Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (399)

Search Parameters:
Keywords = deformation field theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4169 KiB  
Article
An Anisotropic Failure Characteristic- and Damage-Coupled Constitutive Model
by Ruiqing Chen, Jieyu Dai, Shuning Gu, Lang Yang, Laohu Long and Jundong Wang
Modelling 2025, 6(3), 75; https://doi.org/10.3390/modelling6030075 (registering DOI) - 1 Aug 2025
Abstract
This study proposes a coupled constitutive model that captures the anisotropic failure characteristics and damage evolution of nickel-based single-crystal (SX) superalloys under various temperature conditions. The model accounts for both creep rate and material damage evolution, enabling accurate prediction of the typical three-stage [...] Read more.
This study proposes a coupled constitutive model that captures the anisotropic failure characteristics and damage evolution of nickel-based single-crystal (SX) superalloys under various temperature conditions. The model accounts for both creep rate and material damage evolution, enabling accurate prediction of the typical three-stage creep curves, macroscopic fracture morphologies, and microstructural features under uniaxial tensile creep for specimens with different crystallographic orientations. Creep behavior of SX superalloys was simulated under multiple orientations and various temperature-stress conditions using the proposed model. The resulting creep curves aligned well with experimental observations, thereby validating the model’s feasibility and accuracy. Furthermore, a finite element model of cylindrical specimens was established, and simulations of the macroscopic fracture morphology were performed using a user-defined material subroutine. By integrating the rafting theory governed by interfacial energy density, the model successfully predicts the rafting morphology of the microstructure at the fracture surface for different crystallographic orientations. The proposed model maintains low programming complexity and computational cost while effectively predicting the creep life and deformation behavior of anisotropic materials. The model accurately captures the three-stage creep deformation behavior of SX specimens and provides reliable predictions of stress fields and microstructural changes at critical cross-sections. The model demonstrates high accuracy in life prediction, with all predicted results falling within a ±1.5× error band and an average error of 14.6%. Full article
Show Figures

Graphical abstract

17 pages, 6326 KiB  
Article
Dynamic Stress Wave Response of Thin-Walled Circular Cylindrical Shell Under Thermal Effects and Axial Harmonic Compression Boundary Condition
by Desejo Filipeson Sozinando, Patrick Nziu, Bernard Xavier Tchomeni and Alfayo Anyika Alugongo
Appl. Mech. 2025, 6(3), 55; https://doi.org/10.3390/applmech6030055 - 28 Jul 2025
Viewed by 302
Abstract
The interaction between thermal fields and mechanical loads in thin-walled cylindrical shells introduces complex dynamic behaviors relevant to aerospace and mechanical engineering applications. This study investigates the axial stress wave propagation in a circular cylindrical shell subjected to combined thermal gradients and time-dependent [...] Read more.
The interaction between thermal fields and mechanical loads in thin-walled cylindrical shells introduces complex dynamic behaviors relevant to aerospace and mechanical engineering applications. This study investigates the axial stress wave propagation in a circular cylindrical shell subjected to combined thermal gradients and time-dependent harmonic compression. A semi-analytical model based on Donnell–Mushtari–Vlasov (DMV) shells theory is developed to derive the governing equations, incorporating elastic, inertial, and thermal expansion effects. Modal solutions are obtained to evaluate displacement and stress distributions across varying thermal and mechanical excitation conditions. Empirical Mode Decomposition (EMD) and Instantaneous Frequency (IF) analysis are employed to extract time–frequency characteristics of the dynamic response. Complementary Finite Element Analysis (FEA) is conducted to assess modal deformations, stress wave amplification, and the influence of thermal softening on resonance frequencies. Results reveal that increasing thermal gradients leads to significant reductions in natural frequencies and amplifies stress responses at critical excitation frequencies. The combination of analytical and numerical approaches captures the coupled thermomechanical effects on shell dynamics, providing an understanding of resonance amplification, modal energy distribution, and thermal-induced stiffness variation under axial harmonic excitation across thin-walled cylindrical structures. Full article
Show Figures

Figure 1

18 pages, 1519 KiB  
Article
Static and Vibration Analysis of Imperfect Thermoelastic Laminated Plates on a Winkler Foundation
by Jiahuan Liu, Yunying Zhou, Yipei Meng, Hong Mei, Zhijie Yue and Yan Liu
Materials 2025, 18(15), 3514; https://doi.org/10.3390/ma18153514 - 26 Jul 2025
Viewed by 226
Abstract
This study introduces an analytical framework that integrates the state-space method with generalized thermoelasticity theory to obtain exact solutions for the static and dynamic behaviors of laminated plates featuring imperfect interfaces and resting on a Winkler foundation. The model comprehensively accounts for the [...] Read more.
This study introduces an analytical framework that integrates the state-space method with generalized thermoelasticity theory to obtain exact solutions for the static and dynamic behaviors of laminated plates featuring imperfect interfaces and resting on a Winkler foundation. The model comprehensively accounts for the foundation-structure interaction, interfacial imperfection, and the coupling between the thermal and mechanical fields. A parametric analysis explores the impact of the dimensionless foundation coefficient, interface flexibility coefficient, and thermal conductivity on the static and dynamic behaviors of the laminated plates. The results indicate that a lower foundation stiffness results in higher sensitivity of structural deformation with respect to the foundation parameter. Furthermore, an increase in interfacial flexibility significantly reduces the global stiffness and induces discontinuities in the distribution of stress and temperature. Additionally, thermal conductivity governs the continuity of interfacial heat flux, while thermo-mechanical coupling amplifies the variations in specific field variables. The findings offer valuable insights into the design and reliability evaluation of composite structures operating in thermally coupled environments. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

37 pages, 11546 KiB  
Review
Advances in Interferometric Synthetic Aperture Radar Technology and Systems and Recent Advances in Chinese SAR Missions
by Qingjun Zhang, Huangjiang Fan, Yuxiao Qin and Yashi Zhou
Sensors 2025, 25(15), 4616; https://doi.org/10.3390/s25154616 - 25 Jul 2025
Viewed by 372
Abstract
With advancements in radar sensors, communications, and computer technologies, alongside an increasing number of ground observation tasks, Synthetic Aperture Radar (SAR) remote sensing is transitioning from being theory and technology-driven to being application-demand-driven. Since the late 1960s, Interferometric Synthetic Aperture Radar (InSAR) theories [...] Read more.
With advancements in radar sensors, communications, and computer technologies, alongside an increasing number of ground observation tasks, Synthetic Aperture Radar (SAR) remote sensing is transitioning from being theory and technology-driven to being application-demand-driven. Since the late 1960s, Interferometric Synthetic Aperture Radar (InSAR) theories and techniques have continued to develop. They have been applied significantly in various fields, such as in the generation of global topography maps, monitoring of ground deformation, marine observations, and disaster reduction efforts. This article classifies InSAR into repeated-pass interference and single-pass interference. Repeated-pass interference mainly includes D-InSAR, PS-InSAR and SBAS-InSAR. Single-pass interference mainly includes CT-InSAR and AT-InSAR. Recently, China has made significant progress in the field of SAR satellite development, successfully launching several satellites equipped with interferometric measurement capabilities. These advancements have driven the evolution of spaceborne InSAR systems from single-frequency to multi-frequency, from low Earth orbit to higher orbits, and from single-platform to multi-platform configurations. These advancements have supported high precision and high-temporal-resolution land observation, and promoted the broader application of InSAR technology in disaster early warning, ecological monitoring, and infrastructure safety. Full article
Show Figures

Figure 1

53 pages, 560 KiB  
Review
Notes on Derived Deformation Theory for Field Theories and Their Symmetries
by Ingmar Saberi
Symmetry 2025, 17(8), 1172; https://doi.org/10.3390/sym17081172 - 22 Jul 2025
Viewed by 222
Abstract
These notes are an informal overview of techniques related to deformation theory in the context of physics. Beginning from motivation for the concept of a sheaf, they build up through derived functors, resolutions, and the functor of points to the notion of a [...] Read more.
These notes are an informal overview of techniques related to deformation theory in the context of physics. Beginning from motivation for the concept of a sheaf, they build up through derived functors, resolutions, and the functor of points to the notion of a moduli problem, emphasizing physical motivation and the principles of locality and general covariance at each step. They are primarily aimed at those who have some prior exposure to quantum field theory and are interested in acquiring some intuition or orientation regarding modern mathematical methods. A couple of small things are new, including a discussion of the twist of N=1 conformal supergravity in generic backgrounds at the level of the component fields and a computation relating the two-dimensional local cocycle for the Weyl anomaly to the one for the Virasoro anomaly. I hope they will serve as a useful appetizer for the more careful and complete treatments of this material that are already available. Full article
(This article belongs to the Special Issue Symmetries, and Symmetry Breaking in String Theory)
Show Figures

Figure 1

31 pages, 9878 KiB  
Article
Shallow Sliding Failure of Slope Induced by Rainfall in Highly Expansive Soils Based on Model Test
by Shuangping Li, Bin Zhang, Shanxiong Chen, Zuqiang Liu, Junxing Zheng, Min Zhao and Lin Gao
Water 2025, 17(14), 2144; https://doi.org/10.3390/w17142144 - 18 Jul 2025
Viewed by 226
Abstract
Expansive soils, characterized by the presence of surface and subsurface cracks, over-consolidation, and swell-shrink properties, present significant challenges to slope stability in geotechnical engineering. Despite extensive research, preventing geohazards associated with expansive soils remains unresolved. This study investigates shallow sliding failures in slopes [...] Read more.
Expansive soils, characterized by the presence of surface and subsurface cracks, over-consolidation, and swell-shrink properties, present significant challenges to slope stability in geotechnical engineering. Despite extensive research, preventing geohazards associated with expansive soils remains unresolved. This study investigates shallow sliding failures in slopes of highly expansive soils induced by rainfall, using model tests to explore deformation and mechanical behavior under cyclic wetting and drying conditions, focusing on the interaction between soil properties and environmental factors. Model tests were conducted in a wedge-shaped box filled with Nanyang expansive clay from Henan, China, which is classified as high-plasticity clay (CH) according to the Unified Soil Classification System (USCS). The soil was compacted in four layers to maintain a 1:2 slope ratio (i.e., 1 vertical to 2 horizontal), which reflects typical expansive soil slope configurations observed in the field. Monitoring devices, including moisture sensors, pressure transducers, and displacement sensors, recorded changes in soil moisture, stress, and deformation. A static treatment phase allowed natural crack development to simulate real-world conditions. Key findings revealed that shear failure propagated along pre-existing cracks and weak structural discontinuities, supporting the progressive failure theory in shallow sliding. Cracks significantly influenced water infiltration, creating localized stress concentrations and deformation. Atmospheric conditions and wet-dry cycles were crucial, as increased moisture content reduced soil suction and weakened the slope’s strength. These results enhance understanding of expansive soil slope failure mechanisms and provide a theoretical foundation for developing improved stabilization techniques. Full article
(This article belongs to the Topic Hydraulic Engineering and Modelling)
Show Figures

Figure 1

13 pages, 2818 KiB  
Article
Leveling Method of Working Platform Based on PZT Electromechanical Coupling Effect
by Aiqun Xu, Jianhui Yuan and Jinxuan Gao
Micromachines 2025, 16(7), 796; https://doi.org/10.3390/mi16070796 - 8 Jul 2025
Viewed by 282
Abstract
Lead zirconate titanate (PZT) piezoelectric ceramics are widely used functional materials due to their strong and stable piezoelectric properties. A leveling method based on lead zirconate titanate piezoelectric ceramics is proposed for the high level of accuracy required in microelectromechanical fields such as [...] Read more.
Lead zirconate titanate (PZT) piezoelectric ceramics are widely used functional materials due to their strong and stable piezoelectric properties. A leveling method based on lead zirconate titanate piezoelectric ceramics is proposed for the high level of accuracy required in microelectromechanical fields such as aerospace, industrial robotics, biomedical, and photolithography. A leveling mechanism consisting of core components such as piezoelectric ceramic actuators and sensors is designed. The closed-loop leveling of the working platform is performed using the electromechanical coupling effect of the PZT piezoelectric material. Combined with the theory of the dielectric inverse piezoelectric effect in electric fields, a simulation is used to analyze the four force and deformation cases generated by the drive legs when the load is attached at different positions of the working platform, and the leveling is realized by applying the drive voltage to generate micro-motion displacement. Simulation and calculation results show that the leveling method can reduce the tilt angle of the working platform by 60% when the driving voltage is in the range of 10~150 V. The feasibility of the leveling method and the uniformity of the theoretical calculation and simulation are verified. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

35 pages, 4380 KiB  
Article
Investigation of the Influence of Deformation, Force, and Geometric Factors on the Roll Gripping Capacity and Stability of the Rolling Process
by Valeriy Chigirinsky, Irina Volokitina, Abdrakhman Naizabekov, Sergey Lezhnev and Sergey Kuzmin
Symmetry 2025, 17(7), 1074; https://doi.org/10.3390/sym17071074 - 6 Jul 2025
Viewed by 303
Abstract
This research developed a complex physical and mathematical model of the flat rolling theory problem. This model takes into account the influence of many parameters affecting the roll’s gripping capacity and the overall stability of the entire rolling process. It is important to [...] Read more.
This research developed a complex physical and mathematical model of the flat rolling theory problem. This model takes into account the influence of many parameters affecting the roll’s gripping capacity and the overall stability of the entire rolling process. It is important to emphasize that the method of the argument of functions of a complex variable does not rely on simplifying assumptions commonly associated with: the linearized theory of plasticity; or the decoupled solution of stress and strain fields. Furthermore, it does not utilize the rigid-plastic material model. Within this method, solutions are developed based on the complete formulation of the system of equations in terms of stresses and strains, incorporating constitutive relations, thermal effects, and boundary conditions that define a well-posed problem in the theory of plasticity. The presented applied problem is closed in nature, yet it accounts for the effects of mechanical loading and satisfies the system of equation. For this purpose, such factors as roll geometry, physical and mechanical properties of the rolled metal (including its fluidity, hardness, plasticity, and structure heterogeneity), rolling speed, metal temperature, roll lubrication, and many other parameters that can influence the process have been taken into account. Based on the developed mathematical model, a new, previously undescribed force factor significantly affecting the capture of metal by rolls and the stability of the rolling process was identified and investigated in detail. This factor is associated with force stretching of metal in the lagging zone—the area behind the rolls, where the metal has already left the deformation zone, but continues to experience residual stress. It was shown that this stretching, depending on the process parameters, can both contribute to the rolling stability and, on the contrary, destabilize it, causing oscillations and non-uniformity of deformation. The qualitative indicators of transient regime stability have been determined for various values of the parameter α. Specifically, for α = 0.077, the ratio f/α ranges from 1.10 to 1.95; for α = 0.129, the ratio f/α ranges from 1.19 to 1.95; and for α = 0.168, the ratio f/α ranges from 1.28 to 1.95. Full article
(This article belongs to the Special Issue Symmetry Problems in Metal Forming)
Show Figures

Figure 1

26 pages, 2535 KiB  
Article
Uncertainty Analysis and Risk Assessment for Variable Settlement Properties of Building Foundation Soils
by Xudong Zhou and Tao Wang
Buildings 2025, 15(13), 2369; https://doi.org/10.3390/buildings15132369 - 6 Jul 2025
Viewed by 320
Abstract
Settlement analyses of foundation soils are very important for the investigation, design, and construction of buildings. However, due to complex natural sedimentary processes, soil-forming environments, and geological tectonic stress histories, settlement properties show obvious spatial variability and autocorrelation. Moreover, measurement data on the [...] Read more.
Settlement analyses of foundation soils are very important for the investigation, design, and construction of buildings. However, due to complex natural sedimentary processes, soil-forming environments, and geological tectonic stress histories, settlement properties show obvious spatial variability and autocorrelation. Moreover, measurement data on the physical and mechanical parameters of building foundation soils are limited. This limits the accuracy of formation stability analyses and safety evaluations. In this study, a series of field tests of building foundation soils were carried out, and the statistical physical and mechanical properties of the clay strata were obtained. A random field method and copula functions of uncertain geotechnical properties with limited survey data are proposed. A dual-yield surface constitutive model of the soil properties and a stability analysis method for uncertain deformation were developed. The detailed analytical procedures for soil deformation and stratum settlement are presented. The reliability functions and failure probabilities of variable settlement processes are calculated and analyzed. The impact of the spatial variation and cross-correlation of geotechnical properties on the probabilistic stability of variable land subsidence is discussed. This work presents an innovative analysis approach for evaluating the variable settlement properties of building foundation soils. The results show that the four different mechanical parameters can be regressed to linear equations. The horizontal fluctuation scale is significantly larger than the vertical scale. Copula theory provides a powerful framework for modeling limited geotechnical parameters. The bootstrap approach avoids parametric assumptions, leveraging empirical data to enhance the reliability analysis of variable settlement. The variability parameter exerts a greater influence on land subsidence processes than the correlation structure. The failure probabilities of variable stratum settlement for different cross-correlations of building foundation soils are different. These results provide an important reference for the safety of building engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 2334 KiB  
Article
Prediction of Surface Deformation Induced by Ultra-Shallow-Buried Pilot Tunnel Construction
by Caijun Liu, Xiangdong Li, Yang Yang, Xing Gao, Yupeng Shen and Peng Jing
Appl. Sci. 2025, 15(13), 7546; https://doi.org/10.3390/app15137546 - 4 Jul 2025
Viewed by 235
Abstract
The prediction of ground deformation during ultra-shallow-buried pilot tunnel construction is critical for urban rail transit projects in complex geological settings, yet existing cross-section models often lack accuracy. This study proposes an enhanced non-uniform convergence model based on stochastic medium theory, which decomposes [...] Read more.
The prediction of ground deformation during ultra-shallow-buried pilot tunnel construction is critical for urban rail transit projects in complex geological settings, yet existing cross-section models often lack accuracy. This study proposes an enhanced non-uniform convergence model based on stochastic medium theory, which decomposes surface settlement into uniform soil shrinkage and non-uniform initial support deformation. A computational formula for horseshoe-shaped sections is derived and validated through field data from Kunming Rail Transit Phase I, demonstrating a 59% improvement in maximum settlement prediction accuracy (reducing error from 7.5 mm to 3.1 mm) compared to traditional methods. Its application to Beijing Metro Line 13 reveals two distinct deformation patterns: significant ground heave occurs at 2.5 times the tunnel width from the centerline, while maximum settlement concentrates above the excavation center and diminishes radially. To mitigate heave, early strengthening of the secondary lining is recommended to control initial horizontal deformation. These findings enhance prediction reliability and provide actionable insights for deformation control in similar urban tunneling projects, particularly under ultra-shallow burial conditions. Full article
Show Figures

Figure 1

14 pages, 805 KiB  
Article
Ultra-Cold Neutrons in qBounce Experiments as Laboratory for Test of Chameleon Field Theories and Cosmic Acceleration
by Derar Altarawneh and Roman Höllwieser
J. Nucl. Eng. 2025, 6(3), 20; https://doi.org/10.3390/jne6030020 - 26 Jun 2025
Viewed by 340
Abstract
The study of scalar field theories like the chameleon field model is of increasing interest due to the Universe’s accelerated expansion, which is believed to be caused in part by dark energy. These fields can elude experimental bounds set on them in high-density [...] Read more.
The study of scalar field theories like the chameleon field model is of increasing interest due to the Universe’s accelerated expansion, which is believed to be caused in part by dark energy. These fields can elude experimental bounds set on them in high-density environments since they interact with matter in a density-dependent way. This paper analyzes the effect of chameleon fields on the quantum gravitational states of ultra-cold neutrons (UCNs) in qBounce experiments with mirrors. We discuss the deformation of the neutron wave function due to chameleon interactions and quantum systems in potential wells from gravitational forces and chameleon fields. Unlike other works that aim to put bounds on the chameleon field parameters, this work focuses on the quantum mechanics of the chameleonic neutron. The results deepen our understanding of the interplay between quantum states and modified gravity, as well as fundamental physics experiments carried out in the laboratory. Full article
Show Figures

Figure 1

26 pages, 5337 KiB  
Article
Dynamic Error Compensation Control of Direct-Driven Servo Electric Cylinder Terminal Positioning System
by Mingwei Zhao, Lijun Liu, Zhi Chen, Qinghua Yang and Xiaowei Tu
Actuators 2025, 14(7), 317; https://doi.org/10.3390/act14070317 - 25 Jun 2025
Viewed by 255
Abstract
In this work, we aimed to determine the nonlinear disturbance caused by cascaded coupling rigid–flexible deformation and friction in a direct-driven servo electric cylinder terminal positioning system (DDSEC-TPS) during feed motion of an intermittent, reciprocating, and time-varying load. For this purpose, a cascaded [...] Read more.
In this work, we aimed to determine the nonlinear disturbance caused by cascaded coupling rigid–flexible deformation and friction in a direct-driven servo electric cylinder terminal positioning system (DDSEC-TPS) during feed motion of an intermittent, reciprocating, and time-varying load. For this purpose, a cascaded coupling dynamic error model of DDSEC-TPS was established based on the position–pose error model of the parallel motion platform and the rotor field-oriented vector transform. Then, a model to observe the dynamic error of the DDSEC-TPS was established using the improved beetle antennae search algorithm backpropagation neural network (IBAS-BPNN) prediction model according to the rigid–flexible deformation error theory of feed motion, and the observed dynamic error was compensated for in the vector control strategy of the DDSEC-TPS. The length and error prediction models were trained and validated using opposite and mixed datasets tested on the experimental platform, to observe dynamic errors and evaluate and optimize the prediction models. The experimental results show that dynamic error compensation can improve the position tracking accuracy of the DDSEC-TPS and the position–pose performance of the parallel motion platform. This study is of great significance for improving the consistency of following multiple DDSEC-TPSs and the position–pose accuracy of parallel motion platforms. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

22 pages, 3134 KiB  
Article
Internal Force Analysis of Circular Shaft Structures Considering Spatial Arching and Interlayer Shear Effects
by Dongsheng Li, Zhibing Xu, Long Yu, Xu Zhang and Yang Liu
Appl. Sci. 2025, 15(12), 6820; https://doi.org/10.3390/app15126820 - 17 Jun 2025
Viewed by 259
Abstract
To accurately investigate the stress and deformation behavior of support structures during mechanical shaft construction, this study proposes an analytical method for active earth pressure calculation based on limit equilibrium theory, incorporating both the radial variation of the circumferential stress coefficient and the [...] Read more.
To accurately investigate the stress and deformation behavior of support structures during mechanical shaft construction, this study proposes an analytical method for active earth pressure calculation based on limit equilibrium theory, incorporating both the radial variation of the circumferential stress coefficient and the spatial arching effect. Considering the entire sliding soil mass behind the shaft wall as the analytical object, the inclination angle of the sliding surface under active limit conditions is derived. Subsequently, by incorporating interlayer shear forces, a horizontal layer analysis is employed to establish the vertical and radial force equilibrium equations, leading to the formulation of an active earth pressure model for circular shafts. Furthermore, based on elastic mechanics theory, a corresponding method is developed to calculate the internal forces of the shaft structure. The theoretical predictions show good agreement with existing model test results and field monitoring data, demonstrating the accuracy and reliability of the proposed approach. The findings provide a theoretical basis for optimizing the design of circular shafts and assessing the structural stability of shaft walls. Full article
Show Figures

Figure 1

25 pages, 5958 KiB  
Article
Analysis of the Effect of Three-Dimensional Topology Modification on Temperature Field and Thermal Deformation of Internal Helical Gears Pair
by Gaowei Yao, Gang Liu, Jianxin Su, Hongbin Yang, Mingxuan Jin and Xiao Wei
Appl. Sci. 2025, 15(11), 6244; https://doi.org/10.3390/app15116244 - 1 Jun 2025
Viewed by 395
Abstract
The transmission accuracy and meshing performance of the gearbox is determined by the internal helical gears pair. Thermal deformation of internal helical gears pair is derived from sliding friction between the contacting teeth surface, resulting in shock, vibration, and misalignments. The purpose of [...] Read more.
The transmission accuracy and meshing performance of the gearbox is determined by the internal helical gears pair. Thermal deformation of internal helical gears pair is derived from sliding friction between the contacting teeth surface, resulting in shock, vibration, and misalignments. The purpose of this paper is to compare the influence of a modified gear and an unmodified gear on the temperature field and transmission characteristics of a planetary gear system under the same working conditions. This study presents an innovative temperature field model for gear pairs utilizing Surf152 elements, integrating Hertzian contact theory, tribological principles, and finite element analysis. For the first time, we quantitatively demonstrate the enhancement of thermo-mechanical performance through topological modification in helical gears. Under light-load conditions (200 rpm), the modified gear configuration exhibits a 6.38% reduction in tooth surface temperature and a 46.5% decrease in thermal deformation compared to conventional designs. Experimental validation confirms these improvements, showing an average 62.35% reduction in transmission error. These findings establish a novel methodology for high-precision gear design while providing critical theoretical foundations for planetary gear systems, ultimately leading to significant improvements in both transmission accuracy and operational lifespan. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

18 pages, 3324 KiB  
Article
Advanced Dynamic Thermal Vibration of Thick Functionally Graded Material Plates with Nonlinear Varied Shear and Third-Order Shear Deformation Theory
by Chih-Chiang Hong
Symmetry 2025, 17(6), 851; https://doi.org/10.3390/sym17060851 - 29 May 2025
Viewed by 335
Abstract
The thick-walled thickness effect in layered-symmetrical structure is very important for considering the external thermal heating on the surface of functionally graded material (FGM) plates. Dynamic thermal vibration with advanced shear correction on the FGM plates are presented. The third-order shear deformation theory [...] Read more.
The thick-walled thickness effect in layered-symmetrical structure is very important for considering the external thermal heating on the surface of functionally graded material (FGM) plates. Dynamic thermal vibration with advanced shear correction on the FGM plates are presented. The third-order shear deformation theory (TSDT) is included to calculate the values of advanced shear correction for the thick plates based on the displacement assumed in the middle symmetry plane. The values of advanced shear correction coefficient are in nonlinear variation with respect to the power-law index value for FGM. The dynamic stresses are calculated when the displacements and shear rotations are obtained for the given natural frequency of displacements, frequency of applied heat flux and time. The natural frequencies of sinusoidal displacements and shear rotations are obtained by using the determinant of the coefficient matrix in the fully homogeneous equation. Only the numerical dynamic results of displacements and stresses subjected to sinusoidal applied heat loads are investigated. The heating study in symmetry structure of FGMs to induce thermal vibration is interesting in the field of engineering and materials. The center displacements can withstand a higher temperature of 1000 K and a power-law index of 5, for which the length-to-thickness ratio 5 is better than that for 10. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

Back to TopTop