrossRef] [PubMed]
- Villamar Marazita, K.; Zambrano Anchundia, J.; Aguilar, C.; Filian, K.; Flores, N.; Romero Crespo, P.; Garcés, D. Heavy Metal Pollution Assessment in Surface and Groundwater in the Ponce Enríquez Mining Area, Ecuador. In Proceedings of the 21th LACCEI International Multi-Conference for Engineering, Education and Technology (LACCEI 2023), Buenos Aires, Argentina, 17–21 July 2023; Latin American and Caribbean Consortium of Engineering Institutions: Boca Raton, FL, USA, 2023. [Google Scholar]
- Rivera-Parra, J.L.; Beate, B.; Diaz, X.; Ochoa, M.B. Artisanal and Small Gold Mining and Petroleum Production as Potential Sources of Heavy Metal Contamination in Ecuador: A Call to Action. Int. J. Environ. Res. Public. Health 2021, 18, 2794. [Google Scholar] [CrossRef] [PubMed]
Parameter | MPL a | T-1 | T-2 | T-3 | T-4 |
---|---|---|---|---|---|
pH | 8-Jun | 7.17 | 8.04 | 8.09 | 7.3 |
EC (µS/cm) | 200 | 1495 | 249 | 181.5 | 380 |
As (mg/kg) | 12 | 2100 | 429.82 | 1200 | 4466 |
Cd (mg/kg) | 0.5 | 1.14 | 0.2 | 1.78 | 5.18 |
Cr (mg/kg) | 54 | 143.84 | 268.36 | 196.9 | 263.61 |
Cu (mg/kg) | 25 | 163.14 | 57.82 | 68.11 | 105.43 |
Ni (mg/kg) | 19 | 39.86 | 52.45 | 41.29 | 537.96 |
Pb (mg/kg) | 19 | 71.2 | 2.73 | 49.57 | 410.55 |
Zn (mg/kg) | 60 | 127.68 | 40.94 | 131.26 | 313.09 |
S (%) | 60 | 1.66 | 0.16 | 0.16 | 1 |
Minerals | T-1 | T-2 | T-3 | T-4 |
---|---|---|---|---|
Quartz | 55.03% | 58.20% | 58.82% | 50.56% |
Calcite | 13.92% | 27.00% | 9.51% | 3.58% |
Dolomite | 9.82% | 5.00% | 24.80% | 3.11% |
Chlorite | 16.50% | 5.60% | 5.20% | 20.98% |
Illite | 3.34% | 4.20% | 1.67% | 7.79% |
Magnesite | - | - | - | 5.39% |
Pyrite | 1.38% | - | - | - |
Talc | - | - | - | 7.37% |
Parameter | MPL a | MPL b | T-1 | T-2 | T-3 | T-4 |
---|---|---|---|---|---|---|
pH | 6.5–9 | 6.5–8.5 | 7.01 | 7.89 | 8.02 | 7.18 |
As | 0.05 | 0.01 | 0.02 | 0.02 | 0.18 | 0.17 |
Cd | 0.001 | 0.00025 | <0.05 | <0.05 | <0.05 | <0.05 |
Cr | 0.032 | 0.05 | <0.01 | <0.01 | <0.01 | <0.01 |
Cu | 0.005 | 0.01 | <0.05 | <0.05 | <0.05 | <0.05 |
Ni | 0.025 | 0.02 | <0.05 | <0.05 | <0.05 | <0.05 |
Pb | 0.001 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Zn | 0.03 | 0.12 | <0.05 | <0.05 | <0.05 | <0.05 |
Sample | AP (kg CaCO3/t) | NP (kg CaCO3/t) | NNP |
---|---|---|---|
T-1 | 51.87 | –170.5 | –222.37 |
T-2 | 5.00 | –250.00 | –255.00 |
T-3 | 5.00 | –160.00 | –165.00 |
T-4 | 31.25 | –160.00 | –191.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcés, D.; Jiménez-Oyola, S.; Sánchez-Palencia, Y.; Guzmán-Martínez, F.; Villavicencio-Espinoza, R.; Jaramillo-Zambrano, S.; Rosado, V.; Salgado-Almeida, B.; Marcillo-Guillén, J. Assessment of Tailings Contamination Potential in One of the Most Important Gold Mining Districts of Ecuador. Minerals 2025, 15, 767. https://doi.org/10.3390/min15080767
Garcés D, Jiménez-Oyola S, Sánchez-Palencia Y, Guzmán-Martínez F, Villavicencio-Espinoza R, Jaramillo-Zambrano S, Rosado V, Salgado-Almeida B, Marcillo-Guillén J. Assessment of Tailings Contamination Potential in One of the Most Important Gold Mining Districts of Ecuador. Minerals. 2025; 15(8):767. https://doi.org/10.3390/min15080767
Chicago/Turabian StyleGarcés, Daniel, Samantha Jiménez-Oyola, Yolanda Sánchez-Palencia, Fredy Guzmán-Martínez, Raúl Villavicencio-Espinoza, Sebastián Jaramillo-Zambrano, Victoria Rosado, Bryan Salgado-Almeida, and Josué Marcillo-Guillén. 2025. "Assessment of Tailings Contamination Potential in One of the Most Important Gold Mining Districts of Ecuador" Minerals 15, no. 8: 767. https://doi.org/10.3390/min15080767
APA StyleGarcés, D., Jiménez-Oyola, S., Sánchez-Palencia, Y., Guzmán-Martínez, F., Villavicencio-Espinoza, R., Jaramillo-Zambrano, S., Rosado, V., Salgado-Almeida, B., & Marcillo-Guillén, J. (2025). Assessment of Tailings Contamination Potential in One of the Most Important Gold Mining Districts of Ecuador. Minerals, 15(8), 767. https://doi.org/10.3390/min15080767