Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (945)

Search Parameters:
Keywords = cluster ion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2228 KiB  
Article
Silver Nanoparticles@Zeolite Composites: Preparation, Characterization and Antibacterial Properties
by Gospodinka Gicheva, Marinela Panayotova, Orlin Gemishev, Sergei A. Kulinich and Neli Mintcheva
Materials 2025, 18(17), 3964; https://doi.org/10.3390/ma18173964 (registering DOI) - 24 Aug 2025
Abstract
The presence of various Ag species (Ag+ ions, Ag clusters, and Ag nanoparticles (NPs)) in Ag-zeolite nanocomposites strongly influences their catalytic, photocatalytic, and antibacterial properties. To tailor materials for specific applications, it is essential to employ strategies that control the redox processes [...] Read more.
The presence of various Ag species (Ag+ ions, Ag clusters, and Ag nanoparticles (NPs)) in Ag-zeolite nanocomposites strongly influences their catalytic, photocatalytic, and antibacterial properties. To tailor materials for specific applications, it is essential to employ strategies that control the redox processes between Ag+ and Ag0 and facilitate the formation of active Ag-containing composites. In this study, we present a comparative analysis of Ag-zeolite nanocomposites, focusing on their synthesis methods, structural characteristics, and antibacterial activity against Escherichia coli. Ag NPs were synthesized using three approaches: solid-state thermal reduction, chemical reduction in aqueous solutions with a mild reducing agent (sodium citrate, Na3Cit), and chemical reduction with a strong reducing agent (sodium borohydride, NaBH4). The resulting materials were characterized by X-ray diffraction (XRD), diffuse reflectance UV–Vis spectroscopy (DR UV–Vis), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), while antibacterial activity was assessed using biological assays. Microscopic and spectroscopic analyses confirmed the formation of Ag NPs and the co-existence of immobilized Ag+ ions within the zeolite framework. The specific influence of the treatment method of Ag+-zeolite on the presence of silver species in the nanocomposites and their role in antibacterial properties were evaluated. The highest antibacterial efficiency was observed in the nanocomposite produced by thermal treatment of Ag-exchanged zeolite. Thus, the crucial function of Ag+ ions in the mechanism of bacteria cell death was suggested. Full article
Show Figures

Figure 1

15 pages, 6970 KiB  
Article
Regulatory Characterization of Two Cop Systems for Copper Resistance in Pseudomonas putida
by Huizhong Liu, Yafeng Song, Ping Yang, Qian Wang, Ping Huang, Zhiqing Zhang, Gang Zhou, Qingshan Shi and Xiaobao Xie
Int. J. Mol. Sci. 2025, 26(17), 8172; https://doi.org/10.3390/ijms26178172 - 22 Aug 2025
Abstract
Copper ions serve as essential cofactors for many enzymes but exhibit toxicity at elevated concentrations. In Gram-negative bacteria, the Cop system, typically encoded by copABCD, plays a crucial role in maintaining copper homeostasis and detoxification. The chromosome of Pseudomonas putida harbors two [...] Read more.
Copper ions serve as essential cofactors for many enzymes but exhibit toxicity at elevated concentrations. In Gram-negative bacteria, the Cop system, typically encoded by copABCD, plays a crucial role in maintaining copper homeostasis and detoxification. The chromosome of Pseudomonas putida harbors two copAB clusters but lacks copCD, along with two copR-copS clusters that encode the cognate two-component system. Here, the roles of these Cop components in countering copper toxicity were studied. We found that copAB2 was essential for full resistance to Cu2+ in P. putida, while copAB1 made only a minor contribution, partially due to its low expression. The two-component systems CopRS1 and CopRS2 both played significant regulatory roles in copper resistance. Although they could compensate for the absence of each other to mediate copper resistance, they exhibited distinct regulatory effects. CopR1 bound to all four cop promoters and activated their transcription under copper stress. In contrast, though CopR2 bound to the same sites as CopR1 in each cop promoter, it significantly activated only copAB2 and copRS2 expression. Its competitive binding at the copAB1 and copRS1 promoters likely impeded CopR1-mediated activation of these genes. Overall, this study reveals the distinct contributions of the two Cop systems to copper resistance and their regulatory interplay in P. putida. Full article
(This article belongs to the Section Molecular Biology)
26 pages, 2295 KiB  
Article
Retrospective Urine Metabolomics of Clinical Toxicology Samples Reveals Features Associated with Cocaine Exposure
by Rachel K. Vanderschelden, Reya Kundu, Delaney Morrow, Simmi Patel and Kenichi Tamama
Metabolites 2025, 15(9), 563; https://doi.org/10.3390/metabo15090563 - 22 Aug 2025
Viewed by 52
Abstract
Background/Objectives: Cocaine is a widely used illicit stimulant with significant toxicity. Despite its clinical relevance, the broader metabolic alterations associated with cocaine use remain incompletely characterized. This study aims to identify novel biomarkers for cocaine exposure by applying untargeted metabolomics to retrospective urine [...] Read more.
Background/Objectives: Cocaine is a widely used illicit stimulant with significant toxicity. Despite its clinical relevance, the broader metabolic alterations associated with cocaine use remain incompletely characterized. This study aims to identify novel biomarkers for cocaine exposure by applying untargeted metabolomics to retrospective urine drug screening data. Methods: We conducted a retrospective analysis of a raw mass spectrometry (MS) dataset from urine comprehensive drug screening (UCDS) from 363 patients at the University of Pittsburgh Medical Center Clinical Toxicology Laboratory. The liquid chromatography–quadrupole time-of-flight mass spectrometry (LC-qToF-MS) data were preprocessed with MS-DIAL and subjected to multiple statistical analyses to identify features significantly associated with cocaine-enzyme immunoassay (EIA) results. Significant features were further evaluated using MS-FINDER for feature annotation. Results: Among 14,883 features, 262 were significantly associated with cocaine-EIA results. A subset of 37 more significant features, including known cocaine metabolites and impurities, nicotine metabolites, norfentanyl, and a tryptophan-related metabolite (3-hydroxy-tryptophan), was annotated. Cluster analysis revealed co-varying features, including parent compounds, metabolites, and related ion species. Conclusions: Features associated with cocaine exposure, including previously underrecognized cocaine metabolites and impurities, co-exposure markers, and alterations in an endogenous metabolic pathway, were identified. Notably, norfentanyl was found to be significantly associated with cocaine -EIA, reflecting current trends in illicit drug use. This study highlights the potential of repurposing real-world clinical toxicology data for biomarker discovery, providing a valuable approach to identifying exposure biomarkers and expanding our understanding of drug-induced metabolic disturbances in clinical toxicology. Further validation and exploration using complementary analytical platforms are warranted. Full article
Show Figures

Figure 1

15 pages, 2208 KiB  
Article
The Significant Impact of Biomass Burning Emitted Particles on Typical Haze Pollution in Changsha, China
by Qu Xiao, Hui Guo, Jie Tan, Zaihua Wang, Yuzhu Xie, Honghong Jin, Mengrong Yang, Xinning Wang, Chunlei Cheng, Bo Huang and Mei Li
Toxics 2025, 13(8), 691; https://doi.org/10.3390/toxics13080691 - 20 Aug 2025
Viewed by 206
Abstract
In this study, typical haze pollution influenced by biomass burning (BB) activities in Changsha in the autumn of 2024 was investigated through the mixing state and evolution process of BB particles via the real-time measurement of single-particle aerosol mass spectrometry (SPAMS). From the [...] Read more.
In this study, typical haze pollution influenced by biomass burning (BB) activities in Changsha in the autumn of 2024 was investigated through the mixing state and evolution process of BB particles via the real-time measurement of single-particle aerosol mass spectrometry (SPAMS). From the clean period to the haze period, the PM2.5 concentration increased from 25 μg·m−3 at 12:00 to 273 μg·m−3 at 21:00 on 12 October, and the proportion of total BB single particles in the total detected particles increased from 17.2% to 54%. This indicates that the rapid increase in PM2.5 concentration was accompanied by a concurrent increase in the contribution of particles originating from BB sources. The detected BB particles were classified into two types based on their mixing states and temporal variations: BB1 and BB2, which accounted for 71.7% and 28.3% of the total BB particles, respectively. The analysis of backward trajectories and fire spots suggested that BB1 particles originated from straw burning emissions at northern Changsha, while BB2 particles were primarily related to local nighttime cooking emissions in Changsha. In addition, a special type of K-containing single particles without K cluster ions was found closely associated with BB1 type particles, which were designated as secondarily processed BB particles (BB-sec). The BB-sec particles contained abundant sulfate and ammonium signals and showed lagged appearance after the peak of BB1-type particles, which was possibly due to the aging and formation of ammonium sulfate on the freshly emitted particles. In all, this study provides insights into understanding the substantial impact of BB sources on regional air quality during the crop harvest season and the appropriate disposal of crop straw, including conversion into high-efficiency fuel through secondary processing or clean energy via biological fermentation, which is of great significance for the mitigation of local haze pollution. Full article
Show Figures

Graphical abstract

27 pages, 1862 KiB  
Review
The Yin and Yang of Heartbeats: Magnesium–Calcium Antagonism Is Essential for Cardiac Excitation–Contraction Coupling
by Chiara Marabelli, Demetrio J. Santiago and Silvia G. Priori
Cells 2025, 14(16), 1280; https://doi.org/10.3390/cells14161280 - 18 Aug 2025
Viewed by 397
Abstract
While calcium (Ca2+) is a universal cellular messenger, the ionic properties of magnesium (Mg2+) make it less suited for rapid signaling and more for structural integrity. Still, besides being a passive player, Mg2+ is the only active Ca [...] Read more.
While calcium (Ca2+) is a universal cellular messenger, the ionic properties of magnesium (Mg2+) make it less suited for rapid signaling and more for structural integrity. Still, besides being a passive player, Mg2+ is the only active Ca2+ antagonist, essential for tuning the efficacy of Ca2+-dependent cardiac excitation–contraction coupling (ECC) and for ensuring cardiac function robustness and stability. This review aims to provide a comprehensive framework to link the structural and molecular mechanisms of Mg2+/Ca2+ antagonistic binding across key proteins of the cardiac ECC machinery to their physiopathological relevance. The pervasive “dampening” effect of Mg2+ on ECC activity is exerted across various players and mechanisms, and lies in the ions’ physiological competition for multiple, flexible binding protein motifs across multiple compartments. Mg2+ profoundly modulates the cardiac action potential waveform by inhibiting the L-type Ca2+ channel Cav1.2, i.e., the key trigger of cardiac ryanodine receptor (RyR2) opening. Cytosolic Mg2+ favors RyR2 closed or inactive conformations not only through physical binding at specific sites, but also indirectly through modulation of RyR2 phosphorylation by Camk2d and PKA. RyR2 is also potently inhibited by luminal Mg2+, a vital mechanism in the cardiac setting for preventing excessive Ca2+ release during diastole. This mechanism, able to distinguish between Ca2+ and Mg2+, is mediated by luminal partners Calsequestrin 2 (CASQ2) and Triadin (TRDN). In addition, Mg2+ favors a rearrangement of the RyR2 cluster configuration that is associated with lower Ca2+ spark frequencies. Full article
Show Figures

Figure 1

18 pages, 6368 KiB  
Article
Research on the Genesis Mechanism of Hot Springs in the Middle Reaches of the Wenhe River
by Cheng Xue, Nan Xing, Zongjun Gao, Yiru Niu and Dongdong Yang
Water 2025, 17(16), 2431; https://doi.org/10.3390/w17162431 - 17 Aug 2025
Viewed by 298
Abstract
This study investigates geothermal clusters in the middle reaches of the Dawen River Basin, focusing on the developmental characteristics and genetic mechanisms of typical geothermal water exposures at key sites, including Daidaoan (Taishan), Qiaogou (Culai Town), and Anjiazhuang (Feicheng). Utilizing hydrogeochemical and environmental [...] Read more.
This study investigates geothermal clusters in the middle reaches of the Dawen River Basin, focusing on the developmental characteristics and genetic mechanisms of typical geothermal water exposures at key sites, including Daidaoan (Taishan), Qiaogou (Culai Town), and Anjiazhuang (Feicheng). Utilizing hydrogeochemical and environmental isotope analyses, we identify a dual groundwater recharge mechanism: (1) rapid infiltration via preferential flow through fissure media and (2) slow seepage with evaporative loss along gas-bearing zones. Ion sources are influenced by water–rock interactions and positive cation exchange. The hydrochemical types of surface water and geothermal water can be divided into five categories, with little difference within the same geothermal area. The thermal reservoir temperatures range from 53.54 to 101.49 °C, with the Anjiazhuang and Qiaogou geothermal areas displaying higher temperatures than the Daidaoan area. Isotope calculations indicate that the recharge elevation ranges from 2865.76 to 4126.69 m. The proportion of cold water mixed in the shallow part is relatively large. A comparative analysis of the genetic models of the three geothermal water groups shows that they share the common feature of being controlled by fault zones. However, they differ in that the Daidao’an geothermal area in Mount Tai is of the karst spring type with a relatively low geothermal water temperature, whereas the Qiaogou geothermal area in Culai Town and the Anjiazhuang geothermal area in Feicheng are of the gravel or sandy shale spring types with a relatively high geothermal water temperature. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

14 pages, 19891 KiB  
Article
Investigating Surface Morphology and Subsurface Damage Evolution in Nanoscratching of Single-Crystal 4H-SiC
by Jianpu Xi, Xinxing Ban, Zhen Hui, Wenlan Ba, Lijuan Deng and Hui Qiu
Micromachines 2025, 16(8), 935; https://doi.org/10.3390/mi16080935 - 14 Aug 2025
Viewed by 347
Abstract
Single-crystal 4H silicon carbide (4H-SiC) is a key substrate material for third-generation semiconductor devices, where surface and subsurface integrity critically affect performance and reliability. This study systematically examined the evolution of surface morphology and subsurface damage (SSD) during nanoscratching of 4H-SiC under varying [...] Read more.
Single-crystal 4H silicon carbide (4H-SiC) is a key substrate material for third-generation semiconductor devices, where surface and subsurface integrity critically affect performance and reliability. This study systematically examined the evolution of surface morphology and subsurface damage (SSD) during nanoscratching of 4H-SiC under varying normal loads (0–100 mN) using a nanoindenter equipped with a diamond Berkovich tip. Scratch characteristics were assessed using scanning electron microscopy (SEM), while cross-sectional SSD was characterised via focused ion beam (FIB) slicing and transmission electron microscopy (TEM). The results revealed three distinct material removal regimes: ductile removal below 14.5 mN, a brittle-to-ductile transition between 14.5–59.3 mN, and brittle removal above 59.3 mN. Notably, substantial subsurface damage—including median cracks exceeding 4 μm and dislocation clusters—was observed even within the transition zone where the surface appeared smooth. A thin amorphous layer at the indenter-substrate interface suppressed immediate surface defects but promoted subsurface damage nucleation. Crack propagation followed slip lines or their intersections, demonstrating sensitivity to local stress states. These findings offer important insights into nanoscale damage mechanisms, which are essential for optimizing precision machining processes to minimise SSD in SiC substrates. Full article
Show Figures

Figure 1

27 pages, 12670 KiB  
Article
Integrated Multivariate and Spatial Assessment of Groundwater Quality for Sustainable Human Consumption in Arid Moroccan Regions
by Yousra Tligui, El Khalil Cherif, Wafae Lechhab, Touria Lechhab, Ali Laghzal, Nordine Nouayti, El Mustapha Azzirgue, Joaquim C. G. Esteves da Silva and Farida Salmoun
Water 2025, 17(16), 2393; https://doi.org/10.3390/w17162393 - 13 Aug 2025
Viewed by 658
Abstract
Groundwater quality in arid and semi-arid regions of Morocco is under increasing pressure due to both anthropogenic influences and climatic variability. This study investigates the physicochemical and heavy metal characteristics of groundwater across four Moroccan regions (Tangier-Tetouan-Al Hoceima, Oriental, Souss-Massa, and Marrakech-Safi) known [...] Read more.
Groundwater quality in arid and semi-arid regions of Morocco is under increasing pressure due to both anthropogenic influences and climatic variability. This study investigates the physicochemical and heavy metal characteristics of groundwater across four Moroccan regions (Tangier-Tetouan-Al Hoceima, Oriental, Souss-Massa, and Marrakech-Safi) known for being argan tree habitats. Thirteen groundwater samples were analyzed for twenty-five parameters, including major ions, nutrients, and trace metals. Elevated levels of ammonium, turbidity, electrical conductivity, and dissolved oxygen were observed in multiple samples, surpassing Moroccan water quality standards and indicating significant quality deterioration. Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) detected arsenic concentrations exceeding permissible limits in sample AW11 alongside widespread lead contamination in most samples except AW5 and AW9. Spatial patterns of contamination were characterized using Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), K-means clustering, and GIS-based Inverse Distance Weighted (IDW) interpolation. These multivariate approaches revealed marked spatial heterogeneity and highlighted the dual influence of geogenic processes and anthropogenic activities on groundwater quality. To assess consumption suitability, a Water Quality Index (WQI) and Human Health Risk Assessment were applied. As a result, 31% of samples were rated “Fair” and 69% as “Good”, but with notable non-carcinogenic risks, particularly to children, attributable to nitrate, lead, and arsenic. The findings underscore the urgent need for systematic groundwater monitoring and management strategies to safeguard water resources in Morocco’s vulnerable dryland ecosystems, particularly in regions where groundwater sustains vital socio-ecological species such as argan forests. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

20 pages, 4259 KiB  
Article
Cultivation Method-Driven Aroma Diversification in Antrodia cinnamomea: GC-IMS and Bioelectronic Sensors Reveal Distinctive Volatile Fingerprints
by Xiaofeng Ma, Na Zhang, Shiyuan Yu, Tianyu Shi, Shude Yang, Xianhao Cheng, Yongfei Ming and Rui Zhang
Foods 2025, 14(16), 2790; https://doi.org/10.3390/foods14162790 - 11 Aug 2025
Viewed by 342
Abstract
Antrodia cinnamomea, a renowned rare medicinal fungus in China, is rich in active components, exhibiting pharmacological effects, such as liver protection, hypoglycemic activity, and anti-tumor properties. Aiming to address the lack of horizontal comparative studies on volatile components of A. cinnamomea under [...] Read more.
Antrodia cinnamomea, a renowned rare medicinal fungus in China, is rich in active components, exhibiting pharmacological effects, such as liver protection, hypoglycemic activity, and anti-tumor properties. Aiming to address the lack of horizontal comparative studies on volatile components of A. cinnamomea under different culture methods and the limitations of traditional detection methods, this study investigated the mycelia of A. cinnamomea cultured by solid-state culture (SAC), liquid culture (LAC), and dish culture (DAC). The flavor profiles were comprehensively evaluated using a combination of electronic tongue (E-tongue), electronic nose (E-nose), gas chromatography–ion mobility spectrometry (GC-IMS), and multivariate statistical methods. Results from E-tongue and E-nose showed distinct flavor profiles among the three culture methods. A total of 75 volatile compounds were detected by GC-IMS, among which esters, alcohols, and ketones were the main components, accounting for 62.7%. Partial least squares discriminant analysis (PLS-DA) identified 41 characteristic volatile compounds, and cluster heatmaps and orthogonal partial least squares discriminant analysis (OPLS-DA) further validated the metabolic preferences among culture methods. These findings provide a scientific basis for improving A. cinnamomea product quality through targeted flavor enhancement, support the development of standardized functional foods, and establish a flavor fingerprint for authenticity assessment, advancing the high-value utilization of this medicinal fungus. Full article
(This article belongs to the Special Issue Novel Insights into Food Flavor Chemistry and Analysis)
Show Figures

Figure 1

14 pages, 6609 KiB  
Article
Engineered Saccharomyces cerevisiae for the Enhancement of Glucosamine Accumulation by the Consumption of Glucose and Ammonium Based on Synthetic Biological Pathways
by Peizhou Yang, Mingsi Ke, Jiaqi Feng, Zhi Zheng and Shaotong Jiang
Foods 2025, 14(16), 2783; https://doi.org/10.3390/foods14162783 - 10 Aug 2025
Viewed by 289
Abstract
Glucosamine (GlcN) is a high-value compound with significant health applications. GlcN is widely used in the food and health industry as a food additive or functional food. The development of a green, efficient, and safe method for GlcN production is of great significance [...] Read more.
Glucosamine (GlcN) is a high-value compound with significant health applications. GlcN is widely used in the food and health industry as a food additive or functional food. The development of a green, efficient, and safe method for GlcN production is of great significance due to the complexity of traditional production methods, environmental pollution, and sensitization of raw materials. In this study, Saccharomyces cerevisiae genes PFK1, PDB1, GNA1, ISR1, and PCM1 were knocked out using the Clustered Regularly Interspaced Short Palindromic Repeats Cas9 (CRISPR-Cas9) method. In addition, three key enzyme genes, glucosamine-6-phosphate deaminase GlmD, glucosamine-6-phosphate phosphatase GlmP, and ammonium transporter AMT1, were introduced to construct engineered strains for GlcN synthesis in the presence of high-concentration inorganic ammonium ions. The results indicated that S. cerevisiae HPG5 with GlmD, GlmP, and AMT1 integration and simultaneous deletion of PFK1, PDB1, GNA1, PCM1, and ISR1 achieved the highest GlcN yield (1.95 ± 0.02 g/L) during fermentation with 10 g/L (NH4)2SO4, which was 2.47-fold higher than the control. The conversion rate of glucose to GlcN in HPG5 was 9.75% in liquid YPD medium containing 20 g/L of glucose and 10 g/L of (NH4)2SO4. Thus, the results indicated that S. cerevisiae HPG5 could effectively produce GlcN in the presence of high-concentration ammonium sulphate. This study provides a promising alternative, S. cerevisiae HPG5, for GlcN production. Full article
Show Figures

Graphical abstract

22 pages, 1000 KiB  
Review
Is the Activation of the Postsynaptic Ligand Gated Glycine- or GABAA Receptors Essential for the Receptor Clustering at Inhibitory Synapses?
by Eva Kiss, Joachim Kirsch, Jochen Kuhse and Stefan Kins
Biomedicines 2025, 13(8), 1905; https://doi.org/10.3390/biomedicines13081905 - 5 Aug 2025
Viewed by 374
Abstract
One major challenge in cellular neuroscience is to elucidate how the accurate alignment of presynaptic release sites with postsynaptic densely clustered ligand-gated ion channels at chemical synapses is achieved upon synapse assembly. The clustering of neurotransmitter receptors at postsynaptic sites is a key [...] Read more.
One major challenge in cellular neuroscience is to elucidate how the accurate alignment of presynaptic release sites with postsynaptic densely clustered ligand-gated ion channels at chemical synapses is achieved upon synapse assembly. The clustering of neurotransmitter receptors at postsynaptic sites is a key moment of synaptogenesis and determinant for effective synaptic transmission. The number of the ionotropic neurotransmitter receptors at these postsynaptic sites of both excitatory and inhibitory synapses is variable and is regulated by different mechanisms, thus allowing the modulation of synaptic strength, which is essential to tune neuronal network activity. Several well-regulated processes seem to be involved, including lateral diffusion within the plasma membrane and local anchoring as well as receptor endocytosis and recycling. The molecular mechanisms implicated are numerous and were reviewed recently in great detail. The role of pre-synaptically released neurotransmitters within the complex regulatory apparatus organizing the postsynaptic site underneath presynaptic terminals is not completely understood, even less for inhibitory synapses. In this mini review article, we focus on this aspect of synapse formation, summarizing and contrasting findings on the functional role of the neurotransmitters glycine and γ-aminobutyric acid (GABA) for initiation of postsynaptic receptor clustering and regulation of Cl channel receptor numbers at inhibitory synapses gathered over the last two decades. Full article
(This article belongs to the Special Issue Synaptic Function and Modulation in Health and Disease)
Show Figures

Figure 1

24 pages, 2845 KiB  
Review
Silicon-Based Polymer-Derived Ceramics as Anode Materials in Lithium-Ion Batteries
by Liang Zhang, Han Fei, Chenghuan Wang, Hao Ma, Xuan Li, Pengjie Gao, Qingbo Wen, Shasha Tao and Xiang Xiong
Materials 2025, 18(15), 3648; https://doi.org/10.3390/ma18153648 - 3 Aug 2025
Viewed by 595
Abstract
In most commercial lithium-ion batteries, graphite remains the primary anode material. However, its theoretical specific capacity is only 372 mAh∙g−1, which falls short of meeting the demands of high-performance electronic devices. Silicon anodes, despite boasting an ultra-high theoretical specific capacity of [...] Read more.
In most commercial lithium-ion batteries, graphite remains the primary anode material. However, its theoretical specific capacity is only 372 mAh∙g−1, which falls short of meeting the demands of high-performance electronic devices. Silicon anodes, despite boasting an ultra-high theoretical specific capacity of 4200 mAh∙g−1, suffer from significant volume expansion (>300%) during cycling, leading to severe capacity fade and limiting their commercial viability. Currently, silicon-based polymer-derived ceramics have emerged as a highly promising next-generation anode material for lithium-ion batteries, thanks to their unique nano-cluster structure, tunable composition, and low volume expansion characteristics. The maximum capacity of the ceramics can exceed 1000 mAh∙g−1, and their unique synthesis routes enable customization to align with diverse electrochemical application requirements. In this paper, we present the progress of silicon oxycarbide (SiOC), silicon carbonitride (SiCN), silicon boron carbonitride (SiBCN) and silicon oxycarbonitride (SiOCN) in the field of LIBs, including their synthesis, structural characteristics and electrochemical properties, etc. The mechanisms of lithium-ion storage in the Si-based anode materials are summarized as well, including the key role of free carbon in these materials. Full article
Show Figures

Figure 1

37 pages, 5131 KiB  
Review
Coating Metal–Organic Frameworks (MOFs) and Associated Composites on Electrodes, Thin Film Polymeric Materials, and Glass Surfaces
by Md Zahidul Hasan, Tyeaba Tasnim Dipti, Liu Liu, Caixia Wan, Li Feng and Zhongyu Yang
Nanomaterials 2025, 15(15), 1187; https://doi.org/10.3390/nano15151187 - 2 Aug 2025
Viewed by 848
Abstract
Metal–Organic Frameworks (MOFs) have emerged as advanced porous crystalline materials due to their highly ordered structures, ultra-high surface areas, fine-tunable pore sizes, and massive chemical diversity. These features, arising from the coordination between an almost unlimited number of metal ions/clusters and organic linkers, [...] Read more.
Metal–Organic Frameworks (MOFs) have emerged as advanced porous crystalline materials due to their highly ordered structures, ultra-high surface areas, fine-tunable pore sizes, and massive chemical diversity. These features, arising from the coordination between an almost unlimited number of metal ions/clusters and organic linkers, have resulted in significant interest in MOFs for applications in gas storage, catalysis, sensing, energy, and biomedicine. Beyond their stand-alone properties and applications, recent research has increasingly explored the integration of MOFs with other substrates, particularly electrodes, polymeric thin films, and glass surfaces, to create synergistic effects that enhance material performance and broaden application potential. Coating MOFs onto these substrates can yield significant benefits, including, but not limited to, improved sensitivity and selectivity in electrochemical sensors, enhanced mechanical and separation properties in membranes, and multifunctional coatings for optical and environmental applications. This review provides a comprehensive and up-to-date summary of recent advances (primarily from the past 3–5 years) in MOF coating techniques, including layer-by-layer assembly, in situ growth, and electrochemical deposition. This is followed by a discussion of the representative applications arising from MOF-substrate coating and an outline of key challenges and future directions in this rapidly evolving field. This article aims to serve as a focused reference point for researchers interested in both fundamental strategies and applied developments in MOF surface coatings. Full article
Show Figures

Graphical abstract

12 pages, 4246 KiB  
Article
Theoretical Modeling of Pathways of Transformation of Fructose and Xylose to Levulinic and Formic Acids over Single Na Site in BEA Zeolite
by Izabela Czekaj and Weronika Grzesik
Catalysts 2025, 15(8), 735; https://doi.org/10.3390/catal15080735 - 1 Aug 2025
Viewed by 375
Abstract
The aim of our work is to theoretically model the conversion of C6 and C5 carbohydrates derived from lignocellulosic biomass waste into C1–C5 carboxylic acids such as levulinic, oxalic, lactic, and formic acids. Understanding the mechanism of these processes will provide the necessary [...] Read more.
The aim of our work is to theoretically model the conversion of C6 and C5 carbohydrates derived from lignocellulosic biomass waste into C1–C5 carboxylic acids such as levulinic, oxalic, lactic, and formic acids. Understanding the mechanism of these processes will provide the necessary knowledge to better plan the structure of zeolite. In this article, we focus on the theoretical modeling of two carbohydrates, representing C5 and C6, namely xylose and fructose, into levulinic acid (LE) and formic acid (FA). The modeling was carried out with the participation of Na-BEA zeolite in a hierarchical form, due to the large size of the carbohydrates. The density functional theory (DFT) method (StoBe program) was used, employing non-local generalized gradient-corrected functions according to Perdew, Burke, and Ernzerhof (RPBE) to account for electron exchange and correlation and using the nudged elastic band (NEB) method to determine the structure and energy of the transition state. The modeling was performed using cluster representations of hierarchical Na-Al2Si12O39H23 and ideal Al2Si22O64H34 beta zeolite. However, to accommodate the size of the carbohydrate molecules in reaction paths, only hierarchical Na-Al2Si12O39H23 was used. Sodium ions were positioned above the aluminum centers within the zeolite framework. Full article
(This article belongs to the Special Issue State of the Art and Future Challenges in Zeolite Catalysts)
Show Figures

Graphical abstract

11 pages, 3356 KiB  
Article
Probing the pH Effect on Boehmite Particles in Water Using Vacuum Ultraviolet Single-Photon Ionization Mass Spectrometry
by Xiao Sui, Bo Xu and Xiao-Ying Yu
Int. J. Mol. Sci. 2025, 26(15), 7254; https://doi.org/10.3390/ijms26157254 - 27 Jul 2025
Viewed by 321
Abstract
Boehmite has been widely used in theoretical research and industry, especially for hazardous material processing. For the liquid-phase treating process, the interfacial properties of boehmite are believed to be affected by pH conditions, which change its physicochemical behavior. However, molecular-level detection on cluster [...] Read more.
Boehmite has been widely used in theoretical research and industry, especially for hazardous material processing. For the liquid-phase treating process, the interfacial properties of boehmite are believed to be affected by pH conditions, which change its physicochemical behavior. However, molecular-level detection on cluster ions is challenging when using bulk approaches. Herein we employ in situ vacuum ultraviolet single-photon ionization mass spectrometry (VUV SPI-MS) coupled with a vacuum-compatible microreactor system for analysis at the liquid–vacuum interface (SALVI) to investigate the solute molecular composition of boehmite under different pH conditions for the first time. The mass spectral results show that more complex clustering of solute molecules exists at the solid–liquid (s–l) interface than conventionally perceived in a “simple” aqueous solution. Besides solute ions, such as boehmite molecules and fragments, the composition and appearance energies of these newly discovered solvated cluster ions are determined by VUV SPI-MS in different pH solutions. We offer new results for the pH-dependent effect of boehmite and provide insights into a more detailed solvation mechanism at the s–l interface. By comparing the key products under different pH conditions, fundamental understanding of boehmite dissolution is revealed to assist the engineering design of waste processing and storage solutions. Full article
(This article belongs to the Special Issue Ion and Molecule Transport in Membrane Systems, 6th Edition)
Show Figures

Figure 1

Back to TopTop