Sedimentary Facies and Geochemical Signatures of the Khewra Sandstone: Reconstructing Cambrian Paleoclimates and Paleoweathering in the Salt Range, Pakistan
Abstract
1. Introduction
2. Paleogeography and General Geology
3. Materials and Methods
3.1. Fieldwork
3.2. Petrography
3.3. X-Ray Diffraction (XRD) Analysis
3.4. Geochemistry
4. Results
4.1. Outcrop Data and Lithofacies
4.1.1. Channel Margin and Floodplain Shale Lithofacies (CMFShL)
4.1.2. Channel Margin Sandstone Lithofacies (CMSL)
4.1.3. Delta Lobe/Delta Plain Lithofacies (DLDPL)
4.1.4. Channel Belt Sandstone Lithofacies (CBSL)
4.1.5. Channel Belt Conglomerate Lithofacies (CBCL)
4.2. Petrography
4.3. XRD Data
4.4. Geochemistry Data
4.4.1. Chemical Index of Alteration (CIA)
4.4.2. The Al2O3 vs. CIAmolar and K2O/Na2O vs. CIAmolar Plots
4.4.3. The C-Values
4.4.4. Chemical Maturity Plot (SiO2 vs. Al2O3 + K2O + Na2O)
4.4.5. A-CN-K (Al2O3-CaO*+ Na2O-K2O) and A-N-K (Al2O3-Na2O-K2O) Plots
4.4.6. Al2O3/Na2O vs. CIA and Al2O3/K2O vs. CIA Plots
4.4.7. Weathering Index of Parker (WIP) vs. CIA Plot
4.4.8. K/Na, Sr/Ba, Rb/Sr, V/Cr, and Cu/Zn Ratios
5. Discussion and Interpretation
5.1. Depositional Lithofacies and Lithofacies Associations
5.1.1. Channel Margin and Floodplain Lithofacies Associations (CMFLAs)
5.1.2. Delta Plain Lithofacies Association (DPLA)
5.1.3. Channel Belt Lithofacies Associations (CBLAs)
5.1.4. Vertical Facies Architecture
5.2. Petrography
5.3. XDR Data
5.4. Bulk Geochemistry
5.4.1. Chemical Weathering Intensity
5.4.2. Paleoclimate, Depositional Setting, and Paleo-Oxygenation Level
6. Paleoclimate and Sedimentation
6.1. Paleoclimate and Paleo-Weathering Trend
6.2. Depositional Environments and Sedimentation Style
7. Regional and Global Correlation
7.1. Correlation with Iran and Turkey (Türkiye)
7.2. Correlation with the USA
7.3. Correlation with Egypt and Morocco
7.4. Correlation with Sweden, Poland, and Norway
8. Conclusions
- The formation exhibits a coarsening upward succession with moderate to well-sorted, angular to sub-rounded, fine to coarse-grained, cross-bedded sandstones.
- Lithofacies analysis and lithofacies associations support deposition environments that include fluvio–deltaic to shallow marine settings, encompassing distributary channels, channel margins, floodplains, delta plains, and mouth bars.
- Framework mineralogy classifies the sandstones as sub-arkoses and sub-litharenites, indicating limited chemical weathering and deposition in arid to semi-arid paleoclimates.
- XRD analysis advocates for sedimentation under arid to semi-arid climatic conditions.
- Geochemical proxies support deposition in oxic, arid to semi-arid environments with poor to moderate chemical weathering intensity.
- Lithological and environmental attributes, along with paleoclimate and weathering trends, align the Khewra Sandstone with globally recognized Cambrian red sandstone successions from the USA, Europe, Africa, Iran, Turkey, Arabia, and India.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
KG | Khewra Gorge |
NW | Nilawahan Gorge |
VS | Vasnal Village |
KZ | Khan Zaman Nala |
XRD | X-ray Diffraction |
XRF | X-ray Fluorescence |
CMFShL | Channel Margin and Floodplain Shale Lithofacies |
CMSL | Channel Margin Sandstone Lithofacies |
DLDPL | Delta Lobe/Delta Plain Lithofacies |
CBSL | Channel Belt Sandstone Lithofacies |
CBCL | Channel Belt Conglomerate Lithofacies |
CMFLA | Channel Margin and Floodplain Lithofacies Associations |
DPLA | Delta Plain Lithofacies Association |
CBLAs | Channel Belt Lithofacies Associations |
CIA | Chemical Index of Alteration |
WIP | Weathering Index of Parker |
References
- Peng, S.C.; Babcock, L.E.; Ahlberg, P. The Cambrian period. Geol. Time Scale 2020 2020, 2, 565–629. [Google Scholar] [CrossRef]
- Babcock, L.E.; Peng, S.C.; Brett, C.E.; Zhu, M.Y.; Ahlberg, P.; Bevis, M.; Robison, R.A. Global climate, sea level cycles, and biotic events in the Cambrian Period. Palaeoworld 2015, 24, 5–15. [Google Scholar] [CrossRef]
- Babcock, L.; Peng, S.; Brett, C.E.; Zhu, M.; Ahlberg, P.; Bevis, M. Evidence of Global Climatic and Sea Level Cycles in the Cambrian; IGCP Project 591 Field Workshop; Nanjing University Press: Kunming, China, 2014; pp. 9–11. [Google Scholar]
- Haq, B.U.; Schutter, S.R. A chronology of Paleozoic sea-level changes. Science 2008, 322, 64–68. [Google Scholar] [CrossRef]
- Algeo, T.J.; Seslavinsky, K.B.; Wilkinson, B.H. The Paleozoic world: Continental flooding, hypsometry, and sea level. Am. J. Sci. 1995, 295, 787–822. [Google Scholar] [CrossRef]
- McKerrow, W.S.; Scotese, C.R.; Brasier, M.D. Early Cambrian continental reconstructions. J. Geol. Soc. 1992, 149, 599–606. [Google Scholar] [CrossRef]
- Maruyama, S.; Sawaki, Y.; Ebisuzaki, T.; Ikoma, M.; Omori, S.; Komabayashi, T. Initiation of leaking Earth: An ultimate trigger of the Cambrian explosion. Gondwana Res. 2014, 25, 910–944. [Google Scholar] [CrossRef]
- Shah, S.M.I. Stratigraphy of Pakistan (memoirs of the geological survey of Pakistan). Geol. Surv. Pak. 2009, 22, 93–114. [Google Scholar]
- Khan, S.H.; Sheng, Y.-M.; Mughal, M.S.; Singh, B.P.; Khan, M.R.; Zhang, C. Provenance of the Lower Cambrian Khewra Sandstone: Implications for Pan-African Orogeny. Sediment. Geol. 2022, 438, 106197. [Google Scholar] [CrossRef]
- Hughes, N.C.; Myrow, P.M.; Ghazi, S.; McKenzie, N.R.; Stockli, D.F.; DiPietro, J.A. Cambrian geology of the Salt Range of Pakistan: Linking the Himalayan margin to the Indian craton: Reply. Bulletin 2020, 132, 446–448. [Google Scholar] [CrossRef]
- Jehangiri, M.; Hanif, M.; Arif, M.; Jan, I.U.; Ahmad, S. The early Cambrian Khewra sandstone, salt range, Pakistan: Endorsing southern Indian provenance. Arab. J. Geosci. 2015, 8, 6169–6187. [Google Scholar] [CrossRef]
- Kazmi, A.H.; Abbasi, I.A. Stratigraphy & Historical Geology of Pakistan; Department and National Centre of Excellence in Geology: Peshawar, Pakistan, 2008; p. 524. [Google Scholar]
- Bassett, M.G. Early Palaeozoic peri-Gondwana terranes: New insights from tectonics and biogeography. Geol. Soc. Lond. Spéc. Publ. 2009, 325, 1–2. [Google Scholar] [CrossRef]
- Pankhurst, R.J.; Vaughan, A.P.M. The tectonic context of the Early Palaeozoic southern margin of Gondwana. Geol. Soc. Lond. Spec. Publ. 2009, 325, 171–176. [Google Scholar] [CrossRef]
- Keppie, D.F.; Keppie, J.D.; Landing, E. A tectonic solution for the Early Cambrian palaeogeographical enigma. Geol. Soc. Lond. Spec. Publ. 2024, 542, 167–177. [Google Scholar] [CrossRef]
- Ghazi, S.; Sharif, S.; Zafar, T.; Riaz, M.; Haider, R.; Hanif, T. Sedimentology and Stratigraphic evolution of the early Eocene Nammal Formation, Salt Range, Pakistan. Stratigr. Geol. Correl. 2020, 28, 745–764. [Google Scholar] [CrossRef]
- Richards, L.; Jourdan, F.; Collins, A.S.; King, R.C. Deformation recorded in polyhalite from evaporite detachments revealed by 40Ar/39Ar dating. Geochronology 2021, 3, 545–559. [Google Scholar] [CrossRef]
- Bordet, P. The western border of the Indian plate: Implications for Himalayan geology. Tectonophysics 1978, 51, T71–T76. [Google Scholar] [CrossRef]
- Myrow, P.M.; Snell, K.E.; Hughes, N.C.; Paulsen, T.S.; Heim, N.A.; Parcha, S.K. Cambrian depositional history of the Zanskar Valley region of the Indian Himalaya: Tectonic implications. J. Sediment. Res. 2006, 76, 364–381. [Google Scholar] [CrossRef]
- Hussain, S.A.; Han, F.-Q.; Han, J.; Khan, H.; Widory, D. Chlorine isotopes unravel conditions of formation of the Neoproterozoic rock salts from the Salt Range Formation, Pakistan. Can. J. Earth Sci. 2020, 57, 698–708. [Google Scholar] [CrossRef]
- Chatterjee, S. India’s northward drift from Gondwana to Asia during the Late Cretaceous-Eocene. Proc. Indian Natl. Sci. Acad. 2016, 82, 479–487. [Google Scholar] [CrossRef]
- Liu, Q.; Tsunogae, T.; Zhao, G.; Uthup, S.; Takahashi, K.; Yao, J.; Wu, Y.; Han, Y.; Ikehata, K. Early Cambrian high pressure/low temperature metamorphism in the southeastern Tarim craton in response to circum-Gondwana cold subduction. Geosci. Front. 2023, 14, 101561. [Google Scholar] [CrossRef]
- Witzke, B.J. Palaeoclimatic constraints for Palaeozoic palaeolatitudes of Laurentia and Euramerica. Geol. Soc. Lond. Mem. 1990, 12, 57–73. [Google Scholar] [CrossRef]
- Chumakov, N.M. Climates and climate zonality of the Vendian: Geological evidence. Geol. Soc. Lond. Spec. Publ. 2007, 286, 15–26. [Google Scholar] [CrossRef]
- Daraei, M.; Bayet-Goll, A.; Geyer, G.; Bahrami, N. Late Cambrian climate change recorded by a shift from an arid carbonate platform to a storm-dominated cool-water platform at the Gondwana margin (Alborz Zone, Iran). Geol. J. 2023, 58, 795–824. [Google Scholar] [CrossRef]
- Bhattacharjee, J.; Ghosh, K.K.; Bhattacharya, B. Petrography and geochemistry of sandstone--mudstone from Barakar Formation (early Permian), Raniganj Basin, India: Implications for provenance, weathering and marine depositional conditions during Lower Gondwana sedimentation. Geol. J. 2018, 53, 1102–1122. [Google Scholar] [CrossRef]
- Mosebach, R. Khewarite vom Khewra Gorge, Pakistan, ein neucr types kalircicher efiusiugesteine. Neues Jahrb. Mineral. Geol. Palaeont. 1956, 89, 182–207. [Google Scholar]
- Fatmi, A.N. Lithostratigraphic Units of the Kohat-Potwar Province, Indus Basin, Pakistan; Memoirs of the Geological Survey of Pakistan; The Geological Survey of Pakistan: Karachi, Pakistan, 1974; 10, pp. 1–80.
- Wynne, A.B. On the geology of the Salt Range. Punjab. Ibid. Mem. 1878, 14, 313. [Google Scholar]
- Noetling, F. On the Cambrian formation ofthe eastem Salt Range. Geol. Surv. India Rec. 1894, 27 Pt 4, 71–86. [Google Scholar]
- Nichols, G. Sedimentology and Stratigraphy Blackwell Publishing; John Wiley & Sons, Ltd. Publication: London, UK, 1999; p. 411. [Google Scholar]
- Gazzi, P. Le arenarie del flysch sopracretaceo dell’Appennio modenese: Correlazioni con il flysch di Monghidero. Mineral. Petrogr. Acta 1966, 12, 69–97. [Google Scholar] [CrossRef]
- Dickinson, W.R. Interpreting detrital modes of graywacke and arkose. J. Sediment. Res. 1970, 40, 695–707. [Google Scholar] [CrossRef]
- Graham, S.A.; Ingersoll, R.V.; Dickinson, W.R. Common provenance for lithic grains in Carboniferous sandstones from Ouachita Mountains and Black Warrior Basin. J. Sediment. Res. 1976, 46, 620–632. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Suczek, C.A. Plate tectonics and sandstone compositions. Am. Assoc. Pet. Geol. Bull. 1979, 63, 2164–2182. [Google Scholar] [CrossRef]
- Sares, S.W. The Effect of Grain Size on Detrital Modes. J. Sediment. Res. 1984, 54, 103–106. [Google Scholar] [CrossRef]
- Gazzi, P.; Zuffa, G.G.; Gandolfi, G.; Paganelli, L. Provenienza e dispersione litoranea delle sabbie delle spiagge adriatiche fra le foci dell’Isonzo e del Foglia: Inquadramento regionale. Mem. Della Soc. Geol. Ital. 1973, 12, 1–37. [Google Scholar]
- Suttner, L.J.; Basu, A.; Mack, G.H. Climate and the origin of quartz arenites. J. Sediment. Res. 1981, 51, 1235–1246. [Google Scholar] [CrossRef]
- Suttner, L.J.; Dutta, P.K. Alluvial Sandstone Composition and Paleoclimate; I, Framework Mineralogy. J. Sediment. Petrol. 1986, 56, 329–345. [Google Scholar] [CrossRef]
- Weltje, G.J. Provenance and dispersal of sand-sized sediment: Reconstruction of dispersal patterns and sources of sand-sized sediments by means of inverse modelling techniques. Geol. Ultraiectina 1994, 121, 1–208. [Google Scholar]
- Adhikari, S.K.; Sakai, T. Petrography of the Neogene Siwalik Group sandstones, Khutia Khola section, Nepal Himalaya: Implications for provenance, paleoclimate and tectonic setting. J. Nepal. Geol. Soc. 2017, 53, 17–30. [Google Scholar] [CrossRef]
- Iqbal, S.; Wagreich, M.; Jan, U.I.; Kuerschner, W.M.; Gier, S.; Bibi, M. Hot-house climate during the Triassic/Jurassic transition: The evidence of climate change from the southern hemisphere (Salt Range, Pakistan). Glob. Planet. Change 2019, 172, 15–32. [Google Scholar] [CrossRef]
- Ogbahon, O.A.; Olujinmi, O.B. Geochemistry of Maastrichtian clastic sedimentary rocks from Western flank of Anambra Basin, Nigeria: Implications for provenance, tectonic setting, paleoclimate and depositional paleoenvironment. Int. J. Geosci. 2019, 10, 91–118. [Google Scholar] [CrossRef]
- Borgohain, P.; Hussain, M.F.; Bezbaruah, D.; Vanthangliana, V.; Phukan, P.P.; Gogoi, M.P.; Bharali, B. Petrography and whole-rock geochemistry of Oligocene Barail Sandstones of Surma basin: Implications for tectono-provenance and paleoclimatic condition. J. Earth Syst. Sci. 2020, 129, 1–26. [Google Scholar] [CrossRef]
- Alqahtani, F.; Khalil, M. Geochemical analysis for evaluating the paleoweathering, paleoclimate, and depositional environments of the siliciclastic Miocene-Pliocene sequence at Al-Rehaili area, Northern Jeddah, Saudi Arabia. Arab. J. Geosci. 2021, 14, 239. [Google Scholar] [CrossRef]
- Kairouani, H.; Abbassi, A.; Zaghloul, M.N.; El Mourabet, M.; Micheletti, F.; Fornelli, A.; Mongelli, G.; Critelli, S. The Jurassic climate change in the northwest Gondwana (External Rif, Morocco): Evidence from geochemistry and implication for paleoclimate evolution. Mar. Pet. Geol. 2024, 163, 106762. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Formation and diagenesis of weathering profiles. J. Geol. 1989, 97, 129–147. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Oxford, UK, 1985; pp. 1–328. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Zhao, J.H.; Wang, H.J.; Liao, J.D.; Liu, C.M. Distribution characteristics and applications of trace elements in Junggar Basin. Nat. Gas Explor. Dev. 2007, 30, 30–32. [Google Scholar] [CrossRef]
- Goldberg, K.; Humayun, M. The applicability of the Chemical Index of Alteration as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 293, 175–183. [Google Scholar] [CrossRef]
- Basu, A. Petrology of Holocene fluvial sand derived from plutonic source rocks; implications to paleoclimatic interpretation. J. Sediment. Res. 1976, 46, 694–709. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M.; McLennan, S.M.; Keays, R.R. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J. Geol. 1996, 104, 525–542. [Google Scholar] [CrossRef]
- El Bilali, L.; Rasmussen, P.E.; Hall, G.E.M.; Fortin, D. Role of sediment composition in trace metal distribution in lake sediments. Appl. Geochem. 2002, 17, 1171–1181. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.C.; Wu, J.Y.; Xing, F.C.; Liu, L.; Ma, Y.Q.; Rao, D.; Peng, L. Sedimentary facies and depositional model of shallow water delta dominated by fluvial for Chang 8 oil-bearing group of Yanchang Formation in southwestern Ordos Basin, China. J. Cent. South Univ. 2015, 22, 4749–4763. [Google Scholar] [CrossRef]
- Lerman, A.; Imboden, D.M.; Gat, J.R.; Chou, L. Physics and Chemistry of Lakes; Springer: Berlin/Heidelberg, Germany, 1995; p. 138. [Google Scholar]
- Zuo, X.; Li, C.; Zhang, J.; Ma, G.; Chen, P. Geochemical characteristics and depositional environment of the Shahejie Formation in the Binnan Oilfield, China. J. Geophys. Eng. 2020, 17, 539–551. [Google Scholar] [CrossRef]
- Ernst, W.G.; Wai, C.M. Mössbauer, infrared, X-ray and optical study of cation ordering and dehydrogenation in natural and heat-treated sodic amphiboles. Am. Mineral. J. Earth Planet. Mater. 1970, 55, 1226–1258. [Google Scholar] [CrossRef]
- Rimmer, S.M. Geochemical paleoredox indicators in Devonian–Mississippian black shales, central Appalachian Basin (USA). Chem. Geol. 2004, 206, 373–391. [Google Scholar] [CrossRef]
- Cai, G.Q.; Guo, F.; Liu, X.T.; Sui, S.L. Carbon and oxygen isotope characteristics and palaeoenvironmental implications of lacustrine carbonate rocks from the Shahejie Formation in the Dongying Sag. Earth Environ. 2009, 37, 347–354. [Google Scholar]
- Fielding, C.R. Fluvial channel and overbank deposits from the Westphalian of the Durham coalfield, NE England. Sedimentology 1986, 33, 119–140. [Google Scholar] [CrossRef]
- Wu, C.; Ullah, M.S.; Lu, J.; Bhattacharya, J.P. Formation of point bars through rising and falling flood stages: Evidence from bar morphology, sediment transport and bed shear stress. Sedimentology 2016, 63, 1458–1473. [Google Scholar] [CrossRef]
- Walker, R.G. Facies Model: Response to Sea Level Change; The Geological Association of Canada: St. John’s, NL, Canada, 1992; pp. 119–139. [Google Scholar]
- Bilobe, J.A.; Feist-Burkhardt, S.; Eyong, J.T.; Samankassou, E. Biostratigraphy of Cretaceous-Neogene sedimentary infill of the Mamfe basin, southwest Cameroon: Paleoclimate implication. J. Afr. Earth Sci. 2021, 182, 104279. [Google Scholar] [CrossRef]
- McLennan, S.M.; Hemming, S.; McDaniel, D.K.; Hanson, G.N. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. In Processes Controlling the Composition of Clastic Sediments; Johnsson, M.J., Basu, A., Eds.; Geological Society of America Special Publications: Boulder, CO, USA, 1993; Volume 284, pp. 21–40. [Google Scholar] [CrossRef]
- Bibi, M.; Wagreich, M.; Iqbal, S.; Gier, S.; Jan, I.U. Sedimentation and glaciations during the Pleistocene: Palaeoclimate reconstruction in the Peshawar Basin, Pakistan. Geol. J. 2020, 55, 671–693. [Google Scholar] [CrossRef]
- Jun, C.; Yongjin, W.; Yang, C.; Lianwen, L.I.U.; Junfeng, J.I.; Huayu, L.U. Rb and Sr geochemical characterization of the Chinese loess stratigraphy and its implications for palaeomonsoon climate. Acta Geol. Sin. Ed. 2000, 74, 279–288. [Google Scholar] [CrossRef]
- Lerman, A.; Hull, A.B. Background aspects of lake restoration: Water balance, heavy metal content, phosphorus homeostasis. Swiss J. Hydrol. 1987, 49, 148–169. [Google Scholar] [CrossRef]
- Jones, C.E.; Jenkyns, H.C.; Coe, A.L.; Stephen, H.P. Strontium isotopic variations in Jurassic and Cretaceous seawater. Geochim. Cosmochim. Acta 1994, 58, 3061–3074. [Google Scholar] [CrossRef]
- Postma, G. Depositional Architecture and Facies of River and Fan Deltas: A Synthesis. Coarse-Grained Deltas; John Wiley & Sons: Hoboken, NJ, USA, 1990; pp. 13–27. [Google Scholar] [CrossRef]
- Fielding, C.R.; Trueman, J.D.; Alexander, J. Sharp-Based, Flood-Dominated Mouth Bar Sands from the Burdekin River Delta of Northeastern Australia: Extending the Spectrum of Mouth-Bar Facies, Geometry, and Stacking Patterns. J. Sediment. Res. 2005, 75, 55–66. [Google Scholar] [CrossRef]
- Kendall, B.; Creaser, R.A.; Reinhard, C.T.; Lyons, T.W.; Anbar, A.D. Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean. Sci. Adv. 2015, 1, e1500777. [Google Scholar] [CrossRef]
- Ahmad, K.; Hussain, S.A.; Al-Obaidi, M. Paleoceanographic Reconstruction of Upper Cretaceous, Black Shale Succession, Northeastern Iraq Using Geochemical Proxies to Indicate Paleoredox and Paleoenvironment Conditions. Diyala J. Pure Sci. 2018, 14, 237–264. [Google Scholar] [CrossRef]
- Scibiorski, J.; Peyrot, D.; Lang, S.C.; Payenberg, T.H.D.; Payenberg, T.H.D.; Charles, A. Depositional settings and palynofacies assemblages of the Upper Triassic fluvio-deltaic Mungaroo Formation, northern Carnarvon Basin, Western Australia. J. Sediment. Res. 2020, 90, 403–428. [Google Scholar] [CrossRef]
- Mou, C.; Wang, X.-P.; Wang, Q.-Y.; Ge, X.; Zan, B.; Zhou, K.-K. Lithofacies Paleogeography and Geological Survey of Shale Gas; Springer Nature: Dordrecht, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Yang, R.; He, S.; Wang, X.; Hu, Q.; Hu, D.; Yi, J. Paleo-ocean redox environments of the Upper Ordovician Wufeng and the first member in lower Silurian Longmaxi formations in the Jiaoshiba area, Sichuan Basin. Can. J. Earth Sci. 2016, 53, 426–440. [Google Scholar] [CrossRef]
- Woo, J.; Lee, H.S.; Ozyer, C.A.; Rhee, C.W. Effect of Lamination on Shale Reservoir Properties: Case Study of the Montney Formation, Canada. Geofluids 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Zhao, X.; Xie, D.; Jina, F.; Pub, X.; Hanb, W.; Shib, Z.; Zhangb, W.; Dong, J. Laminae Features, Genesis of Deep Lacustrine Shales and the Implications for Shale Oil Mobility in the Paleogene Kongdian Formation of Cangdong Sag; Bohai Bay Basin, China. SSRN 2023, 1–34. [Google Scholar] [CrossRef]
- O’Brien, N.R. Shale lamination and sedimentary processes. Geol. Soc. Lond. Spec. Publ. 1996, 116, 23–36. [Google Scholar] [CrossRef]
- Leonowicz, P. Nearshore transgressive black shale from the Middle Jurassic shallow-marine succession from southern Poland. Facies 2016, 62, 16. [Google Scholar] [CrossRef]
- Einsele, G. Depositional Rhythms and Cyclic Sequences; Springer: Berlin/Heidelberg, Germany, 1992; pp. 271–310. [Google Scholar] [CrossRef]
- Gorsline, D.S. A review of fine-grained sediment origins, characteristics, transport and deposition. Geol. Soc. Lond. Spec. Publ. 1984, 15, 17–34. [Google Scholar] [CrossRef]
- Gugliotta, M.; Saito, Y.; Saito, Y.; Nguyen, V.L.; Ta, T.K.O.; Tamura, T. Sediment distribution and depositional processes along the fluvial to marine transition zone of the Mekong River delta, Vietnam. Sedimentology 2019, 66, 146–164. [Google Scholar] [CrossRef]
- Scholle, P.A.; Spearing, D.R. Sandstone Depositional Environments; AAPG Memoir 31 (No. 31); AAPG: London, UK, 1982; p. 405. [Google Scholar]
- Oyanyan, R.O.; Oti, M.N. Sedimentology and ichnology of late Oligocene delta front reservoir sandstone deposit, greater ughelli depobelt, Niger delta. Am. J. Geosci. 2015, 5, 12. [Google Scholar] [CrossRef]
- Breckenridge, J.; Maravelis, A.G.; Catuneanu, O.; Ruming, K.; Holmes, E.; Collins, W.J. Outcrop analysis and facies model of an Upper Permian tidally influenced fluvio-deltaic system: Northern Sydney Basin, SE Australia. Geol. Mag. 2019, 156, 1715–1741. [Google Scholar] [CrossRef]
- Boon, J.D. Tidal discharge asymmetry in a salt marsh drainage system. Limnol. Oceanogr. 1975, 20, 71–80. [Google Scholar] [CrossRef]
- Hoitink, A.J.F.; Hoekstra, P.; van Maren, D.S. Flow asymmetry associated with astronomical tides: Implications for the residual transport of sediment. J. Geophys. Res. 2003, 108, 3315. [Google Scholar] [CrossRef]
- Huang, H.; Chen, C.; Blanton, J.O.; Andrade, F.H. A numerical study of tidal asymmetry in Okatee Creek, South Carolina. Estuar. Coast. Shelf Sci. 2008, 78, 190–202. [Google Scholar] [CrossRef]
- Owen, G. Load structures: Gravity-driven sediment mobilization in the shallow subsurface. Geol. Soc. Lond. Spec. Publ. 2003, 216, 21–34. [Google Scholar] [CrossRef]
- Duquesne, A.; Carozza, J.M. Improving Grain Size Analysis to Characterize Sedimentary Processes in a Low-Energy River: A Case Study of the Charente River (Southwest France). Appl. Sci. 2023, 13, 8061. [Google Scholar] [CrossRef]
- Boukhalfa, K.; Soussi, M.; Reynaud, J.Y.; Banerjee, S. Sandstones and red-beds in the Lower Cretaceous Sidi Aich Formation, Chotts basin (Southern Tunisia): Facies, architecture and depositional environments. Geol. Soc. Lond. Spec. Publ. 2023, 545, 293–323. [Google Scholar] [CrossRef]
- Shah, K.S.; Hashim, M.H.B.M.; Rehman, H.; Ariffin, K.S. Effect of Wet-Dry Cycling on the Microstructure of Various Weathering Grade Sandstone. Appl. Mech. Mater. 2024, 920, 183–187. [Google Scholar] [CrossRef]
- Yu, W.; Liang, Q.L.; Tian, J.; Han, Y.; Wang, F.; Zhao, M. Sedimentary Responses of Late Triassic Soft-Sedimentary Deformation to Paleoearthquake Events in the Southwestern North China Plate. Minerals 2022, 12, 1044. [Google Scholar] [CrossRef]
- Al-Saqarat, B.S.; Abbas, M.; Al Hseinat, M.; Qutishat, T.A.; Shammar, D.; AlShamaileh, E. Interpreting Soft-Sediment Deformation Structures: Insights into Earthquake History and Depositional Processes in the Dead Sea, Jordan. Geosciences 2024, 14, 217. [Google Scholar] [CrossRef]
- Oman, G. Soft-sediment deformation structures in the Late Messinian Abu Madi Formation, onshore Nile Delta, Egypt: Triggers and tectonostratigraphic implications. Geol. J. 2022, 57, 2302–2320. [Google Scholar] [CrossRef]
- Reading, H.G. Sedimentary Environments: Processes, Facies and Stratigraphy; John Wiley & Sons: Hoboken, NJ, USA, 2009; p. 669. [Google Scholar]
- Ghinassi, M.; Moody, J.A.; Martin, D. Influence of extreme and annual floods on point-bar sedimentation: Inferences from Powder River, Montana, USA. Geol. Soc. Am. Bull. 2019, 131, 71–83. [Google Scholar] [CrossRef]
- Willis, B.J.; Tang, H. Three-Dimensional Connectivity of Point-Bar Deposits. J. Sediment. Res. 2010, 80, 440–454. [Google Scholar] [CrossRef]
- Jablonski, B.V.J.; Dalrymple, R.W. Recognition of strong seasonality and climatic cyclicity in an ancient, fluvially dominated, tidally influenced point bar: Middle McMurray Formation, Lower Steepbank River, north-eastern Alberta, Canada. Sedimentology 2016, 63, 552–585. [Google Scholar] [CrossRef]
- Norwood, E.M.; Holland, D.S. Lithofacies Mapping a Descriptive Tool for Ancient Delta Systems of the Louisiana Outer Continental Shelf. GCAGS Trans. 1974, 24, 175–188. [Google Scholar]
- Swenson, J.B.; Paola, C.; Pratson, L.F.; Voller, V.R.; Murray, A.B. Fluvial and marine controls on combined subaerial and subaqueous delta progradation: Morphodynamic modeling of compound-clinoform development. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- La Fontaine, N.M.; Hofmann, M.H. Quantifying the stratigraphic and spatial facies distribution in an ancient mixed-influence delta. Mt. Geol. 2019, 56, 19–44. [Google Scholar] [CrossRef]
- Jones, R.; Marcelissen, R.; Fralick, P. Sedimentology and Stratigraphy of a Large, Pre-Vegetation Deltaic Complex. Front. Earth Sci. 2022, 10, 875838. [Google Scholar] [CrossRef]
- Jacks, C.; Kamola, D.L. Variability in river-dominated deltaic systems: Facies models and drivers based on the Late Cretaceous Panther Tongue Sandstone. Central Utah. In Proceedings of the Second International Meeting for Applied Geoscience & Energy, Houston, TX, USA, 28 August–1 September 2022. [Google Scholar] [CrossRef]
- Guala, M. On the scaling and growth limit of fluvial dunes. J. Geophys. Res. Earth Surf. 2023, 128. [Google Scholar] [CrossRef]
- Innocent, E.O.; Anthony, A.I.; Etobro, A.A.I. Depositional Setting of Sandstones from the Oligocene-Miocene Ogwashi-Asaba Formation, Niger Delta Basin, Nigeria: Evidence from Grain Size Analysis and Geochemistry. Univers. J. Geosci. 2015, 3, 71–82. [Google Scholar] [CrossRef]
- O’Brien, K.C. Stratigraphic Architecture of a Shallow-Water Delta Deposited in a Coastal-Plain Setting: Neslen Formation, Floy Canyon, Utah; Colorado School of Mines: Golden, CO, USA, 2015; p. 1602532. [Google Scholar] [CrossRef]
- Alexander, J.; Fielding, C.R. Coarse-Grained Floodplain Deposits in the Seasonal Tropics: Towards a Better Facies Model. J. Sediment. Res. 2006, 76, 539–556. [Google Scholar] [CrossRef]
- Ahmad, M.Z.; Singh, P. Geochemistry of core sediments from Cauvery delta South-East India: Inferences on weathering and paleo-redox conditions. Quaternaire 2023, 34, 1–25. [Google Scholar] [CrossRef]
- Yuan, X.; Guerit, L.; Braun, J.; Rouby, D.; Shobe, C.M. Thickness of Fluvial Deposits Records Climate Oscillations. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023510. [Google Scholar] [CrossRef]
- Cardenas, B.T.; Stacey, K.; Baran, Z.J. Relationships between fluvial dune cross-set thickness, planview width, and trough geometry. Geology 2023, 51, 1163–1167. [Google Scholar] [CrossRef]
- De Alvaro, M.M. Architecture and Origin of Fluvial Cross-Bedding Based on Flume Experiments and Geological Examples Field Case Studies: Rillo de Gallo, Spain and Northumberland, UK. PhD Thesis, University of East Anglia, Norwich, UK, 2015. [Google Scholar]
- Khan, Z.A.; Tewari, R.C. Lithofacies correlation in Early Permian fluvial Gondwana stratigraphy of southeastern India using cross-association statistics. J. Earth Syst. Sci. 2019, 128, 3. [Google Scholar] [CrossRef]
- Alam, M.M.; Crook, K.A.W.; Taylor, G. Fluvial herring-bone cross-stratification in a modern tributary mouth bar, Coonamble, New South Wales, Australia. Sedimentology 1985, 32, 235–244. [Google Scholar] [CrossRef]
- Malmon, D.V.; Reneau, S.L.; Dunne, T. Sediment sorting and transport by flash floods. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Ikhane, P.R.; Oladipo, O.V.; Oyebolu, O.O. Predicting the depositional environments and transportation mechanisms of sediments using granulometric parameters, bivariate and multivariate analyses. Geosci. Eng. 2019, 65, 11–28. [Google Scholar] [CrossRef]
- Mader, D. Depositional Mechanisms Controlling Formation of Coarse Fluvial Conglomerates in the Lower Triassic Continental Red Beds of Middle Europe; Springer: Berlin/Heidelberg, Germany, 1985; pp. 251–280. [Google Scholar] [CrossRef]
- Restrepo, J.C.; Schrottke, K.; Traini, C.; Ortíz, J.C.; Orejarena, A.; Otero, L.; Higgins, A.; Marriaga, L. Sediment Transport and Geomorphological Change in a High-Discharge Tropical Delta (Magdalena River, Colombia): Insights from a Period of Intense Change and Human Intervention (1990–2010). J. Coast. Res. 2016, 32, 575–589. [Google Scholar] [CrossRef]
- Goswami, P.K.; Deopa, T. Lithofacies characters and depositional processes of a Middle Miocene Lower Siwalik fluvial system of the Himalayan foreland basin, India. J. Asian Earth Sci. 2017, 162, 41–53. [Google Scholar] [CrossRef]
- Colombera, L.; Mountney, N.P. The lithofacies organization of fluvial channel deposits: A meta-analysis of modern rivers. Sediment. Geol. 2019, 383, 16–40. [Google Scholar] [CrossRef]
- Gani, M.R.; Bhattacharya, J.P. Basic Building Blocks and Process Variability of a Cretaceous Delta: Internal Facies Architecture Reveals a More Dynamic Interaction of River, Wave, and Tidal Processes Than Is Indicated by External Shape. J. Sediment. Res. 2007, 77, 284–302. [Google Scholar] [CrossRef]
- Gwinn, V.E. Deduction of flow regime from bedding character in conglomerates and sandstones. J. Sediment. Res. 1964, 34, 656–658. [Google Scholar] [CrossRef]
- Evans, J.E.; Holm-Denoma, C.S. Processes and facies relationships in a Lower(?) Devonian rocky shoreline depositional environment, East Lime Creek Conglomerate, south-western Colorado, USA. Depos. Rec. 2018, 4, 133–156. [Google Scholar] [CrossRef]
- Boulay, S.; Colin, C.; Trentesaux, A.; Clain, S.; Liu, Z.; Lauer-Leredde, C. Sedimentary responses to the Pleistocene climatic variations recorded in the South China Sea. Quat. Res. 2007, 68, 162–172. [Google Scholar] [CrossRef]
- Yi, L.; Yu, H.; Ortiz, J.D.; Xu, X.; Qiang, X.; Huang, H.; Shi, X.; Deng, C. A reconstruction of late Pleistocene relative sea level in the south Bohai Sea, China, based on sediment grain-size analysis. Sediment. Geol. 2012, 281, 88–100. [Google Scholar] [CrossRef]
- Ning, W.; Tang, J.; Filipsson, H.L. Long-term coastal openness variation and its impact on sediment grain-size distribution: A case study from the Baltic Sea. Earth Surf. Dyn. 2016, 4, 773–780. [Google Scholar] [CrossRef]
- Li, M.; Ouyang, T.; Tian, C.; Zhu, Z.; Peng, S.; Tang, Z.; Qiu, Y.; Zhong, H.; Peng, X. Sedimentary responses to the East Asian monsoon and sea level variations recorded in the northern South China Sea over the past 36 kyr. J. Asian Earth Sci. 2019, 171, 213–224. [Google Scholar] [CrossRef]
- Hay, M.J.; Plint, A.G. High-frequency sequences within a retrogradational deltaic succession: Upper Cenomanian Dunvegan Formation, Western Canada Foreland Basin. Depos. Rec. 2020, 6, 524–551. [Google Scholar] [CrossRef]
- Leila, M.; Moscariello, A.; Kora, M.; Mohamed, A.; Samankassou, E. Sedimentology and reservoir quality of a Messinian mixed siliciclastic-carbonate succession, onshore Nile Delta, Egypt. Mar. Pet. Geol. 2020, 112, 104076. [Google Scholar] [CrossRef]
- Adnan, A.; Shukla, U.K. A case of normal regression with sea level transgression: Example from the Ganurgarh shale, Vindhyan basin, Maihar area, M.P. India. J. Geol. Soc. India 2014, 84, 406–416. [Google Scholar] [CrossRef]
- Okoro, A.U.; Igwe, E.O. Lithofacies and depositional environment of the Amasiri Sandstone, southern Benue Trough, Nigeria. J. Afr. Earth Sci. 2014, 100, 179–190. [Google Scholar] [CrossRef]
- Mode, A.W. Sequence stratigraphy and depositional environments of Middle-Late Miocene sediments in the eastern part of the Coastal Swamp depobelt, Niger Delta Basin, Nigeria. Arab. J. Geosci. 2015, 8, 9815–9827. [Google Scholar] [CrossRef]
- Blanco-ferrera, S.; Sanz-lópez, J.; Domínguez-cuesta, M.J.; López-fernández, C.; Alberto, L.; Martos, E. Fundamentos Conceptaules y Didácticos Transgresiones, regresiones y fósiles Transgressions, regressions and fossils. Enseñ. Cienc. Rev. Investig. Exp. Didáct. 2019, 27, 18–30. [Google Scholar]
- Sweet, D.E.; Soreghan, G.S. Estimating magnitudes of relative sea-level change in a coarse-grained fan delta system: Implications for Pennsylvanian glacioeustasy. Geology 2012, 40, 979–982. [Google Scholar] [CrossRef]
- Skene, K.I.; Piper, D.J.W.; Aksu, A.E.; Syvitski, J.P.M. Evaluation of the global oxygen isotope curve as a proxy for Quaternary sea level by modeling of delta progradation. J. Sediment. Res. 1998, 68, 1077–1092. [Google Scholar] [CrossRef]
- Liu, J.; Saito, Y.; Kong, X.; Wang, H.; Wen, C.; Yang, Z.; Nakashima, R. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea. Mar. Geol. 2010, 278, 54–76. [Google Scholar] [CrossRef]
- van Cappelle, M.; Ravnås, R.; Hampson, G.J.; Johnson, H.D. Depositional evolution of a progradational to aggradational, mixed-influenced deltaic succession: Jurassic Tofte and Ile formations, southern Halten Terrace, offshore Norway. Mar. Pet. Geol. 2017, 80, 1–22. [Google Scholar] [CrossRef]
- Obi, I.S.; Onuoha, K.M.; Dim, C.I.P. Highlighting relationships between sand thicknesses, reservoir-seal pairs and paleobathymetry from a sequence stratigraphic perspective: An example from Tortonian Serravallian deposits, onshore Niger Delta Basin. Energy Geosci. 2024, 5, 100215. [Google Scholar] [CrossRef]
- Pettijohn, F.J.; Potter, P.E.; Siever, R. Sand and Sandstone; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2012; p. 552. [Google Scholar]
- Odumoso, S.E.; Oloto, I.N.; Omoboriowo, A.O. Sedimentological and depositional enviroment of the Mid-Maastrichtian Ajali Sandstone, Anambra Basin, Southern Nigeria. Int. J. Sci. Technol. 2013, 3, 26–33. [Google Scholar]
- Tucker, M.E.; Jones, S.J. Sedimentary Petrology; John Wiley & Sons: New York, NY, USA, 2023; p. 418. [Google Scholar]
- Olivarius, M.; Rasmussen, E.S.; Siersma, V.; Knudsen, C.; Pedersen, G.K. Distinguishing fluvio-deltaic facies by bulk geochemistry and heavy minerals: An example from the Miocene of Denmark. Sedimentology 2011, 58, 1155–1179. [Google Scholar] [CrossRef]
- Canale, N.; Ponce, J.J.; Carmona, N.B.; Drittanti, D.I.; Olivera, D.E.; Martínez, M.A.; Bournod, C.N. Sedimentología e icnología de deltas fluvio-dominados afectados por descargas hiperpícnicas de la formación lajas (Jurásico medio), cuenca neuquina, Argentina. Andean Geol. 2015, 42, 114–138. [Google Scholar] [CrossRef]
- Machado, G.M.V.; Albino, J.; Leal, A.P.; Bastos, A.C. Quartz grain assessment for reconstructing the coastal palaeoenvironment. J. S. Am. Earth Sci. 2016, 70, 353–367. [Google Scholar] [CrossRef]
- Shchepetkina, A.; Gingras, M.K.; Mángano, M.G.; Buatois, L.A. Fluvio-tidal transition zone: Terminology, sedimentological and ichnological characteristics, and significance. Earth-Sci. Rev. 2019, 192, 214–235. [Google Scholar] [CrossRef]
- Mazumdar, P.; Mukhopadhyay, A.; Banerjee, T.; Thorie, A.; Eriksson, P.G. Process variations of a Neoproterozoic delta system in response to the influence of mixed-energy systems and sea-level fluctuation: An insight from Simla Group, Lesser Himalaya, India. Arab. J. Geosci. 2021, 14, 596. [Google Scholar] [CrossRef]
- Ogbe, O.B. Reservoir sandstone grain-size distributions: Implications for sequence stratigraphic and reservoir depositional modelling in Otovwe field, onshore Niger Delta Basin, Nigeria. J. Pet. Sci. Eng. 2021, 203, 108639. [Google Scholar] [CrossRef]
- Gresina, F.; Farkas, B.; Fábián, S.Á.; Szalai, Z.; Varga, G. Comparison of fluvial and aeolian sedimentary environments based on morphological analysis of their mineral components. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 23–28 April 2023; p. EGU-13637. [Google Scholar]
- Kasim, S.A.; Ismail, M.S.; Ahmed, N. Grain size statistics and morphometric analysis of Kluang-Niyor, Layang-Layang, and Kampung Durian Chondong tertiary sediments, onshore peninsular Malaysia: Implications for paleoenvironment and depositional processes. J. King Saud. Univ. 2023, 35, 102481. [Google Scholar] [CrossRef]
- Liang, P.; Yang, X. Grain Shape Evolution of Sand-Sized Sediments During Transport From Mountains to Dune Fields. J. Geophys. Res. Earth Surf. 2023, 128, e2022JF006930. [Google Scholar] [CrossRef]
- Gaafar, G.R.; Altunbay, M.; Bal, A.; Anuar, N.B. Ascendancy of continuous profiles of grain-size distribution for depositional environment studies. In Proceedings of the International Petroleum Technology Conference, Kuala Lumpur, Malaysia, 10–12 December 2014; p. IPTC-17754. [Google Scholar]
- Prodger, S.; Russell, P.; Davidson, M. Grain-size distributions on high-energy sandy beaches and their relation to wave dissipation. Sedimentology 2017, 64, 1289–1302. [Google Scholar] [CrossRef]
- Reynolds, T. ‘Grain-size bookkeeping,’ a new aid for siliciclastic systems with examples from paralic environments. J. Sediment. Res. 2019, 89, 976–1016. [Google Scholar] [CrossRef]
- Dong, D.T.; Qiu, L.W.; Ma, P.J.; Yu, G.D.; Wang, Y.Z.; Zhou, S.B.; Yang, B.L.; Huang, H.Q.; Yang, Y.Q.; Li, X. Initiation and evolution of coarse-grained deposits in the Late Quaternary Lake Chenghai source-to-sink system: From subaqueous colluvial apron (subaqueous fans) to Gilbert-type delta. J. Palaeogeogr. 2022, 11, 194–221. [Google Scholar] [CrossRef]
- Davies, D.K.; Ethridge, F.G. Sandstone composition and depositional environment. Am. Assoc. Pet. Geol. Bull. 1975, 59, 239–264. [Google Scholar] [CrossRef]
- Amaral, E.J.; Pryor, W.A. Depositional environment of the St. Peter sandstone deduced by textural analysis. J. Sediment. Res. 1977, 47, 32–52. [Google Scholar] [CrossRef]
- Cox, R.; Lowe, D.R. Quantification of the effects of secondary matrix on the analysis of sandstone composition, and a petrographic-chemical technique for retrieving original framework grain modes of altered sandstones. J. Sediment. Res. 1996, 66, 548–558. [Google Scholar] [CrossRef]
- Baioumy, H.M.; Boulis, S.N. Glauconites from the Bahariya Oasis: An evidence for Cenomanian marine transgression in Egypt. J. Afr. Earth Sci. 2012, 70, 1–7. [Google Scholar] [CrossRef]
- Seraine, M.; Campos, J.E.G.; Martins-Ferreira, M.A.C.; Giorgioni, M.; Angelo, T.V. Tectonic significance of abrupt immature sedimentation in a shallow cratonic margin basin: The Arkose Level, Mesoproterozoic Paranoá Group. J. S. Am. Earth Sci. 2020, 97, 102397. [Google Scholar] [CrossRef]
- Akinlotan, O.O.; Adepehin, E.J.; Rogers, G.H.; Drumm, E.C. Provenance, palaeoclimate and palaeoenvironments of a non-marine Lower Cretaceous facies: Petrographic evidence from the Wealden Succession. Sediment. Geol. 2021, 415, 105848. [Google Scholar] [CrossRef]
- Boboye, O.A.; Jaiyeoba, O.K.; Okon, E.E. Sedimentological characteristics and mineralogical studies of some Cretaceous sandstones in Nigeria: Implications for depositional environment and provenance. J. Sediment. Environ. 2021, 6, 531–550. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Li, X.; Wang, J.; Meng, G.; Shi, B. Mineral compositions of soil in the arid and semiarid region and their environmental significance. J.-Lanzhou Univ. Nat. Sci. 2007, 43, 1. [Google Scholar]
- Pszonka; Wendorff, M. Cathodoluminescence-revealed diagenesis of carbonates and feldspars in Cergowa sandstones (Oligocene), Outer Carpathians. Gospod. Surowcami Miner.-Miner. Resour. Manag. 2014, 30, 21–36. [Google Scholar] [CrossRef]
- Pszonka; Wendorff, M. Carbonate cements and grains in submarine fan sandstones—The Cergowa Beds (Oligocene, Carpathians of Poland)recorded by cathodoluminescence. Int. J. Earth Sci. 2017, 64, 28–53. [Google Scholar] [CrossRef]
- Ding, Z.; Gong, S.; Xiao, G.; Wang, Y.; Yuan, W.; Zhang, J.; Wang, J.; Lai, Z. Episodic sediment accumulation linked to global change in the endorheic Qaidam Basin of the Tibetan Plateau revealed by feldspar luminescence dating. Quat. Geochronol. 2024, 81, 101522. [Google Scholar] [CrossRef]
- Madhavaraju, J.; Armstrong-Altrin, J.S.; James, R.A.; Hussain, S.M. Palaeoenvironment and provenance signatures inferred from quartz grain surface features: A case study from Huatabampo and Altata beaches, Gulf of California, Mexico. J. S. Am. Earth Sci. 2021, 111, 103441. [Google Scholar] [CrossRef]
- Babu, V.; Rai, S.K.; Bhan, U.; Devaraju, J. Chemical weathering of sediment (CWS): A web-based application for chemical weathering study of rocks and sediment. Mater. Today Proc. 2022, 68, 979–985. [Google Scholar] [CrossRef]
- Iqbal, S.; Wagreich, M.; Bibi, M.; Jan, I.U.; Gier, S. Multi-proxy provenance analyses of the Kingriali and Datta formations (Triassic—Jurassic transition): Evidence for westward extension of the neo-Tethys passive margin from the salt range (Pakistan). Minerals 2021, 11, 573. [Google Scholar] [CrossRef]
- Iqbal, S.; Bibi, M.; Wagreich, M. Geochemistry of the Triassic--Jurassic lateritic bauxites of the Salt Range: Implications for eastward extension of the Tethyan bauxite deposits into Pakistan. Int. J. Earth Sci. 2023, 112, 1527–1552. [Google Scholar] [CrossRef]
- Basu, A.; Mookherjee, M.; Clapp, S.; Chariton, S.; Prakapenka, V.B. High-pressure Raman scattering and X-ray diffraction study of kaolinite, Al2Si2O5(OH)4. Appl. Clay Sci. 2023, 245, 107144. [Google Scholar] [CrossRef]
- Fagel, N.; Israde-Alcántara, I.; Safaierad, R.; Rantala, M.; Schmidt, S.; Lepoint, G.; Pellenard, P.; Mattielli, N.; Metcalfe, S. Environmental significance of kaolinite variability over the last centuries in crater lake sediments from Central Mexico. Appl. Clay Sci. 2024, 247, 107211. [Google Scholar] [CrossRef]
- Guo, L.; Wu, J.; Chen, Y.; Xiong, S.; Cui, J.; Ding, Z. Modern silicate weathering regimes across China revealed by geochemical records from surface soils. J. Geophys. Res. Earth Surf. 2022, 127, e2022JF006728. [Google Scholar] [CrossRef]
- Xu, G.; Shen, J.; Algeo, T.J.; Yu, J.; Feng, Q.; Frank, T.D.; Fielding, C.R.; Yan, J.; Deconink, J.F.; Lei, Y. Limited change in silicate chemical weathering intensity during the Permian--Triassic transition indicates ineffective climate regulation by weathering feedbacks. Earth Planet. Sci. Lett. 2023, 616, 118235. [Google Scholar] [CrossRef]
- Yuan, G.; Cao, Y.; Schulz, H.M.; Hao, F.; Gluyas, J.; Liu, K.; Yang, T.; Wang, Y.; Xi, K.; Li, F. A review of feldspar alteration and its geological significance in sedimentary basins: From shallow aquifers to deep hydrocarbon reservoirs. Earth-Sci. Rev. 2019, 191, 114–140. [Google Scholar] [CrossRef]
- Bartz, M.; Peña, J.; Grand, S.; King, G.E. Potential impacts of chemical weathering on feldspar luminescence dating properties. Geochronol. Discuss. 2023, 5, 51–64. [Google Scholar] [CrossRef]
- Yhasnara, M.; Costa, P.J.M.; Dourado, F.; Martins, M.V.A.; Feist, L.; Bellanova, P.; Reicherter, K. Microtextural signatures in quartz grains and foraminifera from tsunami deposits of the Portuguese shelf. Geo-Marine Lett. 2023, 43, 5. [Google Scholar] [CrossRef]
- Marra, K.R.; Madden, M.E.E.; Soreghan, G.S.; Hall, B.L. Chemical weathering trends in fine-grained ephemeral stream sediments of the McMurdo Dry Valleys, Antarctica. Geomorphology 2017, 281, 13–30. [Google Scholar] [CrossRef]
- Uren, A.L.; Laukamp, C.; George, A.D.; Occhipinti, S.A.; Aitken, A.R.A. Inferring sandstone grain size using spectral datasets: An example from the Bresnahan Group, Western Australia. Remote Sens. Environ. 2021, 252, 112109. [Google Scholar] [CrossRef]
- Wu, K.; Liu, S.; Shi, X.; Colin, C.; Bassinot, F.; Lou, Z.; Zhang, H.; Zhu, A.; Fang, X.; Mohamed, C.A.R. The Effect of Size Distribution on the Geochemistry and Mineralogy of Tropical River Sediments and Its Implications regarding Chemical Weathering and Fractionation of Alkali Elements. Lithosphere 2022, 2022, 8425818. [Google Scholar] [CrossRef]
- Janssen, M.; Caracciolo, L.; Bonnell, L.M.; Lander, R.H.; Munnecke, A.; Beltrán-Triviño, A.; Muto, F.; Stollhofen, H. Climatic, depositional and environmental controls on early carbonate cementation in fluvial and shallow marine sandstones. Mar. Pet. Geol. 2023, 156, 106433. [Google Scholar] [CrossRef]
- Drummond, J.B.R.; Pufahl, P.K.; James, N.P.; Layton-Matthews, D.; Kyser, T.K. Sedimentary dolomite in Western Australia and the dolomite problem: Genesis of channel and playa uranium deposits. Sedimentology 2024, 71, 2248–2289. [Google Scholar] [CrossRef]
- Hu, Z.; Bialik, O.M.; Hohl, S.V.; Xia, Z.; Waldmann, N.D.; Liu, C.; Li, W. Response of Mg isotopes to dolomitization during fluctuations in sea level: Constraints on the hydrological conditions of massive dolomitization systems. Sediment. Geol. 2021, 420, 105922. [Google Scholar] [CrossRef]
- Raiswell, R.; Hardisty, D.S.; Lyons, T.W.; Canfield, D.E.; Owens, J.D.; Planavsky, N.J.; Poulton, S.W.; Reinhard, C.T. The iron paleoredox proxies: A guide to the pitfalls, problems and proper practice. Am. J. Sci. 2018, 318, 491–526. [Google Scholar] [CrossRef]
- Sindol, G.P.; Babechuk, M.G.; Conliffe, J.; Slack, J.F.; Rosca, C.; Schoenberg, R. Shallow-ocean and atmospheric redox signatures preserved in the ca. 1.88 Ga Sokoman iron formation, Labrador Trough, Canada. Precambrian Res. 2022, 379, 106750. [Google Scholar] [CrossRef]
- Song, Q.; Hong, H.; Algeo, T.J.; Fang, Q.; Zhao, C.; Liu, C.; Xu, Y. Clay mineralogy mediated by pH and chemical weathering intensity of Permian--Triassic boundary K-bentonites at Dongpan (Guangxi, South China). Chem. Geol. 2023, 617, 121262. [Google Scholar] [CrossRef]
- Ling, C.; Liu, Z.; Yu, X.; Zhao, Y.; Siringan, F.P.; Le, K.P.; Sathiamurthy, E.; You, C.F.; Chen, K. Clay minerals control silicon isotope variations of fine-grained river sediments: Implication for the trade-off between physical erosion and chemical weathering. Chem. Geol. 2024, 662, 122249. [Google Scholar] [CrossRef]
- Moore, P.S. Stratigraphy and Sedimentology of the Billy Creek Formation (Cambrian, Flinders Ranges) and Its Equivalents on the Northeast Coast of Kangaroo Island, South Australia. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 1979. Available online: https://digital.library.adelaide.edu.au/items/60329f31-468a-47e5-aa6b-679280bacec4 (accessed on 21 July 2025).
- Singer, A.; Galan, E. Palygorskite-Sepiolite: Occurrences, Genesis and Uses; Elsevier: Amsterdam, The Netherlands, 2000; p. 339. [Google Scholar]
- Papoulis, D.; Tsolis-Katagas, P.; Katagas, C. Progressive stages in the formation of kaolin minerals of different morphologies in the weathering of plagioclase. Clays Clay Miner. 2004, 52, 275–286. [Google Scholar] [CrossRef]
- Deon, F.; van Ruitenbeek, F.; van der Werff, H.; van der Meijde, M.; Marcatelli, C. Detection of interlayered Illite/smectite clay minerals with XRD, SEM analyses and reflectance spectroscopy. Sensors 2022, 22, 3602. [Google Scholar] [CrossRef]
- Azzam, F.; Blaise, T.; Patrier, P.; Beaufort, D.; Barbarand, J.; Elmola, A.A.; Brigaud, B.; Portier, E.; Clerc, S. Impact of sediment provenance and depositional setting on chlorite content in Cretaceous turbiditic sandstones, Norway. Basin Res. 2024, 36, e12867. [Google Scholar] [CrossRef]
- Šegvić, B.; Benvenuti, A.; Moscariello, A. Illite-smectite-rich clay parageneses from quaternary tunnel valley sediments of the Dutch Southern North Sea—Mineral origin and paleoenvironment implications. Clays Clay Miner. 2016, 64, 608–627. [Google Scholar] [CrossRef]
- Rong, K.; Zeng, Z.; Yin, X.; Chen, S.; Wang, X.; Qi, H.; Ma, Y. Smectite formation in metalliferous sediments near the East Pacific Rise at 13 N. Acta Oceanol. Sin. 2018, 37, 67–81. [Google Scholar] [CrossRef]
- Yin, K.; Hong, H.; Churchman, G.J.; Li, Z.; Fang, Q. Mixed-layer illite-vermiculite as a paleoclimatic indicator in the Pleistocene red soil sediments in Jiujiang, southern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 510, 140–151. [Google Scholar] [CrossRef]
- Guo, N.; Guo, W.; Shi, W.; Huang, Y.; Guo, Y.; Lian, D. Characterization of Illite Clays associated with the Sinongduo low sulfidation epithermal deposit, Central Tibet using field SWIR spectrometry. Ore Geol. Rev. 2020, 120, 103228. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta 1984, 48, 1523–1534. [Google Scholar] [CrossRef]
- Aswad, M. Calculation of Mineralogical and Chemical Weathering Indices (Xd, MIA and CIA) and their Significance in Soils at Selected Areas in Northern Iraq. Iraqi Natl. J. Earth Sci. 2022, 22, 1–14. [Google Scholar] [CrossRef]
- Wang, C.; Ding, L.; Cai, F.; Zhang, L.; Li, Z.; Yue, Y. Rifting of the Indian passive continental margin: Insights from the Langjiexue basalts in the central Tethyan Himalaya, southern Tibet. Bulletin 2022, 134, 2633–2648. [Google Scholar] [CrossRef]
- Bahlburg, H.; Dobrzinski, N. Chapter 6 A review of the Chemical Index of Alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions. Geol. Soc. Lond. Mem. 2011, 36, 81–92. [Google Scholar] [CrossRef]
- Shao, J.; Yang, S. Does chemical index of alteration (CIA) reflect silicate weathering and monsoonal climate in the Changjiang River basin? Chin. Sci. Bull. 2012, 57, 1178–1187. [Google Scholar] [CrossRef]
- Partridge, T.C. Paleoclimates of the Arid and Semi-Arid Zones of Southern Africa During the Last Climatic Cycle; Société géologique de France: Paris, France, 1995; pp. 73–83. [Google Scholar]
- Hoelzmann, P.; Gasse, F.; Dupont, L.M.; Salzmann, U.; Staubwasser, M.; Leuschner, D.C.; Sirocko, F. Palaeoenvironmental Changes in the Arid and Sub Arid Belt (Sahara-Sahel-Arabian Peninsula) from 150 kyr to Present; Springer: Berlin/Heidelberg, Germany, 2004; pp. 219–256. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, P.Z.; Spotl, C.; Edwards, R.L.; Cai, Y.J.; Zhang, D.Z.; Sang, W.C.; Tan, M.; An, Z.S. The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophys. Res. Lett. 2012, 39, 1–5. [Google Scholar] [CrossRef]
- Spötl, C.; Houseknecht, D.W.; Jaques, R. Clay Mineralogy and illite crystallinity of the Atoka Formation, Arkoma Basin, and frontal Ouachita Mountains. Clays Clay Miner. 1993, 41, 745–754. [Google Scholar] [CrossRef]
- Modi, A.L. Processes Controlling the Composition of First-Cycle Sediments Deposited in an Arid-Climate, with Implications for Provenance Reconstruction Studies; University of Tennessee–Knoxville: Knoxville, TN, USA, 2011. [Google Scholar]
- Warke, P. Weathering in Arid Regions; Academic Press: Cambridge, MA, USA, 2013; pp. 197–227. [Google Scholar] [CrossRef]
- Zhu, B.; Yang, X. Chemical Weathering of Detrital Sediments in the Taklamakan Desert, Northwestern China. Geogr. Res. 2009, 47, 57–70. [Google Scholar] [CrossRef]
- Schoonejans, J.; Vanacker, V.; Opfergelt, S.; Ameijeiras-Mariño, Y.; Christl, M. Kinetically limited weathering at low denudation rates in semiarid climatic conditions. J. Geophys. Res. 2016, 121, 336–350. [Google Scholar] [CrossRef]
- Kalinin, P.I.; Kudrevatykh, I.Y.; Malyshev, V.V.; Pilguy, L.S.; Buhonov, A.V.; Mitenko, G.V.; Alekseev, A.O. Chemical weathering in semi-arid soils of the Russian plain. Catena 2021, 206, 105554. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, X.; Fu, Y. Study on deterioration of strength parameters of sandstone under the action of dry-wet cycles in acid and alkaline environment. Arab. J. Sci. Eng. 2018, 43, 335–348. [Google Scholar] [CrossRef]
- Retallack, G.J. Cambrian paleosols and landscapes of South Australia. Aust. J. Earth Sci. 2008, 55, 1083–1106. [Google Scholar] [CrossRef]
- Nesbitt; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Paikaray, S.; Banerjee, S.; Mukherji, S. Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on provenance, tectonics and paleoweathering. J. Asian Earth Sci. 2008, 32, 34–48. [Google Scholar] [CrossRef]
- El Mourabet, M.; Barakat, A.; Zaghloul, M.N.; El Baghdadi, M. Geochemistry of the Miocene Zoumi flysch thrust-top basin (External Rif, Morocco): New constraints on source area weathering, recycling processes, and paleoclimate conditions. Arab. J. Geosci. 2018, 11, 126. [Google Scholar] [CrossRef]
- Usui, Y.; Yamazaki, T. K-feldspar enrichment in the Pacific pelagic sediments before Miocene. Prog. Earth Planet. Sci. 2023, 10, 1–12. [Google Scholar] [CrossRef]
- Furlan, S.; Clauer, N.; Chaudhuri, S.; Sommer, F. K transfer during burial diagenesis in the mahakam delta basin (kalimantan, Indonesia). Clays Clay Miner. 1996, 44, 157–169. [Google Scholar] [CrossRef]
- Tank, R. Clay mineral composition of the Tipton shale member of the Green River Formation (Eocene) of Wyoming. J. Sediment. Res. 1969, 39, 1593–1595. [Google Scholar] [CrossRef]
- Okunlola, O.A.; Egbulem, C. Geological Setting, Compositional and Economic Appraisal of Clay-Shale Occurrence in Itu-Mbonuso/Iwere Area, South-Eastern Nigeria. J. Geogr. Geol. 2015, 7, 85. [Google Scholar] [CrossRef]
- Graham, E.R. The plagioclase feldspars as an index to soil weathering. Soil. Sci. Soc. Am. J. 1950, 14, 300–302. [Google Scholar] [CrossRef]
- Howell, J.A.; Mountney, N.P. Climatic cyclicity and accommodation space in arid to semi-arid depositional systems: An example from the Rotliegend Group of the UK southern North Sea. Geol. Soc. Lond. Spec. Publ. 1997, 123, 63–86. [Google Scholar] [CrossRef]
- Tunçay, T.; Dengiz, O.; Bayramin, İ.; Kilic, S.; Başkan, O. Chemical weathering indices applied to soils developed on old lake sediments in a semi-arid region of Turkey. Eurasian J. Soil Sci. 2019, 8, 60–72. [Google Scholar] [CrossRef]
- Garzanti, E.; Padoan, M.; Setti, M.; Najman, Y.; Peruta, L.; Villa, I.M. Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds. Geochem. Geophys. Geosyst. 2013, 14, 292–316. [Google Scholar] [CrossRef]
- Dai, A.; Song, M. Little influence of Arctic amplification on mid-latitude climate. Nat. Clim. Change 2020, 10, 231–237. [Google Scholar] [CrossRef]
- Roy, P.D.; Caballero, M.; Lozano, R.; Smykatz-Kloss, W. Geochemistry of late quaternary sediments from Tecocomulco lake, central Mexico: Implication to chemical weathering and provenance. Geochemistry 2008, 68, 383–393. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Guo, W.Y.; Zhang, G. Application of some geochemical indicators in determining of sedimentary environment of the Funing Group (Paleogene), Jin-Hu Depression, Kiangsu Province. J. Tongji Univ. 1979, 7, 51–60. [Google Scholar]
- Thorpe, C.L.; Lloyd, J.R.; Law, G.T.; Burke, I.T.; Shaw, S.; Bryan, N.D.; Morris, K. Strontium sorption and precipitation behaviour during bioreduction in nitrate impacted sediments. Chem. Geol. 2012, 306, 114–122. [Google Scholar] [CrossRef]
- Liu, B.J. Sedimentary Petrology; Geological Publishing House: Beijing, China, 1980. [Google Scholar]
- Liu, Y.J.; Cao, L.M.; Li, Z.; Wang, H.N.; Chu, T.Q.; Zhang, J.R. Element Geochemistry; Science China Press: Beijing, China, 1984; p. 365. [Google Scholar]
- Qian, L.J.; Chen, H.D.; Lin, L.B.; Xu, S.L.; Ou, L.H. Geochemical characteristics and environmental implications of Middle Jurassic Shaximiao Formation, western margin of Sichuan Basin. Acta Sedimentol. Sin. 2012, 30, 1061–1071. [Google Scholar]
- Kessler, L.G. Diagenetic sequence in ancient sandstones deposited under desert climatic conditions. J. Geol. Soc. 1978, 135, 41–49. [Google Scholar] [CrossRef]
- Fei, G.; Li, B.; Yang, J.; Chen, X.; Luo, W.; Li, Y.; Tang, W.; Gu, C.; Zhong, W.; Yang, G. Geology, Fluid Inclusion Characteristics and H-O-C Isotopes of Large Lijiagou Pegmatite Spodumene Deposit in Songpan-Garze Fold Belt, Eastern Tibet: Implications for ore Genesis. Resour. Geol. 2018, 68, 37–50. [Google Scholar] [CrossRef]
- Huang, S.; Lin, C.; Zhang, X.; Zhang, N. Controls of diagenesis on the quality of shallowly buried terrestrial coarse-grained clastic reservoirs: A case study of the Eocene Shahejie Formation in the Damintun Sag, Bohai Bay Basin, Eastern China. J. Asian Earth Sci. 2021, 221, 104950. [Google Scholar] [CrossRef]
- Sricharoenvech, P.; Siebecker, M.G.; Tappero, R.; Landrot, G.; Fischel, M.H.; Sparks, D.L. Chromium speciation and mobility in contaminated coastal urban soils affected by water salinity and redox conditions. J. Hazard. Mater. 2023, 462, 132661. [Google Scholar] [CrossRef]
- Babu, S.S.; Rao, V.P.; Satyasree, N.; Ramana, R.V.; Mohan, M.R.; Sawant, S.S. Mineralogy and geochemistry of the sediments in rivers along the east coast of India: Inferences on weathering and provenance. J. Earth Syst. Sci. 2021, 130, 1–24. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hasan, M.F.; Hasan, A.S.M.M.; Alam, M.S.; Biswas, P.K.; Zaman, M.N. Chemical weathering, provenance, and tectonic setting inferred from recently deposited sediments of Dharla River, Bangladesh. J. Sediment. Environ. 2021, 6, 73–91. [Google Scholar] [CrossRef]
- Gablina, I.F.; Malinovskii, Y.M. Periodicity of copper accumulation in the Earth’s sedimentary shell. Lithol. Miner. Resour. 2008, 43, 136–153. [Google Scholar] [CrossRef]
- Volkov, A.V.; Ras, G.; Novikov, I.A.; Razumovsky, A.A.; Murashov, K.Y.; Sidorova, N.V. Geochemical features and formation conditions of the cupriferous sandstones of the Orenburg Pre-Urals. Lithosphere 2018, 18, 593–606. [Google Scholar] [CrossRef]
- Holse, C.; Elkjær, C.F.; Nierhoff, A.; Sehested, J.; Chorkendorff, I.; Helveg, S.; Nielsen, J.H. Dynamic Behavior of CuZn Nanoparticles under Oxidizing and Reducing Conditions. J. Phys. Chem. C 2014, 119, 2804–2812. [Google Scholar] [CrossRef]
- Shanmugam, G. Significance of framework dissolution in interpreting sandstone provenance. Am. Assoc. Pet. Geol. Bull. 1985, 69, 146. [Google Scholar] [CrossRef]
- Sharma, R.P.; Raja, P.; Bhaskar, B.P. Pedogenesis and mineralogy of alluvial soils from semi-arid southeastern part of Rajasthan in Aravalli range, India. J. Geol. Soc. India 2020, 95, 59–66. [Google Scholar] [CrossRef]
- Polzer, W.L.; Hem, J.D. The dissolution of kaolinite. J. Geophys. Res. 1965, 70, 6233–6240. [Google Scholar] [CrossRef]
- Dur, J.C.; Wiriyakitnateekul, W.; Lesturgez, G.; Elsass, F.; Pernes, M.; Hartmann, C.; Tessier, D. Clay mineral dissolution following intensive cultivation in a tropical sandy soil. Laser 2005, 350, 9.5–13.1. Available online: https://www.fao.org/4/ag125e/AG125E12.htm (accessed on 21 July 2025).
- Saha, S.; Reza, A.H.M.S.; Roy, M.K. Illite crystallinity index an indicator of physical weathering of the Sediments of the Tista River, Rangpur, Bangladesh. Int. J. Adv. Geosci. 2020, 8, 27–32. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Zhang, C.; Qin, X.; Shen, J.; He, H.; Pan, Y. Weathering of Chlorite Illite Deposits in the Hyperarid Qaidam Basin: Implications to Post-Depositional Alteration on Martian Clay Minerals. Front. Astron. Sp. Sci. 2022, 9, 875547. [Google Scholar] [CrossRef]
- Poursoltani, M.R. Architectural analysis of an Early Cambrian braided-river system on the north Gondwana margin: The lower sandstone of the Lalun Formation in the Shirgesht area, central Iran. J. Afr. Earth Sci. 2020, 171, 103935. [Google Scholar] [CrossRef]
- Bayet-Goll, A.; Geyer, G.; Daraei, M. Tectonic and eustatic controls on the spatial distribution and stratigraphic architecture of late early Cambrian successions at the northern Gondwana margin: The siliciclastic-carbonate successions of the Lalun Formation in central Iran. Mar. Pet. Geol. 2018, 98, 199–228. [Google Scholar] [CrossRef]
- Poursoltani, M.R.; Gibling, M.R.; Pe-Piper, G. Diagenesis, burial history, and hydrocarbon potential of Cambrian sandstone in the northern continental margin of Gondwana: A case study of the Lalun Formation of central Iran. J. Asian Earth Sci. 2019, 172, 143–169. [Google Scholar] [CrossRef]
- Mergl, M.; Hoşgör, İ.; Yilmaz, I.O.; Zamora, S.; Colmenar, J. Divaricate patterns in Cambro-Ordovician obolid brachiopods from Divaricate patterns in Cambro-Ordovician obolid brachiopods from Gondwana. Hist. Biol. 2017, 30, 1015–1029. [Google Scholar] [CrossRef]
- Gürsu, S.; Köksal, S.; Möller, A.; Kamenov, G.D.; Göncüoğlu, M.C.; Hefferan, K.; Mueller, P.A.; Kozlu, H. Combined U-Pb ages and Lu-Hf systematics of detrital zircons from Early Cambrian Gondwanan siliciclastic rocks in S Turkey: Provenance and correlations with coeval successions in peri-Gondwanan terranes. Gondwana Res. 2022, 107, 423–450. [Google Scholar] [CrossRef]
- Saeed, A.; Evans, J.E. Subsurface facies analysis of the late Cambrian Mt. Simon Sandstone in western Ohio (midcontinent North America). Open J. Geol. 2012, 2, 35–47. [Google Scholar] [CrossRef]
- Cornish, F.G. Tidally influenced deposits of the Hickory Sandstone, Cambrian, Central Texas; Texas Scholar Works; University of Texas Libraries: Austin, TX, USA, 1975; Available online: http://hdl.handle.net/2152/20401 (accessed on 21 July 2025).
- Teran, I.A.P. Stratal Architecture and Sedimentology of a Portion of the Upper Cambrian Hickory Sandstone, Central Texas, USA.; Texas A & M University: Bizzell St, TX, USA, 2010. [Google Scholar]
- El-Araby, A.; Abdel-Motelib, A. Depositional facies of the Cambrian Araba Formation in the Taba region, east Sinai, Egypt. J. Afr. Earth Sci. 1999, 29, 429–447. [Google Scholar] [CrossRef]
- Khalifa, M.A.; Soliman, H.E.; Wanas, H.A. The Cambrian Araba Formation in northeastern Egypt: Facies and depositional environments. J. Asian Earth Sci. 2006, 27, 873–884. [Google Scholar] [CrossRef]
- Tawfik, H.A.; Ghandour, I.M.; Maejima, W.; Abdel-Hameed, A.T. Petrography and geochemistry of the Lower Paleozoic Araba Formation, northern Eastern Desert, Egypt: Implications for provenance, tectonic setting and weathering signature. J. Geosci. Osaka City Univ. 2011, 54, 1–16. [Google Scholar] [CrossRef]
- Benssaou, M.; Hamoumi, N. The western Anti-Atlas of Morocco: Sedimentological and palaeogeographical formation studies in the Early Cambrian. J. Afr. Earth Sci. 2001, 32, 351–372. [Google Scholar] [CrossRef]
- Hamberg, L. Tidal and Seasonal Cycles in a Lower Cambrian Shallow Marine Sandstone (Hardeberga Fm.); Mem. 16, 255-273; CSPG Special Publication: Scania, Sweden, 1991. [Google Scholar]
- Golonka, J.; Porębski, S.J.; Barmuta, J.; Papiernik, B.; Bębenek, S.; Barmuta, M.; Botor, D.; Pietsch, K.; Słomka, T. Palaeozoic palaeogeography of the East European Craton (Poland) in the framework of global plate tectonics. Ann. Soc. Geol. Pol. 2019, 87, 381–403. [Google Scholar] [CrossRef]
- Wendorff, M. Facies architecture of the Cambrian succession at the western margin of Baltica in the Podlasie region (E Poland). Ann. Soc. Geol. Pol. 2019, 89, 453–469. [Google Scholar] [CrossRef]
- McIlroy, D.; Brasier, M.D. Ichnological evidence for the Cambrian explosion in the Ediacaran to Cambrian succession of Tanafjord, Finnmark, northern Norway. Geol. Soc. Lond. Spéc. Publ. 2016, 448, 351–368. [Google Scholar] [CrossRef]
- Droste, H.H.J. Stratigraphy of the lower Paleozoic Haima supergroup of Oman. GeoArabia 1997, 2, 419–472. [Google Scholar] [CrossRef]
- Al-Husseini, M.I. Early Cambrian Asfar Sequence. GeoArabia 2010, 15, 137–160. [Google Scholar] [CrossRef]
- Powell, J.H.; Abed, A.M.; Le Nindre, Y.-M. Cambrian stratigraphy of Jordan. GeoArabia 2014, 19, 81–134. [Google Scholar] [CrossRef]
- Blanco, G.; Rajesh, H.M.; Gaucher, C.; Germs, G.J.B.; Chemale, F., Jr. Provenance of the Arroyo del Soldado Group (Ediacaran to Cambrian, Uruguay): Implications for the paleogeographic evolution of southwestern Gondwana. Precambrian Res. 2009, 171, 57–73. [Google Scholar] [CrossRef]
- Geyer, G. The Fish River Subgroup in Namibia: Stratigraphy, depositional environments and the Proterozoic--Cambrian boundary problem revisited. Geol. Mag. 2005, 142, 465–498. [Google Scholar] [CrossRef]
- Blanco, G.; Germs, G.J.B.; Rajesh, H.M.; Chemale, F., Jr.; Dussin, I.A.; Justino, D. Provenance and paleogeography of the Nama Group (Ediacaran to early Palaeozoic, Namibia): Petrography, geochemistry and U--Pb detrital zircon geochronology. Precambrian Res. 2011, 187, 15–32. [Google Scholar] [CrossRef]
- Selvaraj, K.; Chen, C.T.A. Moderate chemical weathering of subtropical Taiwan: Constraints from solid-phase geochemistry of sediments and sedimentary rocks. J. Geol. 2006, 114, 101–116. [Google Scholar] [CrossRef]
S/No | Section | Location | Thickness (m) | Samples | |||||
---|---|---|---|---|---|---|---|---|---|
Total | Sandstone | Shale | Petrography | XRD | Geochemistry | ||||
1 | Khewra Gorge (KG) | 32°40′5.26″ N 73°0′13.68″ E | 143 | 55 | 49 | 6 | 33 | 15 | 20 |
2 | Nilawahan Gorge (NW) | 32°38′13.19″ N 72°35′22.80″ E | 78 | 53 | 48 | 5 | 26 | 9 | 16 |
3 | Vasnal Village (VS) | 32°42′54.13″ N 72°32′5.49″ E | 22 | 19 | 17 | 2 | 12 | 4 | 8 |
4 | Khan Zaman Nala (KZ) | 32°32′6.88″ N 71°48′5.02″ E | 67 | 50 | 42 | 8 | 29 | 12 | 16 |
Code | Lithofacies | Key Features | Vertical and Lateral Distribution | Lithofacies Association | Depositional Settings |
---|---|---|---|---|---|
CMFShL | Channel Margin and Floodplain Shale Lithofacies | Laminated, maroon and olive-green shale, low bioturbation | Lower parts, repeated in middle and upper parts of KG (3 cycles), KZ (4 cycles), NW (1 cycle); absent in VS | Channel margin, overbank | Fluvio–deltaic; channel margin and overbank areas |
CMSL | Channel Margin Sandstone Lithofacies | Fine-grained sandstone, ripples, desiccation cracks, cross bedding, soft sedimentary deformation | Lower parts, some occurrences in middle and upper sections of KG, KZ, and NW | Channel margin, distributary channels | Fluvio–deltaic with low- to moderate-energy conditions; channel margin, distributary channels, delta front, mouth bars |
DLDPL | Delta Lobe/Delta Plain Lithofacies | Interbedded fine sandstone and shale, cyclic variations in thickness | Present in all sections with interbedding cycles | Delta lobe, floodplain | Cyclic deposition indicating fluctuating flow energy; delta plain environment |
CBSL | Channel Belt Sandstone Lithofacies | Medium to coarse-grained sandstone, tabular and tangential cross-beds, planar lamination, herringbone stratification | Middle parts, tabular cross-beds widespread in KG, NW, and KZ; herringbone cross-beds in KG and NW | Channel belts | High-energy depositional settings, such as fluvial and delta distributary channels and delta fronts |
CBCL | Channel Belt Conglomerate Lithofacies | Clast-supported quartz conglomerate | Contact with the Kussak Formation, found at the top in KG and vs. only | High-energy river discharge, transition zone | High-energy fluvial settings marking transitions to deltaic conditions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qanit, A.B.; Iqbal, S.; Kamran, A.H.; Idrees, M.; Sames, B.; Wagreich, M. Sedimentary Facies and Geochemical Signatures of the Khewra Sandstone: Reconstructing Cambrian Paleoclimates and Paleoweathering in the Salt Range, Pakistan. Minerals 2025, 15, 789. https://doi.org/10.3390/min15080789
Qanit AB, Iqbal S, Kamran AH, Idrees M, Sames B, Wagreich M. Sedimentary Facies and Geochemical Signatures of the Khewra Sandstone: Reconstructing Cambrian Paleoclimates and Paleoweathering in the Salt Range, Pakistan. Minerals. 2025; 15(8):789. https://doi.org/10.3390/min15080789
Chicago/Turabian StyleQanit, Abdul Bari, Shahid Iqbal, Azharul Haq Kamran, Muhammad Idrees, Benjamin Sames, and Michael Wagreich. 2025. "Sedimentary Facies and Geochemical Signatures of the Khewra Sandstone: Reconstructing Cambrian Paleoclimates and Paleoweathering in the Salt Range, Pakistan" Minerals 15, no. 8: 789. https://doi.org/10.3390/min15080789
APA StyleQanit, A. B., Iqbal, S., Kamran, A. H., Idrees, M., Sames, B., & Wagreich, M. (2025). Sedimentary Facies and Geochemical Signatures of the Khewra Sandstone: Reconstructing Cambrian Paleoclimates and Paleoweathering in the Salt Range, Pakistan. Minerals, 15(8), 789. https://doi.org/10.3390/min15080789