Geology, Structure, Geochemistry, and Origin of Iron Oxide Deposits in Dehbid, Southwest Iran
Abstract
:1. Introduction
2. Tectonic and Geological Setting
3. Geology of the Dehbid Region
4. Mineralization, Ore Geology, and Mineralogy
5. Sampling and Methods
6. Results
Geochemistry of Iron Ores
7. Discussion
7.1. Origin and Type of Mineralization
7.2. Geochemistry of Fe-Oxide Ores
7.3. Metallotectonic Setting and Formation of Banded Iron Ores
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nabatian, G.; Rastad, E.; Neubauer, F.; Honarmand, M.; Ghaderi, M. Iron and Fe–Mn mineralisation in Iran: Implications for Tethyan metallogeny. Aust. J. Earth Sci. 2015, 62, 211–241. [Google Scholar] [CrossRef]
- USGS. Mineral Commodity Summaries 2024. Available online: https://pubs.usgs.gov/publication/mcs2024 (accessed on 31 January 2024).
- NGDIR. Statistical Report of Iron Status in Iran; National Geoscience Database of Iran (NGDIR): Tehran, Iran, 2018. [Google Scholar]
- Baturin, G.N. Manganese and Molybdenum in Phosphorites from the Ocean. Lithol. Miner. Resour. 2002, 37, 412–428. [Google Scholar] [CrossRef]
- Dill, H. Terrestrial ferromanganese ore concentrations from mid-european basement blocks and their implication concerning the environment of formation during the late cenozoic (northern Bavaria, F.R.G.). Sediment. Geol. 1985, 45, 77–96. [Google Scholar] [CrossRef]
- Dill, H.G.; Pöllmann, H.; Techmer, A. 500Million years of rift- and unconformity-related Mn mineralization in the Middle East: A geodynamic and sequence stratigraphical approach to the recycling of Mn. Ore Geol. Rev. 2013, 53, 112–133. [Google Scholar] [CrossRef]
- Dill, H.G.; Bechtel, A.; Kus, J.; Gratzer, R.; Abu Hamad, A.M.B. Deposition and alteration of carbonaceous series within a Neotethyan rift at the western boundary of the Arabian Plate: The Late Permian Um Irna Formation, NW Jordan, a petroleum system. Int. J. Coal Geol. 2010, 81, 1–24. [Google Scholar] [CrossRef]
- Gutzmer, J. Cretaceous Karstic Cave-Fill Manganese-Lead-Barium Deposits of Imini, Morocco. Econ. Geol. 2006, 101, 385–405. [Google Scholar] [CrossRef]
- Jenkyns, H.C.; Géczy, B.; Marshall, J.D. Jurassic Manganese Carbonates of Central Europe and the Early Toarcian Anoxic Event. J. Geol. 1991, 99, 137–149. [Google Scholar] [CrossRef]
- Leal, P.R. Mineralogy and Geochemistry of an Epithermal Manganese District, Sierras Pampeanas, Argentina. Int. Geol. Rev. 2004, 46, 75–90. [Google Scholar] [CrossRef]
- Gutzmer, J.; Beukes, N.J. Fault-controlled metasomatic alteration of early Proterozoic sedimentary manganese ores in the Kalahari manganese field, South Africa. Econ. Geol. 1995, 90, 823–844. [Google Scholar] [CrossRef]
- Gutzmer, J.; Beukes, N.J. Mineral paragenesis of the Kalahari managanese field, South Africa. Ore Geol. Rev. 1996, 11, 405–428. [Google Scholar] [CrossRef]
- Tsikos, H.; Beukes, N.J.; Moore, J.M.; Harris, C. Deposition, Diagenesis, and Secondary Enrichment of Metals inthe Paleoproterozoic Hotazel Iron Formation, Kalahari Manganese Field, South Africa. Econ. Geol. 2003, 98, 1449–1462. [Google Scholar] [CrossRef]
- Kuleshov, V.N. A superlarge deposit—Kalahari manganese ore field (Northern Cape, South Africa): Geochemistry of isotopes (δ13C and δ18O) and genesis. Lithol. Miner. Resour. 2012, 47, 217–233. [Google Scholar] [CrossRef]
- Madondo, J.; Canet, C.; González-Partida, E.; Rodríguez-Díaz, A.A.; Núñez-Useche, F.; Alfonso, P.; Rajabi, A.; Pi, T.; Blignaut, L.; Vafeas, N. Geochemical constraints on the genesis of the ‘Montaña de Manganeso’ vein-type Mn deposit, Mexican Plateau. Ore Geol. Rev. 2020, 125, 103680. [Google Scholar] [CrossRef]
- Maghfouri, S.; Rastad, E.; Movahednia, M.; Lentz, D.R.; Reza Hosseinzadeh, M.; Ye, L.; Mousivand, F. Metallogeny and temporal–spatial distribution of manganese mineralizations in Iran: Implications for future exploration. Ore Geol. Rev. 2019, 115, 103026. [Google Scholar] [CrossRef]
- Rajabi, A.; Niroomand, S.; Nozaem, R. Investigation of Metallogeny and Mineralization Potential of the Northern Fars Region, Southwest of the Sanandaj-Sirjan Zone and Northwest Zagros; IMPASCO (Iran Minerals Production and Supply Company): Tehran, Iran, 2023; p. 225. [Google Scholar]
- Rajabzadeh, M.A.; Rasti, S. Mineralization of Iron Deposits from Dehbid Area, Fars Province, South Iran: Geochemical and Mineralogical Data. In Proceedings of the 10th International Congress for Applied Mineralogy (ICAM); Broekmans, M.A.T.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 567–574. Available online: http://link.springer.com/10.1007/978-3-642-27682-8_67 (accessed on 1 January 2012).
- Kazemirad, M.; Rastad, E.; Mohajjel, M. Fe-Mn Mineralization in Dolomites Equivalent to Shotori Formation in NE of Dehbid, Southern Sanandaj-Sirjan Zone, Fars Province. Sci. Q. J. Geosci. 2015, 24, 369–382. [Google Scholar] [CrossRef]
- Rajabzadeh, M.A.; Rasti, S. Investigation on mineralogy, geochemistry and fluid inclusions of the Goushti hydrothermal magnetite deposit, Fars Province, SW Iran: A comparison with IOCGs. Ore Geol. Rev. 2017, 82, 93–107. [Google Scholar] [CrossRef]
- Rajabzadeh, M.A.; Rasti, S. Mineralization study on Dehbid magnetite deposit, Fars; using mineralogical and geochemical data. J. Econ. Geol. 2012, 3, 217–230. [Google Scholar] [CrossRef]
- Rajabi, A.; Canet, C.; Alfonso, P.; Mahmoodi, P.; Yarmohammadi, A.; Sharifi, S.; Mahdavi, A.; Rezaei, S. Mineralization and Structural Controls of the AB-Bid Carbonate-Hosted Pb-Zn (±Cu) Deposit, Tabas-Posht e Badam Metallogenic Belt, Iran. Minerals 2022, 12, 95. [Google Scholar] [CrossRef]
- Aghanabati, A. Major Sedimentary and Structural Units of Iran (Map). Geosciences 1998, 7, 29–30. [Google Scholar]
- Madanipour, S.; Najafi, M.; Nozaem, R.; Vergés, J.; Yassaghi, A.; Heydari, I.; Khodaparast, S.; Soudmand, Z.; Aghajari, L. The Arabia–Eurasia collision zone in Iran: Tectonostratigraphic and structural synthesis. J. Pet. Geol. 2024, 47, 123–171. [Google Scholar] [CrossRef]
- Berberian, M.; King, G.C.P. Towards a paleogeography and tectonic evolution of Iran. Can. J. Earth Sci. 1981, 18, 210–265. [Google Scholar] [CrossRef]
- Saki, A. Evidences for formation of the Precambrian crust in the Takab complex, northwest Iran (review). Petrol. J. 2018, 9, 163–182. [Google Scholar] [CrossRef]
- Safarzadeh, E.; Masoudi, F.; Hassanzadeh, J.; Pourmoafi, S.M. The presence of Precambrian basement in Gole Gohar of Sirjan (south of Iran). Petrol. J. 2016, 7, 153–170. [Google Scholar] [CrossRef]
- Ghasemi, A.; Talbot, C.J. A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). J. Asian Earth Sci. 2006, 26, 683–693. [Google Scholar] [CrossRef]
- Bagheri, S.; Stampfli, G.M. The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: New geological data, relationships and tectonic implications. Tectonophysics 2008, 451, 123–155. [Google Scholar] [CrossRef]
- Azizi, H.; Jahangiri, A. Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran. J. Geodyn. 2008, 45, 178–190. [Google Scholar] [CrossRef]
- Shahidi, A.; Taraz, H.; Zamani Pedram, M.; Alavi, M. Geological Map of the Dehbid Area, Scale. 1:100,000; Geological Survey of Iran: Tehran, Iran, 1999. [Google Scholar]
- Sarkarinejad, K.; Azizi, A. Slip partitioning and inclined dextral transpression along the Zagros Thrust System, Iran. J. Struct. Geol. 2008, 30, 116–136. [Google Scholar] [CrossRef]
- Passchier, C.W.; Trouw, R.A.J. Microtectonics; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Rudmin, M.; Banerjee, S.; Maximov, P.; Novoselov, A.; Trubin, Y.; Smirnov, P.; Abersteiner, A.; Tang, D.; Mazurov, A. Origin of ooids, peloids and micro-oncoids of marine ironstone deposits in Western Siberia (Russia). J. Asian Earth Sci. 2022, 237, 105361. [Google Scholar] [CrossRef]
- Matheson, E.J.; Pufahl, P.K. Clinton ironstone revisited and implications for Silurian Earth system evolution. Earth Sci. Rev. 2021, 215, 103527. [Google Scholar] [CrossRef]
- Varajao, C.A.C.; Bruand, A.; Ramanaidou, E.R.; Gilkes, R.J. Microporosity of BIF hosted massive hematite ore, Iron Quadrangle, Brazil. Ann. Braz. Acad. Sci. 2002, 74, 113–126. [Google Scholar] [CrossRef]
- Bekker, A.; Slack, J.F.; Planavsky, N.; Krapez, B.; Hofmann, A.; Konhauser, K.O.; Rouxel, O.J. Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes. Econ. Geol. 2010, 105, 467–508. [Google Scholar] [CrossRef]
- Nystroem, J.O.; Henriquez, F. Magmatic features of iron ores of the Kiruna type in Chile and Sweden; ore textures and magnetite geochemistry. Econ. Geol. 1994, 89, 820–839. [Google Scholar] [CrossRef]
- Russell, M.J.; Solomon, M.; Walshe, J.L. The genesis of sediment-hosted, exhalative zinc + lead deposits. Miner. Depos. 1981, 16, 113–127. [Google Scholar] [CrossRef]
- Loberg, B.E.H.; Horndahl, A.-K. Ferride geochemistry of Swedish precambrian iron ores. Miner. Depos. 1983, 18, 487–504. [Google Scholar] [CrossRef]
- Yi, J.; Shi, X.; Ji, G.; Zhang, L.; Wang, S.; Deng, H. The Geochemical Characteristics of Trace Elements in the Magnetite and Fe Isotope Geochemistry of the Makeng Iron Deposit in Southwest Fujian and Their Significance in Ore Genesis. Minerals 2024, 14, 217. [Google Scholar] [CrossRef]
- Xu, G.F.; Shao, J.L. Typomorphic Characteristics and Practical Significance of Magnetite. Geochem. Explor. 1979, 23, 30–37. [Google Scholar]
- Nadoll, P.; Angerer, T.; Mauk, J.L.; French, D.; Walshe, J. The chemistry of hydrothermal magnetite: A review. Ore Geol. Rev. 2014, 61, 1–32. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Y.; Yu, P.; Zhang, L.; Wei, W.; Li, Y.; Konhauser, K.O.; Robbins, L.J. Geology and geochemistry of the high-grade Zankan magnetite ore, Western Kunlun Mountains, NW China. Ore Geol. Rev. 2022, 150, 105129. [Google Scholar] [CrossRef]
- Hu, H.; Lentz, D.; Li, J.; Hall, D. Re-equilibration Processes of Magnetite from Iron Skarn Deposits. In Proceedings of the Acta Geologica Sinica-English Edition, the 14th Quadrennial International Association on the Genesis of Ore Deposits Symposium, Kunming, China, 19–22 August 2014. [Google Scholar]
- Nadoll, P. Geochemistry of Magnetite from Hydrothermal Ore Deposits and Host Rocks: Case Studies from the Proterozoic Belt Supergroup, Cu-Mo-Porphyry + Skarn and Climax-Mo Deposits in the Western United States. Ph.D. Thesis, University of Auckland, Auckland, New Zealand, 2009. [Google Scholar]
- Manikyamba, C. Petrology and Geochemistry of Mixed Oxide-Silicate Facies Banded Iron Formations from Sandur Schist Belt, India. J. Geol. Soc. India 1998, 52, 651–661. [Google Scholar] [CrossRef]
- Shi, K.; Wang, C.; Bagas, L.; Duan, H. Modified magnetite and hydrothermal apatite in banded iron-formations and implications for high-grade Fe mineralization during retrogressive metamorphism. Am. Mineral. 2024, 109, 286–301. [Google Scholar] [CrossRef]
- Duuring, P.; Hagemann, S. Leaching of silica bands and concentration of magnetite in Archean BIF by hypogene fluids: Beebyn Fe ore deposit, Yilgarn Craton, Western Australia. Miner. Depos. 2013, 48, 341–370. [Google Scholar] [CrossRef]
- Aftabi, A.; Atapour, H.; Mohseni, S.; Babaki, A. Geochemical discrimination among different types of banded iron formations (BIFs): A comparative review. Ore Geol. Rev. 2021, 136, 104244. [Google Scholar] [CrossRef]
- Mohseni, S.; Aftabi, A. Structural, textural, geochemical and isotopic signatures of synglaciogenic Neoproterozoic banded iron formations (BIFs) at Bafq mining district (BMD), Central Iran: The possible Ediacaran missing link of BIFs in Tethyan metallogeny. Ore Geol. Rev. 2015, 71, 215–236. [Google Scholar] [CrossRef]
- Wagner, C.; Boudouma, O.; Rividi, N.; Orberger, B.; Nabatian, G.; Honarmand, M.; Monsef, I. Magnetite Texture and Geochemistry in the Takab Ore Deposit (NW Iran): Implications for a Complex Hydrothermal Evolution. Minerals 2025, 15, 137. [Google Scholar] [CrossRef]
- Hassanzadeh, F.; Atapour, H.; Ranjbar, H. The Ediacaran metamorphosed banded iron formation (BIF) at Gohar Zamin mine (Gol-e-Gohar #3 anomaly), Sirjan (southeastern Iran): Perspective from ore structures, bulk ore-rock geochemistry and O-S-Pb isotopic signatures. Precambrian Res. 2023, 394, 107124. [Google Scholar] [CrossRef]
- Rajabi, A.; Canet, C.; Rastad, E.; Alfonso, P. Basin evolution and stratigraphic correlation of sedimentary-exhalative Zn–Pb deposits of the Early Cambrian Zarigan–Chahmir Basin, Central Iran. Ore Geol. Rev. 2015, 64, 328–353. [Google Scholar] [CrossRef]
- Mohajjel, M.; Fergusson, C.L. Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. Int. Geol. Rev. 2014, 56, 263–287. [Google Scholar] [CrossRef]
- Azizi, H.; Nouri, F.; Stern, R.J.; Azizi, M.; Lucci, F.; Asahara, Y.; Zarinkoub, M.H.; Chung, S.L. New evidence for Jurassic continental rifting in the northern Sanandaj Sirjan Zone, western Iran: The Ghalaylan seamount, southwest Ghorveh. Int. Geol. Rev. 2020, 62, 1635–1657. [Google Scholar] [CrossRef]
- Nazemei, M.; Arvin, M.; Dargahi, S. Geochemistry and source characteristics of Dehsard mafic volcanic rocks in the southeast of the Sanandaj–Sirjan zone, Iran: Implications for the evolution of the Neo-Tethys Ocean. Turk. J. Earth Sci. 2018, 27, 249–268. [Google Scholar] [CrossRef]
- Shomali, S.; Ghorbani, M.; Ghassemi, M.R.; Moosavi, E.; Slama, J. Petrography, U–Pb geochronology and geochemistry of Varcheh intrusions: Insight into younging trend of mid-Cretaceous subduction in the northern Sanandaj–Sirjan Zone, western Iran. Geol. J. 2024, 59, 2156–2174. [Google Scholar] [CrossRef]
- Salehi, M.A.; Tadayon, M. Early Cretaceous sedimentary provenance and structural evolution of the central Sanandaj–Sirjan Zone, Iran: Implications for palaeogeographic reconstructions of the northern Neo-Tethyan margin. Int. Geol. Rev. 2020, 62, 1359–1386. [Google Scholar] [CrossRef]
- Rajabi, A.; Mahmoodi, P.; Rastad, E.; Niroomand, S.; Canet, C.; Alfonso, P.; Shabani, A.A.T.; Yarmohammadi, A. Comments on “Dehydration of hot oceanic slab at depth 30–50 km: Key to formation of Irankuh-Emarat Pb-Zn MVT belt, Central Iran” by Mohammad Hassan Karimpour and Martiya Sadeghi. J. Geochem. Explor. 2019, 205, 106346. [Google Scholar] [CrossRef]
- Rajabi, A.; Rastad, E.; Canet, C. Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: Geotectonic setting and data integration for future mineral exploration. Int. Geol. Rev. 2012, 54, 1649–1672. [Google Scholar] [CrossRef]
- Larvet, T.; Le Pourhiet, L.; Agard, P. Evolution of Strain Patterns in Deforming Upper Plates in Subduction Zones: The Case Study of Cretaceous Extension in the Iranian Plateau. 2021. Available online: https://meetingorganizer.copernicus.org/EGU21/EGU21-11949.html (accessed on 18 May 2025).
- Stern, R.J.; Moghadam, H.S.; Pirouz, M.; Mooney, W. The Geodynamic Evolution of Iran. Annu. Rev. Earth Planet. Sci. 2021, 49, 9–36. [Google Scholar] [CrossRef]
- Scotese, C.R. An Atlas of Phanerozoic Paleogeographic Maps: The Seas Come In and the Seas Go Out. Annu. Rev. Earth Planet. Sci. 2021, 49, 679–728. [Google Scholar] [CrossRef]
- Agard, P.; Omrani, J.; Jolivet, L.; Whitechurch, H.; Vrielynck, B.; Spakman, W.; Monié, P.; Meyer, B.; Wortel, R. Zagros orogeny: A subduction-dominated process. Geol. Mag. 2011, 148, 692–725. [Google Scholar] [CrossRef]
- Barrier, E.; Vrielynck, B. Paleotectonic Maps of the Middle East Basin Evolution (MEBE) Program, Scale 1: 18,500,000: Paris; CNRS-Université Pierre et Marie Curie: Paris, France, 2008. [Google Scholar]
- Mousivand, F.; Rastad, E.; Meffre, S.; Peter, J.M.; Mohajjel, M.; Zaw, K.; Emami, M.H. Age and tectonic setting of the Bavanat Cu–Zn–Ag Besshi-type volcanogenic massive sulfide deposit, southern Iran. Miner. Depos. 2012, 47, 911–931. [Google Scholar] [CrossRef]
- Mousivand, F.; Rastad, E.; Meffre, S.; Peter, J.M.; Solomon, M.; Zaw, K. U–Pb geochronology and Pb isotope characteristics of the Chahgaz volcanogenic massive sulphide deposit, southern Iran. Int. Geol. Rev. 2011, 53, 1239–1262. [Google Scholar] [CrossRef]
- Bekker, A.; Planavsky, N.J.; Krapež, B.; Rasmussen, B.; Hofmann, A.; Slack, J.F.; Rouxel, O.J.; Konhauser, K.O. Iron Formations: Their Origins and Implications for Ancient Seawater Chemistry. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 561–628. [Google Scholar]
- Mücke, A. The Nigerian manganese-rich iron-formations and their host rocks—From sedimentation to metamorphism. J. Afr. Earth Sci. 2005, 41, 407–436. [Google Scholar] [CrossRef]
- Ghazi, J.M.; Moazzen, M.; Rahghoshay, M.; Moghadam, H.S. The Geodynamic setting of the Nain ophiolites; Central Iran: Evidence from chromian spinels in the chromitites and associated rocks. Ofioliti 2011, 36, 59–76. [Google Scholar]
- Sheikholeslami, M.R. Tectono-stratigraphic evidence for the opening and closure of the Neotethys Ocean in the southern Sanandaj-Sirjan zone, Iran. In Tectonic Evolution, Collision, and Seismicity of Southwest Asia; Smith, S.A.F., Handy, M.R., Horton, B.K., Eds.; Geological Society of America: Boulder, CO, USA, 2017. [Google Scholar]
- Sheikholeslami, M.R.; Ghassemi, M.R.; Hassanzadeh, J. Tectonic evolution of the hinterland of the Zagros Orogen revealed from the deformation of the Golpaygan Metamorphic Complex, Iran. J. Asian Earth Sci. 2019, 182, 103929. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajabi, A.; Nozaem, R.; Momenipour, S.; Niroomand, S.; Rajabpour, S.; Rezaei, S.; Alfonso, P.; Canet, C.; Kazemi Mehrnia, A.; Mahmoodi, P.; et al. Geology, Structure, Geochemistry, and Origin of Iron Oxide Deposits in Dehbid, Southwest Iran. Minerals 2025, 15, 590. https://doi.org/10.3390/min15060590
Rajabi A, Nozaem R, Momenipour S, Niroomand S, Rajabpour S, Rezaei S, Alfonso P, Canet C, Kazemi Mehrnia A, Mahmoodi P, et al. Geology, Structure, Geochemistry, and Origin of Iron Oxide Deposits in Dehbid, Southwest Iran. Minerals. 2025; 15(6):590. https://doi.org/10.3390/min15060590
Chicago/Turabian StyleRajabi, Abdorrahman, Reza Nozaem, Sara Momenipour, Shojaedin Niroomand, Shahrokh Rajabpour, Somaye Rezaei, Pura Alfonso, Carles Canet, Ahmad Kazemi Mehrnia, Pouria Mahmoodi, and et al. 2025. "Geology, Structure, Geochemistry, and Origin of Iron Oxide Deposits in Dehbid, Southwest Iran" Minerals 15, no. 6: 590. https://doi.org/10.3390/min15060590
APA StyleRajabi, A., Nozaem, R., Momenipour, S., Niroomand, S., Rajabpour, S., Rezaei, S., Alfonso, P., Canet, C., Kazemi Mehrnia, A., Mahmoodi, P., Mahdavi, A., Kazemirad, M., Laghari Firouzjaei, O., & Amini, M. (2025). Geology, Structure, Geochemistry, and Origin of Iron Oxide Deposits in Dehbid, Southwest Iran. Minerals, 15(6), 590. https://doi.org/10.3390/min15060590