Effect of Alternating Magnetic Field Intensity on Microstructure and Corrosion Properties of Deposited Metal in 304 Stainless Steel TIG Welding
Abstract
1. Introduction
2. Experimental Materials and Methods
2.1. Materials
2.2. Experimental Methods
2.2.1. Process Trials
2.2.2. Microstructural Characterization
2.2.3. Electrochemical Corrosion Testing
3. Experimental Results and Analysis
3.1. Influence of Alternating Magnetic Field Intensity on Arc Morphology
3.2. Influence of Alternating Magnetic Field Intensity on Microstructure
3.3. Influence of Alternating Magnetic Field Intensity on Corrosion Performance
4. Conclusions
- The high-speed imaging analysis of arc morphology under varying alternating magnetic field intensities reveals that the arc remains stable without deflection in the absence of a magnetic field. However, as the intensity of the magnetic field increases, the arc exhibits pronounced periodic oscillations.
- The variation in alternating magnetic field intensity affects the penetration depth and width of the weld. As the alternating magnetic field intensity rises, the weld penetration depth diminishes gradually, whereas the weld width broadens progressively.
- The microstructure shows that, as the intensity of the alternating magnetic field increases, there is a significant phenomenon of grain refinement.
- The electrochemical tests confirmed the variations in the corrosion behavior of welded joints subjected to different intensities of alternating magnetic fields. Notably, the corrosion resistance exhibited a marked improvement with increasing alternating magnetic field intensity. The corrosion resistance of the welded joints under alternating magnetic fields can be ranked in a descending order as follows: 30 mT > 20 mT > 10 mT > 0 mT.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, H.; Wu, W.; Zhang, X.; Fang, Z.; Fu, X.; Xu, L.; Liu, J. Optimization-based global liquefied natural gas shipping network management for emission reduction. Ocean Eng. 2025, 321, 120366. [Google Scholar] [CrossRef]
- Wang, S. Chinese high manganese steel “Meng” goes viral. China Ship Surv. 2022, 6, 30–33. [Google Scholar]
- Thakur, A.; Kumar, A.; Sharma, S.; Ganjoo, R.; Assad, H. Computational and Experimental Studies on the Efficiency of Sonchus Arvensis as Green Corrosion Inhibitor for Mild Steel in 0.5 M HCl Solution. Mater. Today Proc. 2022, 66, 609–621. [Google Scholar] [CrossRef]
- Ambade, S.; Tembhurkar, C.; Rokde, A.; Gupta, S.; Shelare, S.; Prakash, C.; Gupta, L.R.; Smirnov, V.A. Experimental investigation of microstructural, mechanical and corrosion properties of 316L and 202 austenitic stainless steel joints using cold metal transfer welding. J. Mater. Res. Technol. 2023, 27, 5881–5888. [Google Scholar] [CrossRef]
- Pavan, A.R.; Arivazhagan, B.; Vasudevan, M.; Prasanthi, T.N.; Sudha, C. Study on the microstructure and mechanical properties of hybrid laser+MIG welded joints of 316LN stainless steel. Opt. Laser Technol. 2023, 163, 109410. [Google Scholar] [CrossRef]
- Sakthivel, T.; Vasudevan, M.; Laha, K.; Parameswaran, P.; Chandravathi, K.S.; Mathew, M.D.; Bhaduri, A.K. Comparison of creep rupture behaviour of type 316L(N) austenitic stainless steel joints welded by TIG and activated TIG welding processes. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process 2011, 528, 6971–6980. [Google Scholar] [CrossRef]
- Pandya, D.; Badgujar, A.; Ghetiya, N. A novel perception toward welding of stainless steel by activated TIG welding: A review. Mater. Manuf. Process 2021, 36, 877–903. [Google Scholar] [CrossRef]
- Dong, Y.; Han, Y.; Yong, H.; De, J.; Dong, L.; Yong, P.; Ke, H. Droplet transfer behavior and weld formation of gas metal arc welding for high nitrogen austenitic stainless steel. J. Manuf. Process. 2021, 65, 491–501. [Google Scholar] [CrossRef]
- Azevedo, S.C.; Resende, A.A. Effect of angle distance between electrodes and TIG current on the weld bead geometry in TIG-MIG/MAG welding process. Int. J. Adv. Manuf. Technol. 2021, 114, 1505–1515. [Google Scholar] [CrossRef]
- Ghumman, K.Z.; Ali, S.; Din, E.U.; Mubashar, A.; Khan, N.B.; Ahmed, S.W. Experimental investigation of effect of welding parameters on surface roughness, micro-hardness and tensile strength of AISI 316L stainless steel welded joints using 308L filler material by TIG welding. J. Mater. Res. Technol. 2022, 21, 220–236. [Google Scholar] [CrossRef]
- Dhilip, A.; Jayakrishnan, N. Investigating the effects of ultrasonic assistance on TIG welding of AA7075 alloys: A machine learning-based optimization study using RSM-PSO. Phys. Scr. 2025, 100, 016002. [Google Scholar]
- Yang, C.; Yang, F.; Meng, X.; Putra, S.N.; Bachmann, M.; Rethmeier, M. Phase-Field Simulation of the Dendrite Growth in Aluminum Alloy AA5754 during Alternating Current Electromagnetic Stirring Laser Beam Welding. Int. J. Heat Mass Transf. 2024, 218, 124754. [Google Scholar] [CrossRef]
- Yue, J.; Zhou, H.; Xie, C.; Zhou, W.; Liu, W. Temperature Field Simulation and Asymmetric Heat Transfer Distribution of Dissimilar Steel Welded with External Transverse Magnetic Field. Mater. Today Commun. 2023, 37, 107141. [Google Scholar] [CrossRef]
- Tan, C.; Liu, Y.; Xu, B.; Wang, H.; Liu, F.; Gong, X.; Zeng, Z.; Chen, B.; Song, X. Numerical and Experimental Study of Thermal Fluid Flow and Keyhole Dynamic in Laser Welding of Aluminum Alloy Assisted by Electromagnetic Field. Opt. Laser Technol. 2023, 157, 108718. [Google Scholar] [CrossRef]
- Zhu, Z.; Ma, X.; Wang, C.; Mi, G. Modification of droplet morphology and arc oscillation by magnetic field in laser-MIG hybrid welding. Opt. Lasers Eng. 2020, 131, 106138. [Google Scholar] [CrossRef]
- Cai, B.; Fu, J.; Zhao, Y.; Chen, F.; Qin, Y.; Song, S. Effect of Alternating Magnetic Field on Arc Plasma Characteristics and Droplet Transfer during Narrow Gap Laser-MIG Hybrid Welding. Metals 2021, 11, 1712. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Q.; Zhang, T.; Zhang, S.; Liu, Y.; Feng, J. Arc characteristics in alternating magnetic field assisted narrow gap pulsed GTAW. J. Mater. Process. Technol. 2018, 254, 254–264. [Google Scholar] [CrossRef]
- Wang, L.; Chen, J.; Wu, C.; Luan, S.C. Numerical analysis of arc and droplet behaviors in gas metal arc welding with external compound magnetic field. J. Mater. Process. Technol. 2020, 282, 116638. [Google Scholar] [CrossRef]
- Li, Y.; Miao, J.; Zou, W.; Dong, Z.H.; Chang, C.H.; Liu, D.; Chang, Y.L. Effect of an external magnetic field on arc geometry, weld microstructure and porosity of GMAW. J. Mater. Sci. 2023, 58, 1769–1782. [Google Scholar] [CrossRef]
- Fu, J.; Zhao, Y.; Zou, J.; Liu, X.; Pan, Y. Influence of the magnetic field on the melting and solidification behavior of narrow-gap laser welding with filler wire. Int. J. Adv. Manuf. Technol. 2022, 123, 1123–1131. [Google Scholar] [CrossRef]
- Zhang, L.; Tan, H.; Lin, H.; Lv, P.; Lin, L.; Zhou, J. Research on the Al/Cu dissimilar metals laser welding process with alternating magnetic field assisted. Opt. Lasers Eng. 2025, 184, 108686. [Google Scholar] [CrossRef]
- Liu, F.; Tan, C.; Ma, G.; Han, X.; Chen, B.; Song, X.; Wang, G. Improvement of inhomogeneity of microstructure and mechanical properties for 316 stainless steel laser-MIG hybrid welded joint assisted by alternating magnetic field. Sci. Technol. Weld. Join. 2022, 27, 437–445. [Google Scholar] [CrossRef]
- Chen, L.; Liang, S.; Liu, Y.; Zhang, L. Additive manufacturing of metalliclattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges. Mater. Sci. Eng. R 2021, 146, 100648. [Google Scholar] [CrossRef]
- Chen, L.; Qin, P.; Zhang, L.; Zhang, L. An overview of additively manufactured metal matrix composites: Preparation, performance, and challenge. Int. J. Extrem. Manuf. 2024, 6, 052006. [Google Scholar] [CrossRef]
- Chen, Y.; Sui, F.; Cong, K.; Yan, X.; Zhang, G.; Guan, S. Effects of shielding gas and magnetic field on characteristics of AZ31 magnesium alloy by TIG welding. Mater. Sci. Forum 2012, 2, 1186–1196. [Google Scholar] [CrossRef]
- Juan, I.A.; Gregory, J.G.; Geoff, W.; Amit, D. Understanding the corrosion behaviour of Al-Mg alloy fabricated using a Laser Powder Bed Fusion (L-PBF) Additive Manufacturing (AM) process. J. Alloys Compd. 2023, 969, 172300. [Google Scholar]
- Guo, J.; Wang, F.; Zhou, L.; Zhao, Y.; Fu, J.; Chen, G.; Qin, Y. The Synergistic Enhancement Effect of H2 in the Shielding Gas on High Welding Efficiency and Corrosion Resistance in TIG Welding of Stainless Steel. Metall. Mater. Trans. B 2025, 1, 46–63. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, L.; Chu, Y.; Zhang, L.; Li, R.; Lu, S.; Wang, L.; Zhang, L. Metastable pitting corrosion behavior and characteristics of passive film of laser powder bed fusion produced Ti-6Al-4V in NaCl solutions with different concentrations. Corros. Sci. 2023, 215, 111017. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.; Zheng, C.; Yang, H.; Qin, P.; Zhao, C.; Lu, S.; Liang, S.; Chai, L.; Zhang, L. Corrosion behavior and characteristics of passive films of laser powder bed fusion produced Ti-6Al-4V in dynamic Hank’s solution. Mater. Des. 2021, 208, 109907. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, Z.; Yuan, H.; Zhou, H.; Qiao, Y.; Xu, X.; Zou, J. Effects of different carbides content and brazing process on the electrochemical behaviour of vacuum brazed WC-10Ni+NiCrBSi coatings. Phys. Scr. 2023, 98, 115977. [Google Scholar] [CrossRef]
Material Types | C | Si | Mn | P | S | Ni | Cr | N | Rm/MPa | Rp0.2/MPa | A (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
304 | 0.04 | 0.90 | 1.90 | 0.043 | 0.029 | 7.50 | 17.50 | 0.200 | ≥660 | ≥320 | ≥35 |
ER308L | 0.03 | 0.55 | 1.75 | 0.017 | 0.011 | 9.65 | 19.60 | 0.160 | ≥525 | ≥230 | ≥30 |
Welding Parameter | Value |
---|---|
Welding speed (mm/s) | 2.4 |
Welding current (A) | 190 |
Shielding gas flow rate (L/min) | 12 |
Magnetic induction frequency (Hz) | 10 |
Magnetic induction intensity (mT) | 0, 10, 20, 30 |
Magnetic Induction Intensity | R1 (Ω·cm2) | Rp1 (kΩ·cm2) | CPE1-T × 10−6 (Ω·sn·cm−2) | n1 | Rp2 (MΩ·cm2) | CPE2-T × 10−6 (Ω·sn·cm−2) | n2 | χ2 |
---|---|---|---|---|---|---|---|---|
0 mT | 17.31 ± 0.02 | 18.7 ± 0.02 | 3.13 ± 0.02 | 0.84 ± 0.05 | 0.83 ± 0.11 | 6.77 ± 0.05 | 0.83 ± 0.05 | 5.18 × 10−4 |
10 mT | 18.94 ± 0.03 | 21.1 ± 0.03 | 3.38 ± 0.03 | 0.84 ± 0.12 | 1.13 ± 0.09 | 5.83 ± 0.06 | 0.78 ± 0.09 | 1.09 × 10−4 |
20 mT | 19.27 ± 0.04 | 25.1 ± 0.04 | 3.27 ± 0.05 | 0.81 ± 0.04 | 2.13 ± 0.05 | 5.46 ± 0.08 | 0.85 ± 0.04 | 8.17 × 10−4 |
30 mT | 15.23 ± 0.03 | 46.6 ± 0.03 | 2.95 ± 0.09 | 0.82 ± 0.03 | 4.31 ± 0.06 | 4.63 ± 0.03 | 0.83 ± 0.02 | 2.51 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Li, J.; Wang, H.; Ju, Z.; Fu, J.; Zhao, Y.; Zang, Q. Effect of Alternating Magnetic Field Intensity on Microstructure and Corrosion Properties of Deposited Metal in 304 Stainless Steel TIG Welding. Metals 2025, 15, 761. https://doi.org/10.3390/met15070761
Wang J, Li J, Wang H, Ju Z, Fu J, Zhao Y, Zang Q. Effect of Alternating Magnetic Field Intensity on Microstructure and Corrosion Properties of Deposited Metal in 304 Stainless Steel TIG Welding. Metals. 2025; 15(7):761. https://doi.org/10.3390/met15070761
Chicago/Turabian StyleWang, Jinjie, Jiayi Li, Haokai Wang, Zan Ju, Juan Fu, Yong Zhao, and Qianhao Zang. 2025. "Effect of Alternating Magnetic Field Intensity on Microstructure and Corrosion Properties of Deposited Metal in 304 Stainless Steel TIG Welding" Metals 15, no. 7: 761. https://doi.org/10.3390/met15070761
APA StyleWang, J., Li, J., Wang, H., Ju, Z., Fu, J., Zhao, Y., & Zang, Q. (2025). Effect of Alternating Magnetic Field Intensity on Microstructure and Corrosion Properties of Deposited Metal in 304 Stainless Steel TIG Welding. Metals, 15(7), 761. https://doi.org/10.3390/met15070761