Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,052)

Search Parameters:
Keywords = danger control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 10052 KiB  
Article
A Study on Large Electric Vehicle Fires in a Tunnel: Use of a Fire Dynamics Simulator (FDS)
by Roberto Dessì, Daniel Fruhwirt and Davide Papurello
Processes 2025, 13(8), 2435; https://doi.org/10.3390/pr13082435 - 31 Jul 2025
Abstract
Internal combustion engine vehicles damage the environment and public health by emitting toxic fumes, such as CO2 or CO and other trace compounds. The use of electric cars helps to reduce the emission of pollutants into the environment due to the use [...] Read more.
Internal combustion engine vehicles damage the environment and public health by emitting toxic fumes, such as CO2 or CO and other trace compounds. The use of electric cars helps to reduce the emission of pollutants into the environment due to the use of batteries with no direct and local emissions. However, accidents of battery electric vehicles pose new challenges, such as thermal runaway. Such accidents can be serious and, in some cases, may result in uncontrolled overheating that causes the battery pack to spontaneously ignite. In particular, the most dangerous vehicles are heavy goods vehicles (HGVs), as they release a large amount of energy that generate high temperatures, poor visibility, and respiratory damage. This study aims to determine the potential consequences of large BEV fires in road tunnels using computational fluid dynamics (CFD). Furthermore, a comparison between a BEV and an ICEV fire shows the differences related to the thermal and the toxic impact. Furthermore, the adoption of a longitudinal ventilation system in the tunnel helped to mitigate the BEV fire risk, keeping a safer environment for tunnel users and rescue services through adequate smoke control. Full article
Show Figures

Figure 1

4 pages, 976 KiB  
Proceeding Paper
Developing a Risk Recognition System Based on a Large Language Model for Autonomous Driving
by Donggyu Min and Dong-Kyu Kim
Eng. Proc. 2025, 102(1), 7; https://doi.org/10.3390/engproc2025102007 - 29 Jul 2025
Viewed by 98
Abstract
Autonomous driving systems have the potential to reduce traffic accidents dramatically; however, conventional modules often struggle to accurately detect risks in complex environments. This study presents a novel risk recognition system that integrates the reasoning capabilities of a large language model (LLM), specifically [...] Read more.
Autonomous driving systems have the potential to reduce traffic accidents dramatically; however, conventional modules often struggle to accurately detect risks in complex environments. This study presents a novel risk recognition system that integrates the reasoning capabilities of a large language model (LLM), specifically GPT-4, with traffic engineering domain knowledge. By incorporating surrogate safety measures such as time-to-collision (TTC) alongside traditional sensor and image data, our approach enhances the vehicle’s ability to interpret and react to potentially dangerous situations. Utilizing the realistic 3D simulation environment of CARLA, the proposed framework extracts comprehensive data—including object identification, distance, TTC, and vehicle dynamics—and reformulates this information into natural language inputs for GPT-4. The LLM then provides risk assessments with detailed justifications, guiding the autonomous vehicle to execute appropriate control commands. The experimental results demonstrate that the LLM-based module outperforms conventional systems by maintaining safer distances, achieving more stable TTC values, and delivering smoother acceleration control during dangerous scenarios. This fusion of LLM reasoning with traffic engineering principles not only improves the reliability of risk recognition but also lays a robust foundation for future real-time applications and dataset development in autonomous driving safety. Full article
Show Figures

Figure 1

15 pages, 3041 KiB  
Article
A Study on Dangerous Areas for Coal Spontaneous Combustion in Composite Goafs in Goaf-Side Entry Retaining in the Lower Layer of an Extra-Thick Coal Seam
by Ningfang Yue, Lei Wang, Jun Guo, Yin Liu, Changming Chen and Bo Gao
Fire 2025, 8(8), 298; https://doi.org/10.3390/fire8080298 - 28 Jul 2025
Viewed by 209
Abstract
Taking a composite goaf in goaf-side entry retaining as our research focus, a kilogram-level spontaneous combustion experiment was carried out, and limit parameters for coal spontaneous combustion characteristics were assessed. Combined with the key parameters of the site, a numerical model of a [...] Read more.
Taking a composite goaf in goaf-side entry retaining as our research focus, a kilogram-level spontaneous combustion experiment was carried out, and limit parameters for coal spontaneous combustion characteristics were assessed. Combined with the key parameters of the site, a numerical model of a multi-area composite goaf was constructed, and the distribution features of the dangerous area for coal spontaneous combustion in the lower layer of in goaf-side entry retaining were determined by means of the upper and lower layer composite superposition division method. The results show that at a floating coal thickness in the goaf of 1.9 m, the lower limit of oxygen concentration Cmin, upper limit of air leakage intensity, and corresponding seepage velocity are 6%, 0.282 cm−3·s−1·cm−2, and 11.28 × 10−3 m/s respectively. The dangerous area regarding residual coal on the intake side is 23~38 m away from the working face, while that on the return air side is concentrated amid the goaf at 23~75 m, and that on the flexible formwork wall is concentrated at 0~121 m. The research results are of crucial practical importance for the prevention and control of coal spontaneous combustion within a composite goaf. Full article
(This article belongs to the Special Issue Simulation, Experiment and Modeling of Coal Fires (2nd Edition))
Show Figures

Figure 1

17 pages, 3837 KiB  
Article
Functional Analysis of NPC2 in Alarm Pheromone Recognition by the Red Imported Fire Ant, Solenopsis invicta (Formicidae: Solenopsis)
by Peng Lin, Jiacheng Shen, Xinyi Jiang, Fenghao Liu and Youming Hou
Insects 2025, 16(8), 766; https://doi.org/10.3390/insects16080766 - 25 Jul 2025
Viewed by 362
Abstract
The red imported fire ant (Solenopsis invicta) is a dangerous invasive insect. These ants rely on releasing an alarm pheromone, mainly composed of 2-ethyl-3,6-dimethylptrazine (EDMP), to warn nestmates of danger and trigger group defense or escape behaviors. This study found two [...] Read more.
The red imported fire ant (Solenopsis invicta) is a dangerous invasive insect. These ants rely on releasing an alarm pheromone, mainly composed of 2-ethyl-3,6-dimethylptrazine (EDMP), to warn nestmates of danger and trigger group defense or escape behaviors. This study found two NPC2 proteins in the ant antennae: SinvNPC2a and SinvNPC2b. SinvNPC2a was highly expressed in the antennae; phylogenetic analysis also suggests that SinvNPC2 likely possesses conserved olfactory recognition functions. By knocking down the SinvNPC2a gene, we found that the electrophysiological response of ant antennae to EDMP became weaker. More importantly, ants lacking SinvNPC2a showed significantly reduced movement range and speed when exposed to EDMP, compared to normal ants not treated with RNAi. These ants did not spread out quickly. Furthermore, tests showed that the purified SinvNPC2a protein could directly bind to EDMP molecules. Computer modeling also showed that they fit together tightly. These findings provide direct evidence that the SinvNPC2a protein plays a key role in helping fire ants detect the EDMP alarm pheromone. It enables the ants to sense this chemical signal, allowing ant colonies to respond quickly. Understanding this mechanism improves our knowledge of how insects smell things. It also suggests a potential molecular target for developing new methods to control fire ants, such as using RNAi to block its function. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

16 pages, 2743 KiB  
Article
Evidence Generation for a Host-Response Biosignature of Respiratory Disease
by Kelly E. Dooley, Michael Morimoto, Piotr Kaszuba, Margaret Krasne, Gigi Liu, Edward Fuchs, Peter Rexelius, Jerry Swan, Krzysztof Krawiec, Kevin Hammond, Stuart C. Ray, Ryan Hafen, Andreas Schuh and Nelson L. Shasha Jumbe
Viruses 2025, 17(7), 943; https://doi.org/10.3390/v17070943 - 2 Jul 2025
Viewed by 492
Abstract
Background: In just twenty years, three dangerous human coronaviruses—SARS-CoV, MERS-CoV, and SARS-CoV-2 have exposed critical gaps in early detection of emerging viral threats. Current diagnostics remain pathogen-focused, often missing the earliest phase of infection. A virus-agnostic, host-based diagnostic capable of detecting responses to [...] Read more.
Background: In just twenty years, three dangerous human coronaviruses—SARS-CoV, MERS-CoV, and SARS-CoV-2 have exposed critical gaps in early detection of emerging viral threats. Current diagnostics remain pathogen-focused, often missing the earliest phase of infection. A virus-agnostic, host-based diagnostic capable of detecting responses to viral intrusion is urgently needed. Methods: We hypothesized that the lungs act as biomechanical instruments, with infection altering tissue tension, wave propagation, and flow dynamics in ways detectable through subaudible vibroacoustic signals. In a matched case–control study, we enrolled 19 RT-PCR-confirmed COVID-19 inpatients and 16 matched controls across two Johns Hopkins hospitals. Multimodal data were collected, including passive vibroacoustic auscultation, lung ultrasound, peak expiratory flow, and laboratory markers. Machine learning models were trained to identify host-response biosignatures from anterior chest recordings. Results: 19 COVID-19 inpatients and 16 matched controls (mean BMI 32.4 kg/m2, mean age 48.6 years) were successfully enrolled to the study. The top-performing, unoptimized, vibroacoustic-only model achieved an AUC of 0.84 (95% CI: 0.67–0.92). The host-covariate optimized model achieved an AUC of 1.0 (95% CI: 0.94–1.0), with 100% sensitivity (95% CI: 82–100%) and 99.6% specificity (95% CI: 85–100%). Vibroacoustic data from the anterior chest alone reliably distinguished COVID-19 cases from controls. Conclusions: This proof-of-concept study demonstrates that passive, noninvasive vibroacoustic biosignatures can detect host response to viral infection in a hospitalized population and supports further testing of this modality in broader populations. These findings support the development of scalable, host-based diagnostics to enable early, agnostic detection of future pandemic threats (ClinicalTrials.gov number: NCT04556149). Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

40 pages, 3175 KiB  
Review
The Causative Agent of Soft Rot in Plants, the Phytopathogenic Bacterium Pectobacterium carotovorum subsp. carotovorum: A Brief Description and an Overview of Methods to Control It
by Alla I. Perfileva, Elena I. Strekalovskaya, Nadezhda V. Klushina, Igor V. Gorbenko and Konstantin V. Krutovsky
Agronomy 2025, 15(7), 1578; https://doi.org/10.3390/agronomy15071578 - 28 Jun 2025
Viewed by 605
Abstract
This review presents information obtained over the past 10 years on the methods to control the widespread worldwide phytopathogen Pectobacterium carotovorum subsp. carotovorum (Pcc). This bacterium is among the ten most dangerous phytopathogens; it affects a wide range of cultivated plants: [...] Read more.
This review presents information obtained over the past 10 years on the methods to control the widespread worldwide phytopathogen Pectobacterium carotovorum subsp. carotovorum (Pcc). This bacterium is among the ten most dangerous phytopathogens; it affects a wide range of cultivated plants: vegetables, ornamental and medicinal crops, both during vegetation and during the storage of fruits. Symptoms of Pcc damage include the wilting of plants, blackening of vessels on leaves, stems and petioles. At the flowering stage, the stem core gradually wilts and, starting from the root, the stem breaks and the plant dies. Pcc is a rod-shaped, non-capsule and endospore-forming facultative anaerobic Gram-negative bacterium with peritrichous flagellation. Pcc synthesizes bacteriocins—carocins. The main virulence factors of Pcc are the synthesis of N-acyl-homoserine lactone (AHL) and plant cell wall-degrading enzymes (PCWDEs) (pectinases, polygalacturonases, cellulases, and proteases). Diagnostic methods for this phytopathogen include polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), multilocus genotyping of strain-specific genes and detection of unique volatile organic compounds (VOCs). The main methods to control this microorganism include the use of various chemicals (acids, phenols, esters, salts, gases), plant extracts (from grasses, shrubs, trees, and algae), antagonistic bacteria (Bacillus, Pseudomonas, Streptomyces, and lactic acid bacteria), viruses (including a mixture of bacteriophages), and nanomaterials based on metals and chitosan. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

25 pages, 5064 KiB  
Article
Enhancing Drone Detection via Transformer Neural Network and Positive–Negative Momentum Optimizers
by Pavel Lyakhov, Denis Butusov, Vadim Pismennyy, Ruslan Abdulkadirov, Nikolay Nagornov, Valerii Ostrovskii and Diana Kalita
Big Data Cogn. Comput. 2025, 9(7), 167; https://doi.org/10.3390/bdcc9070167 - 26 Jun 2025
Viewed by 479
Abstract
The rapid development of unmanned aerial vehicles (UAVs) has had a significant impact on the growth of the economic, industrial, and social welfare of society. The possibility of reaching places that are difficult and dangerous for humans to access with minimal use of [...] Read more.
The rapid development of unmanned aerial vehicles (UAVs) has had a significant impact on the growth of the economic, industrial, and social welfare of society. The possibility of reaching places that are difficult and dangerous for humans to access with minimal use of third-party resources increases the efficiency and quality of maintenance of construction structures, agriculture, and exploration, which are carried out with the help of drones with a predetermined trajectory. The widespread use of UAVs has caused problems with the control of the drones’ correctness following a given route, which leads to emergencies and accidents. Therefore, UAV monitoring with video cameras is of great importance. In this paper, we propose a Yolov12 architecture with positive–negative pulse-based optimization algorithms to solve the problem of drone detection on video data. Self-attention-based mechanisms in transformer neural networks (NNs) improved the quality of drone detection on video. The developed algorithms for training NN architectures improved the accuracy of drone detection by achieving the global extremum of the loss function in fewer epochs using positive–negative pulse-based optimization algorithms. The proposed approach improved object detection accuracy by 2.8 percentage points compared to known state-of-the-art analogs. Full article
Show Figures

Figure 1

12 pages, 893 KiB  
Article
Antimicrobial Activity of Carboxymethyl Cellulose Films Containing Plantaricin W and Enterocin F4-9 for Meat Preservation
by Mohamed Abdelfattah Maky, Kenji Sonomoto and Takeshi Zendo
Int. J. Mol. Sci. 2025, 26(13), 6083; https://doi.org/10.3390/ijms26136083 - 25 Jun 2025
Cited by 1 | Viewed by 294
Abstract
Antimicrobial food packaging is considered a promising technology to improve food safety by inhibiting or reducing the growth of food microorganisms and minimizing the need for preservatives. This study aimed to develop and evaluate carboxymethyl cellulose (CMC) films integrated with bacteriocins for antibacterial [...] Read more.
Antimicrobial food packaging is considered a promising technology to improve food safety by inhibiting or reducing the growth of food microorganisms and minimizing the need for preservatives. This study aimed to develop and evaluate carboxymethyl cellulose (CMC) films integrated with bacteriocins for antibacterial efficacy. Plantaricin W was assessed as a potential bacteriocin for activation of CMC to control the dangerous food-borne pathogen, Listeria monocytogenes. Minced beef samples were inoculated with L. monocytogenes ATCC BAA-679 and treated with plantaricin W-activated food packaging. The results showed a significant reduction of the target pathogen by approximately 1 log cycle compared to the control group. Enterocin F4-9 is a novel bacteriocin that acts on Gram-negative microbes that were not affected by plantaricin W. Therefore, a novel food packaging activated with plantaricin W and enterocin F4-9 was developed to broaden their antimicrobial activity. The effect of this film on meat-associated microbes was investigated. The results demonstrated that the film significantly reduced the counts of mesophilic and psychotropic bacteria by 86.67% and 96.67%, respectively. Additionally, the pH values of the treated meat samples were significantly lower than those of the untreated controls. The obtained findings indicated that bacteriocin-activated CMC films could potentially be utilized as antimicrobial packaging in modern food technology. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

25 pages, 3717 KiB  
Article
Genotypic Characterisation and Risk Assessment of Virulent ESBL-Producing E. coli in Chicken Meat in Tunisia: Insights from Multi-Omics Machine Learning Perspective
by Khaled Abdallah, Ghassan Tayh, Elaa Maamar, Amine Mosbah, Omar Abbes, Ismail Fliss and Lilia Messadi
Microbiol. Res. 2025, 16(6), 131; https://doi.org/10.3390/microbiolres16060131 - 18 Jun 2025
Viewed by 769
Abstract
Antibiotics are frequently used in the poultry industry, which has led to the emergence of bacterial strains that are resistant to antimicrobial treatments. The main objectives of this research were to conduct a multimodal risk assessment, to determine the extent of contamination of [...] Read more.
Antibiotics are frequently used in the poultry industry, which has led to the emergence of bacterial strains that are resistant to antimicrobial treatments. The main objectives of this research were to conduct a multimodal risk assessment, to determine the extent of contamination of chicken meat with Escherichia coli, assess the prevalence of strains resistant to extended-spectrum cephalosporins (ESC), and characterise the genes associated with resistance and virulence. A standardised procedure involving enrichment in buffered peptone water and isolation of E. coli on MacConkey agar was carried out on 100 chicken carcasses. Subsequently, the sensitivity of the strains was tested against 21 antibiotic discs. Additionally, ESBL production was detected using a double synergy test. Specific PCRs were employed to identify resistance to critical antibiotics in human medicine (such as cephalosporins, carbapenems, fluoroquinolones, and colistin), as well as the presence of virulence genes. The contamination rate of chicken meat with E. coli was 82%. The prevalence of ESC-resistant isolates was 91.2%. Furthermore, 76.5% of the isolates exhibited ESBL production, with the different beta-lactamase genes (blaCTXM, blaTEM, and blaSHV). The mcr-1 gene, associated with colistin resistance, was detected in four strains (5.9%). Some isolates also carried resistance genes such as sul1, sul2, sul3, tetA, tetB, qnrB, and qnrS. In addition, several virulence genes were detected. In our study, we were able to link the expression of AMR to the iron metabolic regulatory elements using a multimodal machine learning approach; this mechanism could be targeted to mitigate the bacteria virulence and resistance. The high prevalence of ESBL-producing and multi-resistant E. coli strains in poultry presents significant human health risks, with the focus on antibiotic-resistant uropathogenic strains since poultry meat could be an important source of uropathogenic strains, underscoring the danger of hard-to-treat urinary tract infections, stressing the need for controlled antibiotic use and thorough monitoring. Full article
Show Figures

Figure 1

14 pages, 1164 KiB  
Article
Alternative Plant Protection Strategies Using Bacteria and Thyme to Improve Strawberry (cv. Elsanta) Yield and Quality
by Neringa Rasiukevičiūtė, Armina Morkeliūnė, Ingrida Mažeikienė, Juozas Lanauskas and Alma Valiuškaitė
Plants 2025, 14(12), 1827; https://doi.org/10.3390/plants14121827 - 14 Jun 2025
Cited by 1 | Viewed by 429
Abstract
Alternative plant protection methods should be promoted to mitigate the dangers and consequences of using chemical pesticides, ensuring a safe environment and protecting human health (Directive 2009/128/EC). One of the objectives of the EU organic production action plan is to provide substitutes for [...] Read more.
Alternative plant protection methods should be promoted to mitigate the dangers and consequences of using chemical pesticides, ensuring a safe environment and protecting human health (Directive 2009/128/EC). One of the objectives of the EU organic production action plan is to provide substitutes for plant protection methods, decrease the adverse effects on the environment, and promote the diversity of living organisms. The use of synthetic and non-organic chemicals has significantly expanded, damaging human health and the environment. This study aimed to evaluate alternative plant protection solutions for the improvement of the strawberry cv. Elsanta plant’s generative development, yield, fruit quality, and biochemical composition. The two-year strawberry experiment conducted in a tunnel greenhouse included chemical and biological means (Bacteria and Thyme preparations). The experiment randomised a block design with four replicates and 32 plants per replicate. The treatments were conducted at the 10% flowering state (BBCH 61–65), every 7–10 days (a total of four times): (1) Control, (2) Chemical, (3) Bacteria, and (4) Thyme. We evaluated the yield, fruit weight, size, number of leaves, crowns, flowers, inflorescences, fruit firmness, soluble solids, and Vitamin C. The highest fruit weight at the first picking was in the Bacteria treatment. The number of rotten fruits was similar after all treatments. Additionally, they were firmer and bigger in size but had a smaller soluble solids content. The strawberry ascorbic acid and soluble solids content (Brix %) showed significant variation. The highest ascorbic acid concentration in the fruit was after the Thyme application (45.06%). Our study showed that alternative plant protection measures can reduce the use of chemical fungicides and maintain proper fruit quality. Full article
Show Figures

Figure 1

27 pages, 1992 KiB  
Review
Revolutionizing Diabetes Management Through Nanotechnology-Driven Smart Systems
by Aayush Kaushal, Aanchal Musafir, Gourav Sharma, Shital Rani, Rajat Kumar Singh, Akhilesh Kumar, Sanjay Kumar Bhadada, Ravi Pratap Barnwal and Gurpal Singh
Pharmaceutics 2025, 17(6), 777; https://doi.org/10.3390/pharmaceutics17060777 - 13 Jun 2025
Viewed by 1102
Abstract
Diabetes is a global health challenge, and while current treatments offer relief, they often fall short in achieving optimal control and long-term outcomes. Nanotechnology offers a groundbreaking approach to diabetes management by leveraging materials at the nanoscale to improve drug delivery, glucose monitoring, [...] Read more.
Diabetes is a global health challenge, and while current treatments offer relief, they often fall short in achieving optimal control and long-term outcomes. Nanotechnology offers a groundbreaking approach to diabetes management by leveraging materials at the nanoscale to improve drug delivery, glucose monitoring, and therapeutic precision. Early advancements focused on enhancing insulin delivery through smart nanosystems such as tiny capsules that gradually release insulin, helping prevent dangerous drops in blood sugar. Simultaneously, the development of nanosensors has revolutionised glucose monitoring, offering real-time, continuous data that empowers individuals to manage their condition more effectively. Beyond insulin delivery and monitoring, nanotechnology enables targeted drug delivery systems that allow therapeutic agents to reach specific tissues, boosting efficacy while minimising side effects. Tools like microneedles, carbon nanomaterials, and quantum dots have made treatment less invasive and more patient-friendly. The integration of artificial intelligence (AI) with nanotechnology marks a new frontier in personalised care. AI algorithms can analyse individual patient data to adjust insulin doses and predict glucose fluctuations, paving the way for more responsive, customised treatment plans. As these technologies advance, safety remains a key concern. Rigorous research is underway to ensure the biocompatibility and long-term safety of these novel materials. The future of diabetes care lies in the convergence of nanotechnology and AI, offering personalised, data-driven strategies that address the limitations of conventional approaches. This review explores current progress, persistent challenges, and the transformative potential of nanotechnology in reshaping diabetes diagnosis and treatment and improving patient quality of life. Full article
(This article belongs to the Special Issue Delivery System for Biomacromolecule Drugs: Design and Application)
Show Figures

Figure 1

19 pages, 739 KiB  
Article
Stray Dogs as Reservoirs and Sources of Infectious and Parasitic Diseases in the Environment of the City of Uralsk in Western Kazakhstan
by Askar Nametov, Rashid Karmaliyev, Bekzhassar Sidikhov, Kenzhebek Murzabayev, Kanat Orynkhanov, Bakytkanym Kadraliyeva, Balaussa Yertleuova, Dosmukan Gabdullin, Zulkyya Abilova and Laura Dushayeva
Biology 2025, 14(6), 683; https://doi.org/10.3390/biology14060683 - 11 Jun 2025
Viewed by 1159
Abstract
The increasing number of owned and stray dogs in large cities is becoming a pressing issue due to rising population densities, urban conditions, and poor control over animal reproduction. This situation poses serious epidemiological risks, as dogs can act as reservoirs and transmitters [...] Read more.
The increasing number of owned and stray dogs in large cities is becoming a pressing issue due to rising population densities, urban conditions, and poor control over animal reproduction. This situation poses serious epidemiological risks, as dogs can act as reservoirs and transmitters of infectious and parasitic diseases dangerous to humans. This study aimed to investigate the prevalence and carriage of infectious and parasitic diseases in stray dogs in the city of Uralsk as a factor of epidemiological risk. In 2024, 1213 stray dogs were captured from different city districts and examined at the veterinary clinic and laboratory of Zhangir Khan University. Biological samples (blood, urine, feces) from 10% of the animals were analyzed using molecular (PCR), serological (ELISA), and helminthological methods. Serological and molecular analyses revealed the widespread circulation of bacterial pathogens. Antibodies to additional bacterial agents, including Pasteurella multocida, Mycobacterium spp., Listeria monocytogenes, and Leptospira spp., were detected in the samples, indicating an unfavorable sanitary and epidemiological situation in the urban environment. An enzyme-linked immunosorbent assay (ELISA) identified antibodies against Toxocara canis in 50.9% of the dogs and against Echinococcus granulosus in 76.4%, reflecting both active and past infections. The polymerase chain reaction (PCR) results showed the presence of Brucella canis DNA in blood and urine samples, while antibodies to Brucella spp. were detected in 57.8% of the examined dogs, underscoring the significant zooanthroponotic importance of this pathogen and its potential threat to human health. Additionally, T. canis DNA was found in 39.2% of the samples and E. granulosus DNA in 16.6%. A helminthological examination using the Fülleborn method revealed a high rate of helminth infection: Ancylostoma caninum—35.3%, T. canis—32.3%, and Toxascaris leonina—29.4%. The obtained results highlight the significant role of stray dogs as epizootiological and epidemiological reservoirs of zooanthroponotic infections. This poses a serious threat to public health and necessitates the implementation of effective control and prevention measures for infectious and parasitic diseases within urban fauna. Full article
Show Figures

Figure 1

25 pages, 424 KiB  
Article
Air Pollution and Agricultural Economic Resilience in China: The Moderating Role of Environmental Regulation
by Xinwen Ye, Jie Zhou, Yujie Zhang and Dungang Zang
Agriculture 2025, 15(12), 1256; https://doi.org/10.3390/agriculture15121256 - 10 Jun 2025
Viewed by 797
Abstract
Sustainable agricultural development in China in the face of growing environmental concerns relies critically on how well regulatory policies strengthen agricultural resilience. This study aims to systematically investigate the impact of air pollution on agricultural economic resilience and its mechanisms of action and [...] Read more.
Sustainable agricultural development in China in the face of growing environmental concerns relies critically on how well regulatory policies strengthen agricultural resilience. This study aims to systematically investigate the impact of air pollution on agricultural economic resilience and its mechanisms of action and to explicitly assess the moderating role of environmental regulation. This study develops a thorough index system that evaluates agricultural economic resilience in three areas: risk resistance and recovery, adaptive adjustment capacity, and restructuring innovation. Panel data from 30 Chinese provinces from 2000 to 2023 is used to achieve this. The implications of air pollution and its diverse consequences on agricultural economic resilience are systematically assessed using a two-way fixed-effects and moderating-effects model. The following are the primary conclusions: First, air pollution has a significant negative impact on the economic resilience of agriculture. This conclusion holds after considering the endogeneity problem and a series of robustness tests, such as the exclusion of samples, random sampling, and quantile regression. Second, different dimensions of agricultural economic resilience, intensity levels, and economic growth phases influence how much air pollution reduces agricultural economic resilience. Notably, at various stages of economic growth, air pollution steadily weakens the economic resilience of agriculture. In particular, the impact is more pronounced in the post-financial-crisis phase of domestic demand expansion and the phase of financial clearing and high-quality development. According to a dimensional perspective, air pollution significantly reduces the farm sector’s capacity to endure and recover from dangers while also making adaptive modifications easier, and the impact on transformational innovation is not significant. In terms of intensity, in contrast to places with higher resilience, those with lower resilience are disproportionately more adversely affected by air pollution. Third, environmental control mitigates some of the detrimental effects of air pollution on agricultural economic resilience. Based on these results, this study calls for stricter air pollution control measures, strengthens environmental regulatory support for agricultural resilience, and demonstrates region-specific governance solutions to guarantee the stability and sustainability of the agricultural economic framework. Full article
Show Figures

Figure 1

18 pages, 842 KiB  
Article
The Occurrence of Illicit Smart Drugs or Nootropics in Europe and Australia and Their Associated Dangers: Results from a Market Surveillance Study by 12 Official Medicines Control Laboratories
by Celine Vanhee, Eric Deconinck, Mark George, Andrew Hansen, Andreas Hackl, Uwe Wollein, Oliver El-Atma, Nico Beerbaum, Federica Aureli, Anna Borioni, Magdalena Poplawska, Agata Blazewicz, Karin Roschel, Claude Marson, Magnolia Mendoza Barrios, Birgit Hakkarainen, Andreas Blomgren, Ingrid Bakker-‘t Hart and Marta Miquel
J. Xenobiot. 2025, 15(3), 88; https://doi.org/10.3390/jox15030088 - 6 Jun 2025
Cited by 1 | Viewed by 3881
Abstract
In recent years, an increasing number of case reports have mentioned the presence of illicit nootropics, smart drugs or mind doping products on the market. To better understand the extent of the problem, a market surveillance study was organised by the General European [...] Read more.
In recent years, an increasing number of case reports have mentioned the presence of illicit nootropics, smart drugs or mind doping products on the market. To better understand the extent of the problem, a market surveillance study was organised by the General European Official Medicines Control Laboratory Network and associated member Australia to detect substandard, falsified or illegal medicines or dietary supplements containing unauthorised nootropic molecules of natural or synthetic origin. From January 2020 to September 2024, 159 different samples were documented, which yielded a comprehensive dataset of 166 molecular identification entries. Within this dataset, 34 distinct molecules were identified. Most samples were sold or presented as dietary supplements (49%) or medicines (32%). The vast majority (69%) were collected from the illegal market. Prescription drugs and non-authorised drugs only available on prescription in Russia were found in pharmacological quantities; some of the latter (noopept, phenylpiracetam and phenibut) were intercepted as large bulk quantities of raw material. Unauthorised novel foods, prescription or higher amounts of melatonin, and clinically uncharacterised research molecules were also reported. This study highlights the need for more active monitoring and screening of such products, as consumption of some of the reported samples could have detrimental health effects. Furthermore, as a large number of the samples were presented as dietary supplements, consumers may not be aware of the possible dangers and side-effects of these products. Full article
(This article belongs to the Section Nutraceutics)
Show Figures

Graphical abstract

7 pages, 630 KiB  
Case Report
Rapidly Progressive Buccal Hematoma Following Local Anesthetic Injection: A Case Report
by Solon Politis, Dimitris Tatsis, Asterios Antoniou, Alexandros Louizakis and Konstantinos Paraskevopoulos
Reports 2025, 8(2), 88; https://doi.org/10.3390/reports8020088 - 5 Jun 2025
Viewed by 901
Abstract
Background and Clinical Significance: Local anesthetic injections, routine in dental practice, ensure pain control during procedures like root canal treatments. Though generally safe, they can occasionally cause hematomas, localized blood accumulations in tissue planes. Rapidly expanding hematomas in the head and neck are [...] Read more.
Background and Clinical Significance: Local anesthetic injections, routine in dental practice, ensure pain control during procedures like root canal treatments. Though generally safe, they can occasionally cause hematomas, localized blood accumulations in tissue planes. Rapidly expanding hematomas in the head and neck are exceptionally rare but dangerous due to anatomical complexity, potentially threatening the airway. This case report emphasizes the critical need for the prompt recognition and management of such complications to prevent life-threatening outcomes, highlighting vigilance in routine dental procedures. Case Presentation: A 63-year-old male presented with rapidly enlarging right buccal swelling four hours post-local anesthetic injection for a root canal on a right maxillary molar. Examination showed warm, erythematous edema and buccal ecchymosis; a CT scan confirmed a 3.8 cm × 8.4 cm × 5.5 cm buccal space hematoma. His medical history revealed controlled type 2 diabetes and hyperlipidemia, and his coagulation was normal. Conservative management failed as the hematoma progressed, limiting mouth and eye opening. Urgent surgical decompression under general anesthesia evacuated clots and ligated facial and angular arteries. ICU monitoring ensured airway stability, with discharge on day three with antibiotics and follow-up. Conclusions: This case highlights the rare potential for dental anesthetic injections to cause rapidly progressive hematomas, requiring urgent surgical intervention and multidisciplinary care to prevent airway compromise. Early recognition, imaging, and decisive management are vital in achieving favorable outcomes in such serious complications. Full article
Show Figures

Figure 1

Back to TopTop