Indicators of Microbial Corrosion of Steel Induced by Sulfate-Reducing Bacteria Under the Influence of a Supernatant from Bacterial Cultures of Heterotrophic Bacteria with Biocontrol Properties †
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Investigation of the Sensitivity of Sulfate-Reducing Bacteria to Supernatants from Cultures of Heterotrophic Bacteria with Biocontrol Properties
2.3. Investigation of the Corrosion Activity of Sulfate-Reducing Bacteria
2.3.1. Method with Crystal Violet
2.3.2. Gravimetric Method
2.4. Statistical Data Processing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beech, I.B.; Gaylarde, C.C. Recent advances in the study of biocorrosion: An overview. Rev. Microbiol. 1999, 30, 117–190. [Google Scholar] [CrossRef]
- Andreyuk, K.; Kozlova, I.; Kopteva, Z.; Pilyashenko-Novokhatny, A.; Zanina, V.; Purish, L. Microbial Corrosion of Underground Structures; Naukova Dumka Publishing House: Kyiv, Ukraine, 2005; p. 258. (In Ukrainian) [Google Scholar]
- Telegdi, J.; Shaban, A.; Trif, L. Review on the microbiologically influenced corrosion and the function of biofilms. Int. J. Corros. Scale Inhib. 2020, 9, 1–33. [Google Scholar] [CrossRef]
- Vaithiyanathan, S.; Chandrasekaran, K.; Barik, R.C. Green biocide for mitigating sulfate-reducing bacteria influenced microbial corrosion. 3 Biotech 2018, 8, 495. [Google Scholar] [CrossRef]
- Quraishi, M.A.; Chauhan, D.S. Drugs as environmentally sustainable corrosion inhibitors. In Sustainable Corrosion Inhibitors II: Synthesis, Design, and Practical Applications; Hussain, C.M., Verma, C., Eds.; ACS Symposium Series; American Chemical Society: Washington, WA, USA, 2021; pp. 1–17. Available online: https://pubs.acs.org/doi/pdf/10.1021/bk-2021-1404.ch001 (accessed on 1 July 2025).
- Shi, X.; Zhang, R.; Sand, W.; Mathivanan, K.; Zhang, Y.; Wang, N.; Duan, J.; Hou, B. Comprehensive review on the use of biocides in microbiologically influenced corrosion. Microorganisms 2023, 11, 2194. [Google Scholar] [CrossRef]
- Zuo, R. Biofilms: Strategies for metal corrosion inhibition employing microorganisms. Appl. Microbiol. Biotechnol. 2007, 76, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Płaza, G.; Achal, V. Biosurfactants: Eco-friendly and innovative biocides against biocorrosion. IJMS 2020, 21, 2152. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, R.; Duan, J.; Shi, X.; Zhang, Y.; Guan, F.; Sand, W.; Hou, B. Extracellular polymeric substances and biocorrosion/biofouling: Recent advances and future perspectives. IJMS 2022, 23, 5566. [Google Scholar] [CrossRef] [PubMed]
- Petraretti, M.; Siciliano, A.; Carraturo, F.; Cimmino, A.; De Natale, A.; Guida, M.; Pollio, A.; Evidente, A.; Masi, M. An Ecotoxicological Evaluation of Four Fungal Metabolites with Potential Application as Biocides for the Conservation of Cultural Heritage. Toxins 2022, 14, 407. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, R.; Zhang, Q.; Zhao, C.; Zhou, X.; Zheng, H.; Zhang, R.; Sun, Y.; Yan, Z. Application of Biomass Corrosion Inhibitors in Metal Corrosion Control: A Review. Molecules 2023, 28, 2832. [Google Scholar] [CrossRef]
- Rao, P.; Mulky, L. Microbially Influenced Corrosion and its Control Measures: A Critical Review. J. Bio Tribo Corros. 2023, 9, 57. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, E.; Xu, D.; Lovley, D.R. Burning question: Are there sustainable strategies to prevent microbial metal corrosion? Microb. Biotechnol. 2023, 16, 2026–2035. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, A.; Al Bahir, A.; Alqarni, N.; Toghan, A.; Khider, M.; Ibrahim, I.M.; Abulreesh, H.H.; Elbanna, K. Evaluation of synthesized biosurfactants as promising corrosion inhibitors and alternative antibacterial and antidermatophytes agents. Sci. Rep. 2023, 13, 2585. [Google Scholar] [CrossRef] [PubMed]
- Ignatova-Ivanova, T.; Ivanov, R. Exopolysaccharides from lactic acid bacteria as corrosion inhibitors. Acta Sci. Nat. 2016, 3, 52–60. [Google Scholar] [CrossRef]
- Finkenstadt, V.L.; Bucur, C.B.; Côté, G.L.; Evans, K.O. Bacterial exopolysaccharides for corrosion resistance on low carbon steel. J. Appl. Polym. Sci. 2017, 134, 45032. [Google Scholar] [CrossRef]
- Moradi, M.; Song, Z.; Xiao, T. Exopolysaccharide produced by Vibrio neocaledonicus sp as a green corrosion inhibitor: Production and structural characterization. J. Mater. Sci. Technol. 2018, 34, 2447–2457. [Google Scholar] [CrossRef]
- Suma, M.S.; Basheer, R.; Sreelekshmy, B.R.; Vipinlal, V.; Sha, M.A.; Jineesh, P.; Krishnan, A.; Archana, S.R.; Saji, V.S.; Shibli, S.M.A. Pseudomonas putida RSS biopassivation of mild steel for long term corrosion inhibition. Biodegradation 2019, 137, 59–67. [Google Scholar] [CrossRef]
- Khan, M.S.; Yang, C.; Zhao, Y.; Pan, H.; Zhao, J.; Shahzad, M.B.; Kolawole, S.K.; Ullah, I.; Yang, K. An induced corrosion inhibition of X80 steel by using marine bacterium Marinobacter salsuginis. Colloids Surf. B Biointerfaces 2020, 189, 110858. [Google Scholar] [CrossRef]
- Ornek, D.; Jayaraman, A.; Syrett, B.C.; Hsu, C.H.; Mansfeld, F.B.; Wood, T.K. Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or gamma-polyglutamate. Appl. Microbiol. Biotechnol. 2002, 58, 651–657. [Google Scholar] [CrossRef]
- Jayaraman, A.; Mansfeld, F.B.; Wood, T.K. Inhibiting sulfate-reducing bacteria in biofilms by expressing the antimicrobial peptides indolicidin and bactenecin. J. Ind. Microbiol. Biotechnol. 1999, 22, 167–175. [Google Scholar] [CrossRef]
- Jayaraman, A.; Hallock, P.J.; Carson, R.M.; Lee, C.C.; Mansfeld, F.B.; Wood, T.K. Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ. Appl. Microbiol. Biotechnol. 1999, 52, 267–275. [Google Scholar] [CrossRef]
- Tkachuk, N.; Zelena, L. Inhibition of heterotrophic bacterial biofilm in the soil ferrosphere by Streptomyces spp. and Bacillus velezensis. Biofouling 2022, 38, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Tkachuk, N.; Zelena, L.; Mazur, P.; Lukash, O. Genotypic, physiological and biochemical features of Desulfovibrio strains in a sulfidogenic microbial community isolated from the soil of ferrosphere. Ecol. Quest. 2020, 31, 79–88. [Google Scholar] [CrossRef]
- Tkachuk, N.; Zelena, L.; Lukash, O.; Mazur, P. Microbiological and genetic characteristics of Bacillus velezensis bacillibactin-producing strains and their effect on the sulfate-reducing bacteria biofilms on the poly(ethylene terephthalate) surface. Ecol. Quest. 2021, 32, 119–129. [Google Scholar] [CrossRef]
- Tkachuk, N.; Zelena, L.; Novikov, Y. Indicators of the Microbial Corrosion of Steel Induced by Sulfate-Reducing Bacteria Under the Influence of Certain Drugs. Microbiol. Res. 2025, 16, 21. [Google Scholar] [CrossRef]
- Stepanovic, S.; Vukovic, D.; Dakic, I.; Savic, B.; Svabic-Vlahovic, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Tkachuk, N.; Zelena, L.; Mazur, P. Properties of anaerobic bacteria from ferrosphere crucial for biofilm development. Ecol. Quest. 2021, 32, 107–112. [Google Scholar] [CrossRef]
- Oulahal, N.; Degraeve, P. Phenolic-Rich Plant Extracts With Antimicrobial Activity: An Alternative to Food Preservatives and Biocides? Front. Microbiol. 2022, 12, 753518. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.C.; Carvalho, A.G.; Gama, B.A.; Coutinho, R. Field experimental evaluation of secondary metabolites from marine invertebrates as antifoulants. Braz. J. Biol. 2002, 62, 311–320. [Google Scholar] [CrossRef]
- Kellner Filho, L.C.; Picão, B.W.; Silva, M.L.A.; Cunha, W.R.; Pauletti, P.M.; Dias, G.M.; Copp, B.R.; Bertanha, C.S.; Januario, A.H. Bioactive Aliphatic Sulfates from Marine Invertebrates. Mar. Drugs 2019, 17, 527. [Google Scholar] [CrossRef]
- Royani, A.; Hanafi, M.; Manaf, A. Prospect of plant extracts as eco-friendly biocides for microbiologically influenced corrosion: A review. Int. J. Corros. Scale Inhibit. 2022, 11, 862–888. [Google Scholar] [CrossRef]
- Saha, M.; Sarkar, S.; Sarkar, B.; Sharma, B.K.; Bhattacharjee, S.; Tribedi, P. Microbial siderophores and their potential applications: A review. Environ. Sci. Pollut. Res. 2015, 23, 3984–3999. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Miranda, S.; Zamudio-Rivera, L.S.; Cisneros-Dévora, R.; George-Téllez, R.; Fernández, F.J. Theoretical insight and experimental elucidation of desferrioxamineB from Bacillus sp. AS7 as a green corrosion inhibitor. Corros. Eng. Sci. Technol. 2020, 56, 93–101. [Google Scholar] [CrossRef]
- Little, B.; Mansfeld, F. Passivity of stainless steels in natural seawater. In Uhlig, H.H. Memorial Symposium: Corrosion Monograph Series; Mansfeld, F., Asphahani, A., Bohni, H., Latansion, R., Eds.; The Electrochemical Society, Inc.: New Jersey, NJ, USA, 1995; Volume 94-26, pp. 42–52. [Google Scholar]
- McCafferty, E.; McArdle, J.V. Corrosion inhibition of iron in acid solutions by biological siderophores. J. Electrochem. Soc. 1995, 142, 1447–1453. [Google Scholar] [CrossRef]
- Rajala, P. Microbially-Induced Corrosion of Carbon Steel in a Geological Repository Environment; Jurkalsij—Utgivare Publisher: Helsinki, Finland, 2017; 83p. [Google Scholar]
- Little, B.J.; Lee, J.S.; Ray, R.I. The influence of marine biofilms on corrosion: A concise review. Electrochim. Acta 2008, 54, 2–7. [Google Scholar] [CrossRef]
- Javaherdashti, R.; Alasvand, K. Biological Treatment of Microbial Corrosion: Opportunities and Challenges; Elsevier Science: St. Louis, MO, USA, 2019; 156p. [Google Scholar]
- Zanna, S.; Seyeux, A.; Allion-Maurer, A.; Marcus, P. Escherichia coli siderophore-induced modification of passive films on stainless steel. Corros. Sci. 2020, 175, 108872. [Google Scholar] [CrossRef]
- Wang, J.; Du, M.; Shan, X.; Xu, T.; Shi, P. Corrosion inhibition study of marine Streptomyces against sulfate-reducing bacteria in oilfield produced water. Corros. Sci. 2023, 223, 111441. [Google Scholar] [CrossRef]
- Kostakioti, M.; Hadjifrangiskou, M.; Hultgren, S.J. Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med. 2013, 3, a010306. [Google Scholar] [CrossRef]
- Javaherdashti, R. Microbiologically Influenced Corrosion; Springer: Cham, Switzerland, 2017; 216p. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Zhang, R.; Guan, F.; Hou, B.; Duan, J. Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: A brief view. Appl. Microbiol. Biotechnol. 2020, 104, 515–525. [Google Scholar] [CrossRef]
- Thompson, A.A.; Wood, J.L.; Palombo, E.A.; Green, W.K.; Wade, S.A. From laboratory tests to field trials: A review of cathodic protection and microbially influenced corrosion. Biofouling 2022, 38, 298–320. [Google Scholar] [CrossRef]
- Barton, L.L.; Duarte, A.G.; Staicu, L.C. Genomic insight into iron acquisition by sulfate-reducing bacteria in microaerophilic environments. Biometals 2023, 36, 339–350. [Google Scholar] [CrossRef]
- Bonifay, V.; Wawrik, B.; Sunner, J.; Snodgrass, E.C.; Aydin, E.; Duncan, K.E.; Callaghan, A.V.; Oldham, A.; Liengen, T.; Beech, I. Metabolomic and Metagenomic Analysis of Two Crude Oil Production Pipelines Experiencing Differential Rates of Corrosion. Front. Microbiol. 2017, 8, 99. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tkachuk, N.; Zelena, L.; Novikov, Y. Indicators of Microbial Corrosion of Steel Induced by Sulfate-Reducing Bacteria Under the Influence of a Supernatant from Bacterial Cultures of Heterotrophic Bacteria with Biocontrol Properties. Eng. Proc. 2025, 87, 87. https://doi.org/10.3390/engproc2025087087
Tkachuk N, Zelena L, Novikov Y. Indicators of Microbial Corrosion of Steel Induced by Sulfate-Reducing Bacteria Under the Influence of a Supernatant from Bacterial Cultures of Heterotrophic Bacteria with Biocontrol Properties. Engineering Proceedings. 2025; 87(1):87. https://doi.org/10.3390/engproc2025087087
Chicago/Turabian StyleTkachuk, Nataliia, Liubov Zelena, and Yaroslav Novikov. 2025. "Indicators of Microbial Corrosion of Steel Induced by Sulfate-Reducing Bacteria Under the Influence of a Supernatant from Bacterial Cultures of Heterotrophic Bacteria with Biocontrol Properties" Engineering Proceedings 87, no. 1: 87. https://doi.org/10.3390/engproc2025087087
APA StyleTkachuk, N., Zelena, L., & Novikov, Y. (2025). Indicators of Microbial Corrosion of Steel Induced by Sulfate-Reducing Bacteria Under the Influence of a Supernatant from Bacterial Cultures of Heterotrophic Bacteria with Biocontrol Properties. Engineering Proceedings, 87(1), 87. https://doi.org/10.3390/engproc2025087087