Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (703)

Search Parameters:
Keywords = corrosion potential and corrosion rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6311 KiB  
Article
Unraveling the Excellent High-Temperature Oxidation Behavior of FeNiCuAl-Based Alloy
by Guangxin Wu, Gaosheng Li, Lijun Wei, Hao Chen, Yujie Wang, Yunze Qiao, Yu Hua, Chenyang Shi, Yingde Huang and Wenjie Yang
Materials 2025, 18(15), 3679; https://doi.org/10.3390/ma18153679 - 5 Aug 2025
Abstract
This study synthesized FeNiCuAlX high-entropy alloys (HEAs) (where X = Cr, Co, Mn) using arc melting and investigated their high-temperature oxidation behavior in air at 900 °C. The oxidation kinetics of all alloys followed a parabolic rate, with the oxidation rate constants (kp) [...] Read more.
This study synthesized FeNiCuAlX high-entropy alloys (HEAs) (where X = Cr, Co, Mn) using arc melting and investigated their high-temperature oxidation behavior in air at 900 °C. The oxidation kinetics of all alloys followed a parabolic rate, with the oxidation rate constants (kp) of FeNiCuAlCr, FeNiCuAlCo, and FeNiCuAlMn being approximately two to three orders of magnitude lower than that of the FeNiCu alloy. Specifically, FeNiCuAlCr exhibited the lowest kp value of 1.72 × 10−6 mg2·cm4/s, which is significantly lower than those of FeNiCuAlCo (3.29 × 10−6 mg2·cm4/s) and FeNiCuAlMn (1.71 × 10−5 mg2·cm4/s). This suggests that the addition of chromium promotes the formation of a dense Al2O3/Cr2O3 oxide layer, significantly enhancing the oxidation resistance. Furthermore, corrosion resistance was assessed through potentiodynamic polarization and electrochemical impedance spectroscopy in a 3.5% NaCl solution. FeNiCuAlCr demonstrated exceptional resistance to localized corrosion, as indicated by its low corrosion current density (45.7 μA/cm2) and high pitting potential (−0.21 V), highlighting its superior corrosion performance. Full article
(This article belongs to the Special Issue Characterization, Properties, and Applications of New Metallic Alloys)
Show Figures

Figure 1

11 pages, 5112 KiB  
Article
Fabrication of a Porous TiNi3 Intermetallic Compound to Enhance Anti-Corrosion Performance in 1 M KOH
by Zhenli He, Yue Qiu, Yuehui He, Qian Zhao, Zhonghe Wang and Yao Jiang
Metals 2025, 15(8), 865; https://doi.org/10.3390/met15080865 (registering DOI) - 1 Aug 2025
Viewed by 175
Abstract
Porous intermetallic compounds have the properties of porous materials as well as a combination of covalent and metallic bonds, and they exhibit high porosity, structural stability, and corrosion resistance. In this work, a porous TiNi3 intermetallic compound was fabricated through reactive synthesis [...] Read more.
Porous intermetallic compounds have the properties of porous materials as well as a combination of covalent and metallic bonds, and they exhibit high porosity, structural stability, and corrosion resistance. In this work, a porous TiNi3 intermetallic compound was fabricated through reactive synthesis of elemental powders. Next, detailed studies of its phase composition and pore structure characteristics at different sintering temperatures, as well as its corrosion behavior against an alkaline environment, were carried out. The results show that the as-prepared porous TiNi3 intermetallic compound has abundant pore structures, with an open porosity of 56.5%, which can be attributed to a combination of the bridging effects of initial powder particles and the Kirkendall effect occurring during the sintering process. In 1 M KOH solution, a higher positive corrosion potential (−0.979 VSCE) and a lower corrosion current density (1.18 × 10−4 A∙cm−2) were exhibited by the porous TiNi3 intermetallic compound, compared to the porous Ni, reducing the thermodynamic corrosion tendency and the corrosion rate. The corresponding corrosion process is controlled by the charge transfer process, and the increased charge transfer resistance value (713.9 Ω⋅cm2) of TiNi3 makes it more difficult to charge-transfer than porous Ni (204.5 Ω⋅cm2), thus decreasing the rate of electrode reaction. The formation of a more stable passive film with the incorporation of Ti contributes to this improved corrosion resistance performance. Full article
(This article belongs to the Special Issue Advanced Ti-Based Alloys and Ti-Based Materials)
Show Figures

Figure 1

12 pages, 2848 KiB  
Article
Microstructure and Properties of Dissoluble LA141-0.5Cu Magnesium Alloy Wires Applied to Oil and Gas Resource Exploitation
by Qiang Sun, Jianjun Xue, Yang Shi, Dingwei Weng, Shaolin Zhang, Ran Wei, Zheng Tong and Jie Qian
Metals 2025, 15(8), 860; https://doi.org/10.3390/met15080860 (registering DOI) - 31 Jul 2025
Viewed by 176
Abstract
Mg-Li-based dissoluble metal is a promising material for preparing dissoluble magnesium alloy wires. However, there are few reports on the development of Mg-Li dissoluble magnesium alloy wires so far. In this paper, the mechanical properties and dissoluble properties of as-drawn and annealed LA141-0.5Cu [...] Read more.
Mg-Li-based dissoluble metal is a promising material for preparing dissoluble magnesium alloy wires. However, there are few reports on the development of Mg-Li dissoluble magnesium alloy wires so far. In this paper, the mechanical properties and dissoluble properties of as-drawn and annealed LA141-0.5Cu wires were investigated in detail. It was found that the tensile strength of the LA141-0.5Cu wires decreased from 160 MPa to 127 MPa and the elongation increased from 17% to 22% after annealing. The difference in corrosion rates (93 °C/3% KCl solution) between the as-drawn wires and annealed wires is not significant, with values of 5.1 mg·cm−2·h−1 and 4.5 mg·cm−2·h−1, respectively. This can be explained as follows: after annealing, the number of dislocations in the wire decreases, the strength decreases, and the plasticity increases. The reason why the wires have a significant corrosion rate is that there is a large potential difference between the Cu-containing second phase and the magnesium matrix, which forms galvanic corrosion. The decrease in dislocation density after annealing leads to a slight reduction in the corrosion rate of the wires. This work provides a qualified material for fabricating temporary blocking knots for the exploitation of unconventional oil and gas resources. Full article
Show Figures

Figure 1

13 pages, 6341 KiB  
Article
Interaction of Ethanolamine with Magnetite Through Molecular Dynamic Simulations
by Nikoleta Ivanova, Vasil Karastoyanov, Iva Betova and Martin Bojinov
Molecules 2025, 30(15), 3197; https://doi.org/10.3390/molecules30153197 - 30 Jul 2025
Viewed by 179
Abstract
Magnetite (Fe3O4) provides a protective corrosion layer in the steam generators of nuclear power plants. The presence of monoethanolamine (MEA) in coolant water has a beneficial effect on corrosion processes. In that context, the adsorption of MEA and ethanol–ammonium [...] Read more.
Magnetite (Fe3O4) provides a protective corrosion layer in the steam generators of nuclear power plants. The presence of monoethanolamine (MEA) in coolant water has a beneficial effect on corrosion processes. In that context, the adsorption of MEA and ethanol–ammonium cation on the {111} surface of magnetite was studied using the molecular dynamics (MD) method. A modified version of the mechanical force field (ClayFF) was used. The systems were simulated at different temperatures (423 K; 453 K; 503 K). Surface coverage data were obtained from adsorption simulations; the root-mean-square deviation (RMSD) of the target molecules were calculated, and their minimum distance to the magnetite surface was traced. The potential and adsorption energies of MEA were calculated as a function of temperature. It has been established that the interaction between MEA and magnetite is due to electrostatic phenomena and the adsorption rate increases with temperature. A comparison was made with existing experimental results and similar MD simulations. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

20 pages, 7113 KiB  
Article
Effect of Cu Content on Corrosion Resistance of 3.5%Ni Weathering Steel in Marine Atmosphere of South China Sea
by Yuanzheng Li, Ziyu Guo, Tianle Fu, Sha Sha, Bing Wang, Xiaoping Chen, Shujun Jia and Qingyou Liu
Materials 2025, 18(15), 3496; https://doi.org/10.3390/ma18153496 - 25 Jul 2025
Viewed by 291
Abstract
The influence of the copper (Cu) content on the corrosion resistance of 3.5%Ni low-carbon weathering steel was investigated using periodic dry–wet cycle accelerated corrosion tests. The mechanical properties of the steels were assessed via tensile and low-temperature impact tests, while corrosion resistance was [...] Read more.
The influence of the copper (Cu) content on the corrosion resistance of 3.5%Ni low-carbon weathering steel was investigated using periodic dry–wet cycle accelerated corrosion tests. The mechanical properties of the steels were assessed via tensile and low-temperature impact tests, while corrosion resistance was evaluated based on weight loss measurements. Surface oxide layers were characterized using three-dimensional laser confocal microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and electrochemical methods. Electron probe microanalysis (EPMA) was employed to examine the cross-sectional morphology of the oxide layer after 72 h of accelerated corrosion tests. The results indicate that the solution state of Cu increased the strength of 3.5%Ni steels but significantly damaged the low-temperature toughness. As the Cu content increased from 0.75% to 1.25%, the corrosion rate decreased from 4.65 to 3.74 g/m2 h. However, when there was a further increase in the Cu content to 2.15%, there was little decrease in the corrosion rate. With the increase in the Cu content from 0.75% to 2.15%, the surface roughness of 3.5%Ni weathering steel after corrosion decreased from 5.543 to 5.019 μm, and the corrosion behavior was more uniform. Additionally, the α/γ protective factor of the oxide layer of the surface layer increased from 2.58 to 2.84 with an increase in the Cu content from 0.75% to 1.25%, resulting in the oxide layer of the surface layer being more protective. For 1.25%Cu steel, the corrosion current density of rusted samples is lower (ranging from 1.2609 × 10−4 A/cm2 to 3.7376 × 10−4 A/cm2), and the corrosion potential is higher (ranging from −0.85544 V to −0.40243 V). Therefore, the rusted samples are more corrosion resistant. The Cu in the oxide layer of the surface layer forms CuO and CuFeO2, which are helpful for increasing corrosion resistance, which inhibits the penetration of Cl. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

14 pages, 1884 KiB  
Article
Ag/ZrO2 Hybrid Coating for Tribological and Corrosion Protection of Ti45Nb Alloy in Biomedical Environments
by Mevra Aslan Çakir
Metals 2025, 15(8), 831; https://doi.org/10.3390/met15080831 - 24 Jul 2025
Viewed by 254
Abstract
In this study, a Ag/ZrO2 hybrid coating prepared by the sol–gel method on a β-type Ti45Nb alloy was applied by the spin coating technique, and the microstructural, mechanical, electrochemical, and tribological properties of the surface were evaluated in a multi-dimensional manner. The [...] Read more.
In this study, a Ag/ZrO2 hybrid coating prepared by the sol–gel method on a β-type Ti45Nb alloy was applied by the spin coating technique, and the microstructural, mechanical, electrochemical, and tribological properties of the surface were evaluated in a multi-dimensional manner. The hybrid solution was prepared using zirconium propoxide and silver nitrate and stabilized through a low-temperature two-stage annealing protocol. The crystal structure of the coating was determined by XRD, and the presence of dense tetragonal ZrO2 phase and crystalline Ag phases was confirmed. SEM-EDS analyses revealed a compact coating structure of approximately 1.8 µm thickness with homogeneously distributed Ag nanoparticles on the surface. As a result of the electrochemical corrosion tests, it was determined that the open circuit potential shifted to more noble values, the corrosion current density decreased, and the corrosion rate decreased by more than 70% on the surfaces where the Ag/ZrO2 coating was applied. In the tribological tests, a decrease in the coefficient of friction, narrowing of wear marks, and significant reduction in surface damage were observed in dry and physiological (HBSS) environments. The findings revealed that the Ag/ZrO2 hybrid coating significantly improved the surface performance of the Ti45Nb alloy both mechanically and electrochemically and offers high potential for biomedical implant applications. Full article
(This article belongs to the Special Issue Corrosion Behavior and Surface Engineering of Metallic Materials)
Show Figures

Figure 1

19 pages, 3112 KiB  
Article
Durable Superhydrophobic Composite Coating Based on Hydrangea-like SiO2 Nanoparticles with Excellent Performance in Anticorrosion, Drag Reduction, and Antifouling
by Yuhao Xue, Yamei Zhao, Xiaoqi Gu, Mengdan Huo, Kunde Yang, Mingyu Liu, Sixian Fan and Maoyong Zhi
Materials 2025, 18(15), 3443; https://doi.org/10.3390/ma18153443 - 23 Jul 2025
Viewed by 276
Abstract
Superhydrophobic coatings possess distinct wettability characteristics and hold significant potential in metal corrosion protection and underwater drag reduction. However, their practical application is often hindered by poor durability arising from the fragility of their micro/nanostructured surface roughness. In this study, a durable superhydrophobic [...] Read more.
Superhydrophobic coatings possess distinct wettability characteristics and hold significant potential in metal corrosion protection and underwater drag reduction. However, their practical application is often hindered by poor durability arising from the fragility of their micro/nanostructured surface roughness. In this study, a durable superhydrophobic coating featuring a hierarchical, hydrangea-like micro/nanostructure was successfully fabricated on an aluminum alloy substrate via a simple one-step cold-spraying technique. The coating consisted of hydrangea-shaped SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (PFDT) to produce multiscale roughness, while epoxy resin (EP) served as the binding matrix to enhance mechanical integrity. The hydrangea-like SiO2 nanostructures were characterized by solid cores and wrinkled, petal-like outgrowths. This unique morphology not only increased the surface roughness but also provided more active sites for air entrapment, thereby enhancing the coating’s overall performance. The h-SiO2@PFDT-EP composite coating exhibited excellent superhydrophobicity, with a WCA of 170.1° ± 0.8° and a SA of 2.7° ± 0.5°. Durability was evaluated through sandpaper abrasion, tape peeling, acid and alkali immersion, artificial weathering, and salt spray tests. The results demonstrated that the coating retained stable superhydrophobic performance under various environmental stresses. Compared with bare 6061 aluminum and EP coatings, its corrosion current density was reduced by four and three orders of magnitude, respectively. Furthermore, the coating achieved a maximum drag-reduction rate of 31.01% within a velocity range of 1.31–7.86 m/s. The coating also displayed excellent self-cleaning properties. Owing to its outstanding durability, corrosion resistance, and drag-reducing capability, this one-step fabricated superhydrophobic coating showed great promise for applications in marine engineering and defense. Full article
Show Figures

Figure 1

23 pages, 6480 KiB  
Article
Mechanism Analysis and Evaluation of Formation Physical Property Damage in CO2 Flooding in Tight Sandstone Reservoirs of Ordos Basin, China
by Qinghua Shang, Yuxia Wang, Dengfeng Wei and Longlong Chen
Processes 2025, 13(7), 2320; https://doi.org/10.3390/pr13072320 - 21 Jul 2025
Viewed by 434
Abstract
Capturing CO2 emitted by coal chemical enterprises and injecting it into oil reservoirs not only effectively improves the recovery rate and development efficiency of tight oil reservoirs in the Ordos Basin but also addresses the carbon emission problem constraining the development of [...] Read more.
Capturing CO2 emitted by coal chemical enterprises and injecting it into oil reservoirs not only effectively improves the recovery rate and development efficiency of tight oil reservoirs in the Ordos Basin but also addresses the carbon emission problem constraining the development of the region. Since initiating field experiments in 2012, the Ordos Basin has become a significant base for CCUS (Carbon capture, Utilization, and Storage) technology application and demonstration in China. However, over the years, projects have primarily focused on enhancing the recovery rate of CO2 flooding, while issues such as potential reservoir damage and its extent have received insufficient attention. This oversight hinder the long-term development and promotion of CO2 flooding technology in the region. Experimental results were comprehensively analyzed using techniques including nuclear magnetic resonance (NMR), X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma (ICP), and ion chromography (IG). The findings indicate that under current reservoir temperature and pressure conditions, significant asphaltene deposition and calcium carbonate precipitation do not occur during CO2 flooding. The reservoir’s characteristics-high feldspar content, low carbon mineral content, and low clay mineral content determine that the primary mechanism affecting physical properties under CO2 flooding in the Chang 4 + 5 tight sandstone reservoir is not, as traditional understand, carbon mineral dissolution or primary clay mineral expansion and migration. Instead, feldspar corrosion and secondary particles migration are the fundamental reasons for the changes in reservoir properties. As permeability increases, micro pore blockage decreases, and the damaging effect of CO2 flooding on reservoir permeability diminishes. Permeability and micro pore structure are therefore significant factors determining the damage degree of CO2 flooding inflicts on tight reservoirs. In addition, temperature and pressure have a significant impact on the extent of reservoir damage caused by CO2 flooding in the study region. At a given reservoir temperature, increasing CO2 injection pressure can mitigate reservoir damage. It is recommended to avoid conducting CO2 flooding projects in reservoirs with severe pressure attenuation, low permeability, and narrow pore throats as much as possible to prevent serious damage to the reservoir. At the same time, the production pressure difference should be reasonably controlled during the production process to reduce the risk and degree of calcium carbonate precipitation near oil production wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 12649 KiB  
Article
Microstructure, Mechanical Properties, and Electrochemical Corrosion Behavior of CoCrFeNiNb and CoCrFeNiV High-Entropy Alloys Prepared via Mechanical Alloying and Spark Plasma Sintering
by Yan Zhu, Yiwen Liu, Zhaocang Meng and Jianke Tian
Metals 2025, 15(7), 814; https://doi.org/10.3390/met15070814 - 21 Jul 2025
Viewed by 282
Abstract
This study investigates the microstructural evolution, mechanical behavior, and electrochemical performance of CoCrFeNiNb and CoCrFeNiV HEAs fabricated via mechanical alloying and spark plasma sintering. Microstructural analyses reveal that the alloys have a face-centered cubic (FCC) matrix with Nb-enriched Laves and V-enriched σ phases. [...] Read more.
This study investigates the microstructural evolution, mechanical behavior, and electrochemical performance of CoCrFeNiNb and CoCrFeNiV HEAs fabricated via mechanical alloying and spark plasma sintering. Microstructural analyses reveal that the alloys have a face-centered cubic (FCC) matrix with Nb-enriched Laves and V-enriched σ phases. The CoCrFeNiNb HEA exhibits superior compressive strength and hardness than CoCrFeNiV due to uniform Laves phases distribution. Fracture surface analysis reveals that at lower sintering temperatures, the fracture is primarily caused by incomplete particle bonding, whereas at higher temperatures, brittle fracture modes dominated via transgranular cracking become predominant. The research results of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that both alloys exhibited superior electrochemical stability in a 3.5 wt.% NaCl solution compared to the CoCrFeNi base alloy. X-ray photoelectron spectroscopy (XPS) analysis confirms the formation of stable oxide layers (Nb2O5 and V2O3) on the precipitated phases, acting as protective barriers against chloride ion penetration. The selective oxidation of Nb and V improves the integrity of the passive film, reducing the corrosion rates and enhancing the long-term durability. These findings highlight the critical role of precipitated phases in enhancing the corrosion resistance of HEAs, and emphasize their potential for use in extreme environments. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Processing and Properties)
Show Figures

Figure 1

31 pages, 5836 KiB  
Article
Investigation of Corrosion and Fouling in a Novel Biocide-Free Antifouling Coating on Steel
by Polyxeni Vourna, Pinelopi P. Falara and Nikolaos D. Papadopoulos
Micro 2025, 5(3), 34; https://doi.org/10.3390/micro5030034 - 15 Jul 2025
Viewed by 248
Abstract
Antifouling coatings are integral to the maritime economy. The efficacy of the applied painting system is closely correlated with susceptibility to fouling and the adhesion strength of contaminants. A fouled hull might result in an elevated fuel consumption and journey expenses. Biofouling on [...] Read more.
Antifouling coatings are integral to the maritime economy. The efficacy of the applied painting system is closely correlated with susceptibility to fouling and the adhesion strength of contaminants. A fouled hull might result in an elevated fuel consumption and journey expenses. Biofouling on ship hulls also has detrimental environmental consequences due to the release of biocides during maritime travel. Therefore, it is imperative to develop eco-friendly antifouling paints that inhibit the robust adhesion of marine organisms. This study aimed to assess a biocide-free antifouling coating formulated with polymers intended to diminish molecular adhesion interactions between marine species’ adhesives and the coating. The evaluation included laboratory corrosion experiments in artificial seawater and the immersion of samples in a marine environment in Attica, Greece, for varying durations. The research indicates that an antifouling coating applied to naval steel in an artificial seawater solution improves corrosion resistance by more than 60%. The conductive polymer covering, comprising polyaniline and graphene oxide, diminishes corrosion current values, lowers the corrosion rate, and enhances corrosion potentials. The impedance parameters exhibit analogous behavior, with the coating preventing water absorption and displaying corrosion resistance. The coating serves as a low-permeability barrier, exhibiting exceptional durability for naval steel over time, with an operational performance up to 98%. Full article
Show Figures

Figure 1

21 pages, 5279 KiB  
Article
The Influence of Zn and Ca Addition on the Microstructure, Mechanical Properties, Cytocompatibility, and Electrochemical Behavior of WE43 Alloy Intended for Orthopedic Applications
by Mircea Cătălin Ivănescu, Corneliu Munteanu, Ramona Cimpoeșu, Maria Daniela Vlad, Bogdan Istrate, Fabian Cezar Lupu, Eusebiu Viorel Șindilar, Alexandru Vlasa, Cristinel Ionel Stan, Maria Larisa Ivănescu and Georgeta Zegan
Medicina 2025, 61(7), 1271; https://doi.org/10.3390/medicina61071271 - 14 Jul 2025
Viewed by 359
Abstract
Background and Objectives: Magnesium (Mg)-based materials, such as the WE43 alloy, show potential in biomedical applications owing to their advantageous mechanical properties and biodegradability; however, their quick corrosion rate and hydrogen release restrict their general clinical utilization. This study aimed to develop [...] Read more.
Background and Objectives: Magnesium (Mg)-based materials, such as the WE43 alloy, show potential in biomedical applications owing to their advantageous mechanical properties and biodegradability; however, their quick corrosion rate and hydrogen release restrict their general clinical utilization. This study aimed to develop a novel Mg-Zn-Ca alloy system based on WE43 alloy, evaluating the influence of Zn and Ca additions on microstructure, mechanical properties, cytocompatibility, and electrochemical behavior for potential use in biodegradable orthopedic applications. Materials and Methods: The WE43-Zn-Ca alloy system was developed by alloying standard WE43 (Mg–Y–Zr–RE) with 1.5% Zn and Ca concentrations of 0.2% (WE43_0.2Ca alloy) and 0.3% (WE43_0.3Ca alloy). Microstructural analysis was performed utilizing scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDS), while the chemical composition was validated through optical emission spectroscopy and X-ray diffraction (XRD). Mechanical properties were assessed through tribological tests. Electrochemical corrosion behavior was evaluated using potentiodynamic polarization in a 3.5% NaCl solution. Cytocompatibility was assessed in vitro on MG63 cells using cell viability assays (MTT). Results: Alloys WE43_0.2Ca and WE43_0.3Ca exhibited refined, homogeneous microstructures with grain sizes between 70 and 100 µm, without significant structural defects. Mechanical testing indicated reduced stiffness and an elastic modulus similar to human bone (19.2–20.3 GPa), lowering the risk of stress shielding. Cytocompatibility tests confirmed non-cytotoxic behavior for alloys WE43_0.2Ca and WE43_0.3Ca, with increased cell viability and unaffected cellular morphology. Conclusions: The study validates the potential of Mg-Zn-Ca alloys (especially WE43_0.3Ca) as biodegradable biomaterials for orthopedic implants due to their favorable combination of mechanical properties, corrosion resistance, and cytocompatibility. The optimization of these alloys contributed to obtaining an improved microstructure with a reduced degradation rate and a non-cytotoxic in vitro outcome, which supports efficient bone tissue regeneration and its integration into the body for complex biomedical applications. Full article
Show Figures

Figure 1

27 pages, 4704 KiB  
Article
Chemical Composition and Corrosion—Contributions to a Sustainable Use of Geothermal Water
by Ioana Maior, Gabriela Elena Badea, Oana Delia Stănășel, Mioara Sebeșan, Anca Cojocaru, Anda Ioana Graţiela Petrehele, Petru Creț and Cristian Felix Blidar
Energies 2025, 18(14), 3634; https://doi.org/10.3390/en18143634 - 9 Jul 2025
Viewed by 341
Abstract
The utilization of geothermal resources as renewable energy is a subject of interest for the regions that possess these resources. The exploitation of geothermal energy must consider local geological conditions and an integrated approach, which should include practical studies on the chemistry of [...] Read more.
The utilization of geothermal resources as renewable energy is a subject of interest for the regions that possess these resources. The exploitation of geothermal energy must consider local geological conditions and an integrated approach, which should include practical studies on the chemistry of geothermal waters and their effect on thermal installations. Geothermal waters from Bihor County, Romania, have a variable composition, depending on the crossed geological layers, but also on pressure and temperature. Obviously, water transport and heat transfer are involved in all applications of geothermal waters. This article aims to characterize certain geothermal waters from the point of view of composition and corrosion if used as a thermal agent. Atomic absorption spectroscopy (AAS) and UV–Vis spectroscopy were employed to analyze water specimens. Chemical composition includes calcite (CaCO3), chalcedony (SiO2), goethite (FeO(OH)), and magnetite (Fe3O4), which confirms the corrosion and scale potential of these waters. Corrosion resistance of mild carbon steel, commonly used as pipe material, was studied by the gravimetric method and through electrochemical methodologies, including chronoamperometry, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization method, and open circuit potential measurement (OCP). Statistical analysis shows that the medium corrosion rate of S235 steel, expressed as penetration rate, is between 0.136 mm/year to 0.615 mm/year. The OCP, EIS, and chronoamperometry experiments explain corrosion resistance through the formation of a passive layer on the surface of the metal. This study proposes an innovative methodology and a systematic algorithm for analyzing chemical processes and corrosion phenomena in geothermal installations, emphasizing the necessity of individualized assessments for each aquifer to optimize operational parameters and ensure sustainable resource utilization. Full article
(This article belongs to the Special Issue The Status and Development Trend of Geothermal Resources)
Show Figures

Graphical abstract

12 pages, 3521 KiB  
Article
Effect of Alternating Magnetic Field Intensity on Microstructure and Corrosion Properties of Deposited Metal in 304 Stainless Steel TIG Welding
by Jinjie Wang, Jiayi Li, Haokai Wang, Zan Ju, Juan Fu, Yong Zhao and Qianhao Zang
Metals 2025, 15(7), 761; https://doi.org/10.3390/met15070761 - 6 Jul 2025
Viewed by 332
Abstract
Stainless steel, due to its exceptional comprehensive properties, has been widely adopted as the primary material for liquid cargo tank containment systems and pipelines in liquefied natural gas (LNG) carriers. However, challenges such as hot cracking, excessive deformation, and the deterioration of welded [...] Read more.
Stainless steel, due to its exceptional comprehensive properties, has been widely adopted as the primary material for liquid cargo tank containment systems and pipelines in liquefied natural gas (LNG) carriers. However, challenges such as hot cracking, excessive deformation, and the deterioration of welded joint performance during stainless steel welding significantly constrain the construction quality and safety of LNG carriers. While conventional tungsten inert gas (TIG) welding can produce high-integrity welds, it is inherently limited by shallow penetration depth and low efficiency. Magnetic field-assisted TIG welding technology addresses these limitations by introducing an external magnetic field, which effectively modifies arc morphology, refines grain structure, enhances penetration depth, and improves corrosion resistance. In this study, TIG bead-on-plate welding was performed on 304 stainless steel plates, with a systematic investigation into the dynamic arc behavior during welding, as well as the microstructure and anti-corrosion properties of the deposited metal. The experimental results demonstrate that, in the absence of a magnetic field, the welding arc remains stable without deflection. As the intensity of the alternating magnetic field intensity increases, the arc exhibits pronounced periodic oscillations. At an applied magnetic field intensity of 30 mT, the maximum arc deflection angle reaches 76°. With increasing alternating magnetic field intensity, the weld penetration depth gradually decreases, while the weld width progressively expands. Specifically, at 30 mT, the penetration depth reaches a minimum value of 1.8 mm, representing a 44% reduction compared to the non-magnetic condition, whereas the weld width peaks at 9.3 mm, corresponding to a 9.4% increase. Furthermore, the ferrite grains in the weld metal are significantly refined at higher alternating magnetic field intensities. The weld metal subjected to a 30 mT alternating magnetic field exhibits the highest breakdown potential, the lowest corrosion rate, and the most protective passive film, indicating superior corrosion resistance compared to other tested conditions. Full article
(This article belongs to the Special Issue Advanced Metal Welding and Joining Technologies—2nd Edition)
Show Figures

Graphical abstract

21 pages, 15449 KiB  
Article
Experimental Study on the Performance of Sustainable Epoxy Resin-Modified Concrete Under Coupled Salt Corrosion and Freeze–Thaw Cycles
by Zhen Zhang, Fang Zhang, Chuangzhou Wu and Yafei Chen
Sustainability 2025, 17(13), 6186; https://doi.org/10.3390/su17136186 - 5 Jul 2025
Viewed by 414
Abstract
Epoxy resin-modified concrete (ERMC) demonstrates significant potential for enhancing the durability of concrete structures exposed to harsh environmental conditions. However, the performance of ERMC under the combined effects of salt erosion and freeze–thaw cycles remains inadequately explored. This study systematically evaluates the durability [...] Read more.
Epoxy resin-modified concrete (ERMC) demonstrates significant potential for enhancing the durability of concrete structures exposed to harsh environmental conditions. However, the performance of ERMC under the combined effects of salt erosion and freeze–thaw cycles remains inadequately explored. This study systematically evaluates the durability of ERMC through experimental investigations on specimens with epoxy resin-poly ash ratios of 0%, 5%, 10%, 15%, 20%, and 25%. Resistance to salt erosion was assessed using composite salt solutions with concentrations of 0%, 1.99%, 9.95%, and 19.90%, while frost resistance was tested under combined conditions using a 1.99% Na2SO4 solution. Key performance metrics were analyzed with microstructural observations to elucidate the underlying damage mechanisms, including the compressive strength corrosion coefficient, dynamic elastic modulus, mass loss rate, and flexural strength loss rate. The results reveal that incorporating epoxy resin enhances concrete’s resistance to salt erosion and freeze–thaw damage by inhibiting crack propagation and reducing pore development. Optimal performance was achieved with an epoxy resin content of 10–15%, which exhibited minimal surface deterioration, a denser microstructure, and superior long-term durability. These findings provide critical insights for optimizing the design of ERMC to improve the resilience of concrete structures in aggressive environments, demonstrating that ERM is a sustainable material, and offering practical implications for infrastructure exposed to extreme climatic and chemical conditions. Full article
(This article belongs to the Special Issue Sustainable Construction and Built Environments)
Show Figures

Figure 1

10 pages, 1524 KiB  
Proceeding Paper
Indicators of Microbial Corrosion of Steel Induced by Sulfate-Reducing Bacteria Under the Influence of a Supernatant from Bacterial Cultures of Heterotrophic Bacteria with Biocontrol Properties
by Nataliia Tkachuk, Liubov Zelena and Yaroslav Novikov
Eng. Proc. 2025, 87(1), 87; https://doi.org/10.3390/engproc2025087087 - 2 Jul 2025
Viewed by 245
Abstract
Microorganisms take an active part in the processes of microbiologically influenced corrosion, which is protected against by using bactericides—often toxic compounds—with inhibitory properties. There are many studies of eco-friendly “green” biocides/inhibitors, in particular those based on microbial metabolites. Indicators for the processes of [...] Read more.
Microorganisms take an active part in the processes of microbiologically influenced corrosion, which is protected against by using bactericides—often toxic compounds—with inhibitory properties. There are many studies of eco-friendly “green” biocides/inhibitors, in particular those based on microbial metabolites. Indicators for the processes of microbial corrosion of steel 3 induced by the sulfate-reducing bacteria Desulfovibrio oryzae NUChC SRB2 under the influence of the strains Bacillus velezensis NUChC C2b and Streptomyces gardneri ChNPU F3 have not been investigated, which was the aim of this study. The agar well diffusion method (to determine the antibacterial properties of the supernatants) was used, along with the crystal violet (to determine the biomass of the biofilm on the steel) and gravimetric methods (to determine the corrosion rate). A moderate adhesiveness to steel 3 was established for D. oryzae due to its biofilm-forming ability. The presence of a supernatant on cultures of S. gardneri, B. velezensis and their mixture (2:1) did not reduce the biofilm-forming properties of D. oryzae. Compared to the control, a decrease in the corrosion rate was recorded for the variant of the mixture of the studied bacterial culture supernatants. This indicates the potential of this mixture for use in corrosion protection in environments with sulfate-reducing bacteria, which requires further research. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

Back to TopTop