Delivery System for Biomacromolecule Drugs: Design and Application

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Delivery and Controlled Release".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 11881

Special Issue Editors


E-Mail Website
Guest Editor
Department of Pharmaceutics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
Interests: controlled drug delivery; nanotechnology in drug delivery; liposomes
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
Interests: pharmaceutics; nanomedicine; medicinal chemistry; drug delivery; biomaterials; anticancer drugs; cancer therapy
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Biomacromolecule drugs (also referred to as biologics and biotechnology drugs), which encompass DNA, RNA, peptides, and proteins, have been increasingly occupying a share in the worldwide pharmaceutical market. They are believed to be an effective strategy for treating rare diseases, cancers, and other intractable illnesses. They can also serve as vaccines to safeguard humans against infections and diseases; however, there are substantial challenges in the medical applications of these macromolecules, including their lack of stability in the human body, the crossing of physiological barriers and cell membranes to enter cells, and effectively delivering them to their targets. The design and application of safe and efficient delivery vehicles show great promise in this research area. These vehicles have the ability to protect biomacromolecules, facilitate access to their targets, avoid adverse effects, and ultimately enhance the treatment of diverse diseases.

The aim of this Special Issue is to focus on the design and application of delivery systems for the targeted delivery of biomacromolecule drugs. In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following: the development of biomaterials for biomacromolecule drug delivery, strategies for designing smart drug delivery systems, and combinations of biomacromolecules and small molecular drugs. This Special Issue will also highlight the challenges and opportunities of biomacromolecule drug delivery in gene therapy, immune therapy, and some other adjuvant therapies. We look forward to receiving your contributions.

Dr. Songwei Tan
Dr. Xiaowei Zeng
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • drug delivery system
  • biomacromolecule
  • protein/peptide
  • DNA
  • RNA
  • gene therapy
  • immune therapy
  • cancer therapy
  • microneedle
  • self-assembly

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 9926 KiB  
Article
Development, Characterization, and Antimicrobial Evaluation of Hybrid Nanoparticles (HNPs) Based on Phospholipids, Cholesterol, Colistin, and Chitosan Against Multidrug-Resistant Gram-Negative Bacteria
by Isabella Perdomo, Carolina Mora, Juan Pinillos, José Oñate-Garzón and Constain H. Salamanca
Pharmaceutics 2025, 17(2), 182; https://doi.org/10.3390/pharmaceutics17020182 - 1 Feb 2025
Viewed by 712
Abstract
Background: Colistin, a lipopeptide antibiotic usually used as a last resort against multidrug-resistant bacterial strains, has also begun to address the challenge of antimicrobial resistance. Objective: this study evaluates whether hybrid nanoparticles (HNPs) composed of Phospholipon® 90G, cholesterol, and colistin can [...] Read more.
Background: Colistin, a lipopeptide antibiotic usually used as a last resort against multidrug-resistant bacterial strains, has also begun to address the challenge of antimicrobial resistance. Objective: this study evaluates whether hybrid nanoparticles (HNPs) composed of Phospholipon® 90G, cholesterol, and colistin can enhance its effectiveness against resistant clinical isolates of Klebsiella pneumoniae, a clinically significant Gram-negative bacterium. Methods: HNPs were developed using the ethanol injection method and coated with chitosan through a layer-by-layer technique. HNP characterization included measurements of particle size, polydispersity index (PDI), and zeta potential, along with thermal (DSC) and spectrophotometric (FT-IR) analyses. Ultrafiltration and ATR-FTIR were employed to assess colistin’s association and release efficiencies. The biological evaluation followed CLSI guidelines. Results: uncoated hybrid nanoparticles (U-HNP) and chitosan-coated hybrid nanoparticles (Ch-HNP) described monodisperse populations, with respective PDI values of ~0.124 and ~0.150, Z-averages of ~249 nm and ~250 nm, and zeta potential values of +17 mV and +20 mV. Colistin’s association and release efficiencies were approximately 79% and 10%, respectively. Regarding antimicrobial activity, results showed that colistin as part of HNPs is poorly effective against this microorganism. However, in the most resistant strain, colistin activity increased slightly when the HNP was coated with chitosan. Conclusions: HNPs described high stability against disaggregation, limiting the colistin release and, therefore, affecting antimicrobial performance. Full article
(This article belongs to the Special Issue Delivery System for Biomacromolecule Drugs: Design and Application)
Show Figures

Figure 1

16 pages, 10397 KiB  
Article
Stiff-Soft Hybrid Biomimetic Nano-Emulsion for Targeted Liver Delivery and Treatment of Early Nonalcoholic Fatty Liver Disease
by Juan Li, Mingxing Yin, Maoxian Tian, Jianguo Fang and Hanlin Xu
Pharmaceutics 2024, 16(10), 1303; https://doi.org/10.3390/pharmaceutics16101303 - 7 Oct 2024
Viewed by 1433
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) poses a risk for numerous metabolic diseases. To date, the U.S. Food and Drug Administration has not yet approved any medications for the treatment of NAFLD, for which developing therapeutic drugs is urgent. Dihydromyricetin (DMY), the most [...] Read more.
Background: Nonalcoholic fatty liver disease (NAFLD) poses a risk for numerous metabolic diseases. To date, the U.S. Food and Drug Administration has not yet approved any medications for the treatment of NAFLD, for which developing therapeutic drugs is urgent. Dihydromyricetin (DMY), the most abundant flavonoid in vine tea, has been shown to be hepatoprotective. Its application was limited by low bioavailability in vivo; Methods: In order to improve the bioavailability of DMY and achieve liver-targeted delivery, we designed a DMY-loaded stiff-soft hybrid biomimetic nano drug delivery system (DMY-hNE). The in vivo absorption, distribution, pharmacokinetic profiles, and anti-NAFLD efficacy of DMY-hNE were studied; Results: DMY-hNE was composed of a stiff core and soft shell, which led to enhanced uptake by gastrointestinal epithelial cells and increased penetration of the mucus barrier, thus improving the in vivo absorption, plasma DMY concentration, and liver distribution versus free DMY. In an early NAFLD mouse model, DMY-hNE effectively ameliorated fatty lesions accompanied with reduced lipid levels and liver tissue inflammation; Conclusions: These findings suggested that DMY-hNE is a promising platform for liver drug delivery and treatment of hepatopathy. Full article
(This article belongs to the Special Issue Delivery System for Biomacromolecule Drugs: Design and Application)
Show Figures

Figure 1

14 pages, 1529 KiB  
Article
Enhancing Cellular Uptake of Native Proteins through Bio-Orthogonal Conjugation with Chemically Synthesized Cell-Penetrating Peptides
by Jekaterina Nebogatova, Ly Porosk, Heleri Heike Härk and Kaido Kurrikoff
Pharmaceutics 2024, 16(5), 617; https://doi.org/10.3390/pharmaceutics16050617 - 3 May 2024
Cited by 1 | Viewed by 1944
Abstract
The potential for native proteins to serve as a platform for biocompatible, targeted, and personalized therapeutics in the context of genetic and metabolic disorders is vast. Nevertheless, their clinical application encounters challenges, particularly in overcoming biological barriers and addressing the complexities involved in [...] Read more.
The potential for native proteins to serve as a platform for biocompatible, targeted, and personalized therapeutics in the context of genetic and metabolic disorders is vast. Nevertheless, their clinical application encounters challenges, particularly in overcoming biological barriers and addressing the complexities involved in engineering transmembrane permeability. This study is dedicated to the development of a multifunctional nanoentity in which a model therapeutic protein is covalently linked to a cell-penetrating peptide, NickFect 55, with the objective of enhancing its intracellular delivery. Successful binding of the nanoentity fragments was achieved through the utilization of an intein-mediated protein-trans splicing reaction. Our research demonstrates that the fully assembled nanoentity-containing protein was effectively internalized by the cells, underscoring the potential of this approach in overcoming barriers associated with protein-based therapeutics for the treatment of genetic disorders. Full article
(This article belongs to the Special Issue Delivery System for Biomacromolecule Drugs: Design and Application)
Show Figures

Figure 1

21 pages, 7199 KiB  
Article
TPGS-b-PBAE Copolymer-Based Polyplex Nanoparticles for Gene Delivery and Transfection In Vivo and In Vitro
by Jiahui Ding, Handan Zhang, Tianli Dai, Xueqin Gao, Zhongyuan Yin, Qiong Wang, Mengqi Long and Songwei Tan
Pharmaceutics 2024, 16(2), 213; https://doi.org/10.3390/pharmaceutics16020213 - 31 Jan 2024
Cited by 5 | Viewed by 2525
Abstract
Poly (β-amino ester) (PBAE) is an exceptional non-viral vector that is widely used in gene delivery, owing to its exceptional biocompatibility, easy synthesis, and cost-effectiveness. However, it carries a high surface positive charge that may cause cytotoxicity. Therefore, hydrophilic d-α-tocopherol polyethylene glycol succinate [...] Read more.
Poly (β-amino ester) (PBAE) is an exceptional non-viral vector that is widely used in gene delivery, owing to its exceptional biocompatibility, easy synthesis, and cost-effectiveness. However, it carries a high surface positive charge that may cause cytotoxicity. Therefore, hydrophilic d-α-tocopherol polyethylene glycol succinate (TPGS) was copolymerised with PBAE to increase the biocompatibility and to decrease the potential cytotoxicity of the cationic polymer-DNA plasmid polyplex nanoparticles (NPs) formed through electrostatic forces between the polymer and DNA. TPGS-b-PBAE (TBP) copolymers with varying feeding molar ratios were synthesised to obtain products of different molecular weights. Their gene transfection efficiency was subsequently evaluated in HEK 293T cells using green fluorescent protein plasmid (GFP) as the model because free GFP is unable to easily pass through the cell membrane and then express as a protein. The particle size, ζ-potential, and morphology of the TBP2-GFP polyplex NPs were characterised, and plasmid incorporation was confirmed through gel retardation assays. The TBP2-GFP polyplex NPs effectively transfected multiple cells with low cytotoxicity, including HEK 293T, HeLa, Me180, SiHa, SCC-7 and C666-1 cells. We constructed a MUC2 (Mucin2)-targeting CRISPR/cas9 gene editing system in HEK 293T cells, with gene disruption supported by oligodeoxynucleotide (ODN) insertion in vitro. Additionally, we developed an LMP1 (latent membrane protein 1)-targeting CRISPR/cas9 gene editing system in LMP1-overexpressing SCC7 cells, which was designed to cleave fragments expressing the LMP1 protein (related to Epstein–Barr virus infection) and thus to inhibit the growth of the cells in vivo. As evidenced by in vitro and in vivo experiments, this system has great potential for gene therapy applications. Full article
(This article belongs to the Special Issue Delivery System for Biomacromolecule Drugs: Design and Application)
Show Figures

Figure 1

20 pages, 3057 KiB  
Article
Mechanistic Insight in Permeability through Different Membranes in the Presence of Pharmaceutical Excipients: A Case of Model Hydrophobic Carbamazepine
by Tatyana Volkova, Olga Simonova and German Perlovich
Pharmaceutics 2024, 16(2), 184; https://doi.org/10.3390/pharmaceutics16020184 - 28 Jan 2024
Cited by 4 | Viewed by 1723
Abstract
The present study reports the effects of two pharmaceutical excipients of differing natures—non-ionic surfactant pluronic F127 (F127) and anionic sulfobutylether-β-cyclodextrin (SBE-β-CD)—on the permeation of the model compound, carbamazepine (CBZ). The permeability coefficients of CBZ at three concentrations of the excipients were measured through [...] Read more.
The present study reports the effects of two pharmaceutical excipients of differing natures—non-ionic surfactant pluronic F127 (F127) and anionic sulfobutylether-β-cyclodextrin (SBE-β-CD)—on the permeation of the model compound, carbamazepine (CBZ). The permeability coefficients of CBZ at three concentrations of the excipients were measured through two different artificial barriers: hydrophilic cellulose membrane (RC) and lipophilic polydimethylsiloxane–polycarbonate membrane (PDS). The equilibrium solubility of CBZ in F127 and SBE-β-CD solutions was determined. The micellization, complexation, and aggregation tendencies were investigated. Systemically increasing the solubility and the reduction of permeation upon the excipients’ concentration growth was revealed. The quantitative evaluation of the permeability tendencies was carried out using a Pratio parameter, a quasi-equilibrium mathematical mass transport model, and a correction of permeability coefficients for the free drug concentration (“true” permeability values). The results revealed the mutual influence of the excipient properties and the membrane nature on the permeability variations. Full article
(This article belongs to the Special Issue Delivery System for Biomacromolecule Drugs: Design and Application)
Show Figures

Graphical abstract

15 pages, 6963 KiB  
Article
Chitosan-Functionalized Poly(β-Amino Ester) Hybrid System for Gene Delivery in Vaginal Mucosal Epithelial Cells
by Xueqin Gao, Dirong Dong, Chong Zhang, Yuxing Deng, Jiahui Ding, Shiqi Niu, Songwei Tan and Lili Sun
Pharmaceutics 2024, 16(1), 154; https://doi.org/10.3390/pharmaceutics16010154 - 22 Jan 2024
Cited by 11 | Viewed by 2637
Abstract
Gene therapy displays great promise in the treatment of cervical cancer. The occurrence of cervical cancer is highly related to persistent human papilloma virus (HPV) infection. The HPV oncogene can be cleaved via gene editing technology to eliminate carcinogenic elements. However, the successful [...] Read more.
Gene therapy displays great promise in the treatment of cervical cancer. The occurrence of cervical cancer is highly related to persistent human papilloma virus (HPV) infection. The HPV oncogene can be cleaved via gene editing technology to eliminate carcinogenic elements. However, the successful application of the gene therapy method depends on effective gene delivery into the vagina. To improve mucosal penetration and adhesion ability, quaternized chitosan was introduced into the poly(β-amino ester) (PBAE) gene-delivery system in the form of quaternized chitosan-g-PBAE (QCP). At a mass ratio of PBAE:QCP of 2:1, the polymers exhibited the highest green fluorescent protein (GFP) transfection efficiency in HEK293T and ME180 cells, which was 1.1 and 5.4 times higher than that of PEI 25 kD. At this mass ratio, PBAE–QCP effectively compressed the GFP into spherical polyplex nanoparticles (PQ–GFP NPs) with a diameter of 255.5 nm. In vivo results indicated that owing to the mucopenetration and adhesion capability of quaternized CS, the GFP transfection efficiency of the PBAE–QCP hybrid system was considerably higher than those of PBAE and PEI 25 kD in the vaginal epithelial cells of Sprague–Dawley rats. Furthermore, the new system demonstrated low toxicity and good safety, laying an effective foundation for its further application in gene therapy. Full article
(This article belongs to the Special Issue Delivery System for Biomacromolecule Drugs: Design and Application)
Show Figures

Figure 1

Back to TopTop