Advanced Dynamic Thermal Vibration of Thick Functionally Graded Material Plates with Nonlinear Varied Shear and Third-Order Shear Deformation Theory
Abstract
1. Introduction
2. Materials and Methods
2.1. Power-Law FGM
2.2. TSDT Displacement Model
2.3. Sinusoidal Applied Heat Loads
2.4. Advanced SHEAR Correction Factor
2.5. GDQ Numerical Method
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, R.; Jana, P. Free vibration analysis of uniform thickness and stepped P-FGM plates: A FSDT-based dynamic stiffness approach. Mech. Based Des. Struct. Mach. Int. J. 2024, 52, 447–476. [Google Scholar] [CrossRef]
- Omar, M.; Khaled, B.; Mohammed, S.; Otbi, B. Analytical modeling contribution of the vibration dynamics of FGM plates placed on elastic foundations. Stud. Eng. Exact Sci. 2024, 5, e12589. [Google Scholar] [CrossRef]
- Narayanan, N.I.; Banerjee, S. Free and forced vibration analysis of FGM plates with and without cutouts using heterosis finite element method. J. Vib. Eng. Technol. 2024, 12, 2129–2145. [Google Scholar] [CrossRef]
- Ledda, L.; Greco, A.; Fiore, I.; Caliò, I. Closed-form exact solution for free vibration analysis of symmetric functionally graded beams. Symmetry 2024, 16, 1206. [Google Scholar] [CrossRef]
- Do, N.T.; Tran, T.T. Random vibration analysis of FGM plates subjected to moving load using a refined stochastic finite element method. Def. Technol. 2024, 34, 42–56. [Google Scholar] [CrossRef]
- Wang, J.F.; Cao, G.; Song, Z.W.; Lai, S.K. Dynamic analysis of FGM plates with variable delamination parameters by the Chebyshev–Ritz method. Int. J. Struct. Stab. Dyn. 2023, 23, 2340013. [Google Scholar] [CrossRef]
- Shariati, A.; Jung, D.W.; Mohammad-Sedighi, H.; Zur, K.K.; Habibi, M.; Safa, M. Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters. Symmetry 2020, 12, 586. [Google Scholar] [CrossRef]
- Duc, N.D.; Quang, V.D.; Nguyen, P.D.; Chien, T.M. Nonlinear dynamic response of functionally graded porous plates on elastic foundation subjected to thermal and mechanical loads. J. Appl. Comput. Mech. 2018, 4, 245–259. [Google Scholar]
- Singh, S.J.; Harsha, S.P. Nonlinear dynamic analysis of sandwich S-FGM plate resting on Pasternak foundation under thermal environment. Euro. J. Mech. A/Solids 2019, 76, 155–179. [Google Scholar] [CrossRef]
- Javani, M.; Kiani, Y.; Eslami, M.R. Large amplitude thermally induced vibrations of temperature dependent annular FGM plates. Compos. Part B 2019, 163, 371–383. [Google Scholar] [CrossRef]
- Duc, N.D.; Cong, P.H.; Quang, V.D. Nonlinear dynamic and vibration analysis of piezoelectric eccentrically stiffened FGM plates in thermal environment. Int. J. Mech. Sci. 2016, 115–116, 711–722. [Google Scholar] [CrossRef]
- Ta, H.D.; Noh, H.C. Analytical solution for the dynamic response of functionally graded rectangular plates resting on elastic foundation using a refined plate theory. Appl. Math. Model. 2015, 39, 6243–6257. [Google Scholar] [CrossRef]
- Dogan, V. Nonlinear vibration of FGM plates under random excitation. Compos. Struct. 2013, 95, 366–374. [Google Scholar] [CrossRef]
- Sun, D.; Luo, S.N. The wave propagation and dynamic response of rectangular functionally graded material plates with completed clamped supports under impulse load. Euro. J. Mech. A/Solids 2011, 30, 396–408. [Google Scholar] [CrossRef]
- Do, V.N.V.; Jeon, J.T.; Lee, C.H. Dynamic analysis of carbon nanotube reinforced composite plates by using Bézier extraction based isogeometric finite element combined with higher order shear deformation theory. Mech. Mater. 2020, 142, 103307. [Google Scholar]
- Xia, X.K.; Sheen, H.S. Nonlinear vibration and dynamic response of FGM plates with piezoelectric fiber reinforced composite actuators. Compos. Struct. 2009, 90, 254–262. [Google Scholar] [CrossRef]
- Huang, X.L.; Sheen, H.S. Nonlinear vibration and dynamic response of functionally graded plates in thermal environments. Int. J. Solids Struct. 2004, 41, 2403–2427. [Google Scholar] [CrossRef]
- Hong, C.C. Advanced frequency of thick FGM cylindrical shells with fully homogeneous equation. J. Struct. Eng. Appl. Mech. 2024, 7, 69–83. [Google Scholar] [CrossRef]
- Hong, C.C. GDQ computation for thermal vibration of thick FGM plates by using third-order shear deformation theory. Mater. Sci. Eng. B 2023, 294, 116208. [Google Scholar] [CrossRef]
- Pradhan, S.C. Vibration suppression of FGM shells using embedded magnetostrictive layers. Int. J. Solids Struct. 2005, 42, 2465–2488. [Google Scholar] [CrossRef]
- Reddy, J.N.; Chin, C.D. Thermoelastical analysis of functionally graded cylinders and plate. J. Therm. Stress. 1998, 21, 593–626. [Google Scholar] [CrossRef]
- Shariyat, M. Dynamic buckling of suddenly loaded imperfect hybrid FGM cylindrical shells with temperature dependent material properties under thermo-electromechanical loads. Int. J. Mech. Sci. 2008, 50, 1561–1571. [Google Scholar] [CrossRef]
- Lee, S.J.; Reddy, J.N.; Rostam-Abadi, F. Transient analysis of laminated composite plates with embedded smart-material layers. Finite Elem. Anal. Des. 2004, 40, 463–483. [Google Scholar] [CrossRef]
- Whitney, J.M. Structural Analysis of Laminated Anisotropic Plates; Technomic Publishing Company, Inc.: Lancaster, PA, USA, 1987. [Google Scholar]
- Shu, C.; Du, H. Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analyses of beams and plates. Int. J. Solids Struct. 1997, 34, 819–835. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Kaysser, W.A.; Rabin, B.H.; Kawasaki, A.; Ford, R.G. Functionally Graded Materials: Design, Processing and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Li, W.; Han, B. Research and application of functionally gradient materials. IOP Conf. Ser. Mater. Sci. Eng. 2018, 394, 022065. [Google Scholar] [CrossRef]
- Ghandehari, M.A.; Masoodi, A.R.; Hosseininia, E.S. Temperature-dependency and boundary condition impacts on the multiscale vibrational behavior of laminated nested dual conical shell structure semi-AUV applications. Appl. Ocean. Res. 2025, 154, 104425. [Google Scholar] [CrossRef]
- Ghandehari, M.A.; Masoodi, A.R.; Panda, S.K. Thermal frequency analysis of double CNT-reinforced polymeric straight beam. J. Vib. Eng. Technol. 2024, 12, 649–665. [Google Scholar] [CrossRef]
- Sharma, P. Vibration Analysis of Functionally Graded Piezoelectric Actuators; Springer Nature Link eBook: Berlin/Heidelberg, Germany, 2019; pp. 19–26. Available online: https://link.springer.com/book/10.1007/978-981-13-3717-8 (accessed on 9 January 2019).
- Stach, S. ch.11 Modelling fracture processes in orthopaedic implants. In Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System; Elsevier Ltd. eBook: Amsterdam, The Netherlands, 2014; pp. 331–368. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780857096616500115 (accessed on 16 May 2014).
- Pindza, E.; Maré, E. Discrete singular convolution method for numerical solutions of fifth order Korteweg-De Vries equations. J. Appl. Math. Phys. 2013, 1, 40717. [Google Scholar] [CrossRef]
- El-Amin, M.F. ch.4 Temporal numerical discretization schemes. In Numerical Modeling of Nanoparticle Transport in Porous Media, Matlab/Python Approach, Micro and Nano Technologies; Elsevier Inc. eBook: Amsterdam, The Netherlands, 2023; pp. 105–123. [Google Scholar]
- Yang, J.; Chen, D.; Kitipornchai, S. Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Compos. Struct. 2018, 193, 281–294. [Google Scholar] [CrossRef]
- Rahmani, F.; Kamgar, R.; Rahgozar, R.; Dimitri, R.; Tornabene, F. Nurl-Based isogeometric analysis for free vibration of functionally graded sandwich plates using higher order formulations. Int. J. Struct. Stab. Dyn. 2024. [Google Scholar] [CrossRef]
- Sobhani, E.; Masoodi, A.R.; Civalek, O.; Ahmadi-Pari, A.R. Agglomerated impact of CNT vs. GNP nanofillers on hybridization of polymer matrix for vibration of coupled hemispherical-conical-conical shells. Aerosp. Sci. Technol. 2022, 120, 107257. [Google Scholar] [CrossRef]
Constituent Materials | ||||||
---|---|---|---|---|---|---|
Si3N4 | (Pa) | 348.43 × 109 | 0 | −3.70 × 10−4 | 2.16 × 10−7 | −8.946 × 10−11 |
0.24 | 0 | 0 | 0 | 0 | ||
(Kg/m3) | 2370 | 0 | 0 | 0 | 0 | |
(K−1) | 5.8723 × 10−6 | 0 | 9.095 × 10−4 | 0 | 0 | |
(W/(mK)) | 13.723 | 0 | 0 | 0 | 0 | |
(J/(KgK)) | 555.11 | 0 | 1.016 × 10−3 | 2.92 × 10−7 | −1.67 × 10−10 | |
SUS304 | (Pa) | 201.04 × 109 | 0 | 3.079 × 10−4 | −6.534 × 10−7 | 0 |
0.3262 | 0 | −2.002 × 10−4 | 3.797 × 10−7 | 0 | ||
(Kg/m3) | 8166 | 0 | 0 | 0 | 0 | |
(K−1) | 12.33 × 10−6 | 0 | 8.086 × 10−4 | 0 | 0 | |
(W/(mK)) | 15.379 | 0 | 0 | 0 | 0 | |
(J/(KgK)) | 496.56 | 0 | −1.151 × 10−3 | 1.636 × 10−6 | −5.863 × 10−10 |
a/h* | GDQ | |||
---|---|---|---|---|
= 0.5 | = 1 | = 2 | ||
10 | 7 × 7 | −0.01433822 | −0.00876527 | −0.00410925 |
9 × 9 | −0.01611843 | −0.00877559 | −0.00410907 | |
11 × 11 | −0.01609543 | −0.00877540 | −0.00410909 | |
13 × 13 | −0.01609307 | −0.00877532 | −0.00410907 | |
5 | 7 × 7 | 0.00247495 | 0.00568198 | −0.01507111 |
9 × 9 | 0.00248278 | 0.00570035 | −0.01509927 | |
11 × 11 | 0.00248312 | 0.00570084 | −0.01509851 | |
13 × 13 | 0.00252687 | 0.00570005 | −0.01509894 |
(1/mm2) | (mm) | |||||||
---|---|---|---|---|---|---|---|---|
92.592598 | 0.12 | −0.778697 | −0.814248 | −1.096615 | −3.535386 | 1.560072 | 0.589436 | 0.465330 |
0.925925 | 1.2 | −0.778699 | −0.814250 | −1.096617 | −3.535402 | 1.560071 | 0.589436 | 0.465330 |
0.231481 | 2.4 | −0.778699 | −0.814250 | −1.096617 | −3.535402 | 1.560071 | 0.589436 | 0.465330 |
0.037037 | 6 | −0.778699 | −0.814249 | −1.096615 | −3.535396 | 1.560071 | 0.589435 | 0.465330 |
0.009259 | 12 | −0.778699 | −0.814250 | −1.096615 | −3.535396 | 1.560071 | 0.589435 | 0.465330 |
0 | 1.2 | 0.899095 | 0.957858 | 1.091129 | 1.200860 | 1.232039 | 1.126363 | 1.021824 |
Study | Shear Correction Type | Homogeneous Equation | |
---|---|---|---|
Present | Advanced shear correction with nonlinear TDST displacements | Functions of , and T | Fully |
Ref. [19] | Shear correction with linear FSDT displacements | Functions of , and T | Simply |
Material Properties | Geometric Ratios | Boundary Conditions | Results |
---|---|---|---|
Si3N4 SUS304 | Thick-walled plate | Four sides simply supported, sinusoidal heat loads | Displacement, stress vs. time |
, , , , , , , , , , , , , , | a/h* = 5,10, a/b = 1, = , = 1.2 mm, , | , , , , , , , , , , , T | (a/2,b/2), , t |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, C.-C. Advanced Dynamic Thermal Vibration of Thick Functionally Graded Material Plates with Nonlinear Varied Shear and Third-Order Shear Deformation Theory. Symmetry 2025, 17, 851. https://doi.org/10.3390/sym17060851
Hong C-C. Advanced Dynamic Thermal Vibration of Thick Functionally Graded Material Plates with Nonlinear Varied Shear and Third-Order Shear Deformation Theory. Symmetry. 2025; 17(6):851. https://doi.org/10.3390/sym17060851
Chicago/Turabian StyleHong, Chih-Chiang. 2025. "Advanced Dynamic Thermal Vibration of Thick Functionally Graded Material Plates with Nonlinear Varied Shear and Third-Order Shear Deformation Theory" Symmetry 17, no. 6: 851. https://doi.org/10.3390/sym17060851
APA StyleHong, C.-C. (2025). Advanced Dynamic Thermal Vibration of Thick Functionally Graded Material Plates with Nonlinear Varied Shear and Third-Order Shear Deformation Theory. Symmetry, 17(6), 851. https://doi.org/10.3390/sym17060851